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Abstract

In type A, Bott-Samelson varieties are posets in which ascending chains are flags
of vector spaces. They come equipped with a map into the flag variety G/B. These
varieties are mostly studied in the case in which the map into G/B is birational to
the image. In this paper we study Bott-Samelsons for general types, more precisely,
we study the combinatorics a fiber of the map into G/B when it is not birational.
In order to do so we use the moment map of a Bott-Samelson variety to translate
this problem into one in terms of the “subword complexes” of Knutson and Miller.
Pilaud and Stump realized certain subword complexes as the dual of the boundary of
a polytope which generalizes the brick polytope defined by Pilaud and Santos. For
a nice family of words, the brick polytope is the generalized associahedron realized
by Hohlweg, Lange and Thomas. These stories connect in a nice way: we show that
the moment polytope of the brick manifold is the brick polytope. In particular, we
give a nice description of the toric variety of the associahedron. We give each brick
manifold a stratification dual to the subword complex. In addition, we relate brick
manifolds to Brion’s resolutions of Richardon varieties.

Keywords: Brick polytopes; Bott-Samelson varieties; subword complexes

1 Introduction

The Bott-Samelson varieties were first defined by Bott and Samelson in [3]. Bott-Samelson
varieties are a twisted product of CP1’s with a map into the flag variety G/B. These
varieties have been studied mostly in the case in which the map into G/B is birational.
In this paper we study some fibers of this map when it is not birational to the image. We
show that for some Bott-Samelson varieties this fiber is a toric variety. In order to do so
we translate this problem into a purely combinatorial one in terms of subword complexes.
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These simplicial complexes ∆(Q,w) depend on a word Q in the generators of the Weyl
group W of G and an element w ∈ W . They were defined by Knutson and Miller in [11] to
describe the geometry of determinantal ideals and Schubert polynomials. In [4], Ceballos,
Labbé and Stump connect subword complexes to cluster algebras of finite type. Fomin
and Zelevinski introduced cluster algebras and classified the finite type cluster algebras,
see [5, 6]. Ceballos, Labbé and Stump showed that for a nice family of words, subword
complexes are isomorphic to the cluster complexes arising from the cluster algebra of the
corresponding type. In [14], Pilaud and Stump defined the brick polytope and realized
certain subword complexes as the boundary of a polytope dual to the brick polytope.
For the family of subword complexes related to the cluster complexes, they obtained that
the brick polytopes are the generalized associahedra of Hohlweg, Lange, and Thomas
in [9]. The normal fans of these associahedra are the Cambrian fans of Reading and
Speyer [15]. In Theorem 23 we prove that for the words Pilaud and Stump define as
“root independent”, a fiber of the Bott-Samelson map is the toric variety of the brick
polytope. In particular, this provides a description of the toric variety of a generalized
associahedron, which in type A we interpret in terms of flags arranged in a poset.

Actually the toric case is just a shadow of a more general situation. We prove in
Theorem 21 that for any word Q and its Demazure product w ∈ W the brick polytope
is the moment polytope of a fiber of the Bott-Samelson variety. This motivates us to
define the brick manifold as the fiber studied here. In this paper we show a very nice
connection between subword complexes, brick polytopes and brick manifolds. In Theorem
23 we classify the toric brick manifolds. We end the paper with two results about brick
manifolds: we exhibit a stratification of the brick manifolds dual to the subword complex in
Theorem 24 and following [2], show that brick manifolds provide resolutions for Richardson
varieties in Theorem 26.

2 Some definitions

2.1 Subword complexes

Let W be the Weyl group of a complex Lie group G with respect to a torus T , i.e., W is
a crystallographic Coxeter group, and let S = {si : i ∈ I} denote its generators.

Let Q = (q1, . . . , qm) be a word in S, i.e. an ordered sequence of elements of S. A
subword J of Q is a subset of positions in Q and we represent it by replacing the letters
of its complement by −. There are a total of 2|Q| subwords of Q. Given a subword
J = (r1, . . . , rm), we denote by Q \ J the subword with k-th entry equal to − if rk 6= −
and equal to k otherwise for k = 1, . . . ,m. For example, J = (1,−, 3,−, 5) is a subword
of Q = (s1, s2, s3, s1, s2) and Q \J = (−, 2,−, 4,−). Given a subword J we denote by J(k)
the product qr1qr2 · · · qrk with q− behaving as the identity, if k > 1, and J(0) = 1.

Definition 1. Let Q = (q1, . . . , qm) be a word in S and w ∈ W . The subword complex
∆(Q,w) is the simplicial complex on the vertex set the set of positions of letters in Q
whose facets are the subwords F of Q such that the product (Q \ F )(m) is a reduced
expression for w.
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In this paper, we will only consider spherical subword complexes and Q a non reduced
expression.

Example 2. LetW = S3, Q = (s1, s2, s1, s2, s1), then the simplicial complex ∆(Q, s1s2s1)
is

(s1, s2, s1, s2,−)

(s1, s2, s1,−, s1)

(s1, s2,−, s2, s1)

(s1,−, s1, s2, s1)

(−, s2, s1, s2, s1)

(−, s2, s1, s2,−)

(−,−, s1, s2, s1)

(s1,−,−, s2, s1)

(s1, s2,−,−, s1)

(s1, s2, s1,−,−)

In order to make the reduced expression more explicit, we are labeling the face corre-
sponding to J by the letters in Q that are in Q \ J .

Definition 3. We define the Demazure product of a word Q inductively as follows:

• Dem(ε) = id

• Dem((Q, s)) =

{
Dem(Q) · s if `(Dem(Q)s) > `(Dem(Q))

Dem(Q) if `(Dem(Q)s) < `(Dem(Q)),

where ε denotes the empty word.

Remark 4. In [11] the authors prove that ∆(Q,w) is a sphere if and only if Dem(Q) = w.
In this paper we only consider such pairs. If in addition we assume Q is reduced, then
∆(Q,w) = {∅}, the (−1)-sphere, so we will not consider reduced Q in this paper.

We end the discussion about subword complexes with a historical note about the
realization of the type A associahedron in terms of subword complexes. In [18], Woo uses
the pipe dream complex for the permutation w = s1 · · · snw0 = [1, n, n− 1, . . . , 1], where
w0 is the longest element of An−1, to show that the Schubert polynomial of w specializes
to the Catalan number Cn. It was first noted by Pilaud and Pocchiola in [12] that the
type A associahedron can be realized using pseudoline arrangements, which are a way to
describe subword complexes. The works of Stump [17] and Serrano-Stump [16] describe
the type A associahedron explicitly in terms of the subword complexes.

2.2 Brick polytopes

Let ∆(W ) := {αs : s ∈ S} be the simple roots of W and let ∇(W ) := {ωi : si ∈ S} be its
fundamental weights. We denote by Φ+(W ) the positive roots of W and by Φ−(W ) the
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negative roots. Pilaud and Santos [13] define type A brick polytopes; Pilaud and Stump
define brick polytopes for arbitrary type and study their properties in [14]. For them, the
brick polytope is the convex hull of some conjugates of the fundamental weights of the
Weyl group, one per each facet of the subword complex. Our definitions in this section
are based on theirs, however we define the brick polytope be the convex hull of the brick
vectors corresponding to all the faces in the subword complex such that the product of
the complement is w. It turns out that the two definitions are equivalent as the proof of
Theorem 21 exhibits.

The following functions, used to define brick polytopes, were defined and studied in
[4] and in [14]. Given a subword complex ∆(Q,w) with |Q| = m define the root function

r(J, ·) : {subwords of Q} → Φ+(W ) ∪ Φ−(W )

r(J, k) := (Q \ J)(k−1)(αqk) (1)

and the weight function

w(J, ·) : {subwords of Q} → weights of W

w(J, k) := (Q \ J)(k−1)(ωqk). (2)

Definition 5. The brick vector of a face J of ∆(Q,w) is defined by

B(J) :=
∑
k∈[m]

w(J, k),

and the brick polytope is the convex hull of the brick vectors of some faces of ∆(Q,w)

B(Q,w) := conv{B(J) : J ∈ ∆(Q,w) and (Q \ J)(m) = w}.

Definition 6. A word Q is root independent if for some vertex B(J) of B(Q,w) (or all
vertices) we have that the multiset r(J) := {{r(J, i) : i ∈ J}} is linearly independent.

Pilaud and Stump in [14] show that if Q is root independent, then the brick polytope
is dual to the subword complex. One of the main theorems of this paper states that the
brick manifold of a word Q is toric with respect to a maximal torus of the Lie group when
Q is root independent.

3 Brick manifolds for SLn(C)

We start with the case G = SLn(C) as a motivation to the general complex semi-simple
Lie group case.
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3.1 Brick polytopes in the SLn(C) case

This section is based on the interpretation of type A subword complexes as pseudoline
arrangements given in [13]. The sorting network NQ of a word Q = (q1, . . . , qm) consists
of n horizontal lines (called the levels) and m vertical segments (called the commutators)
drawn from left to right so that each commutator joins consecutive levels, no two com-
mutators share a common endpoint, and if qk = si then the k-th commutator connects
levels i and i + 1. A brick of NQ is a connected component of its complement, bounded
on the left by a commutator.

A pseudoline supported by NQ is a path on NQ traveling monotonically from left to
right. A commutator of NQ is called a crossing between two pseudolines if it is crossed
by the two pseudolines and it is called a contact otherwise. A pseudoline arrangement on
NQ is a collection of n pseudolines such that each two have at most one crossing and no
other intersection.

Example 7. Let Q = (s1, s2, s1, s2, s1) then the sorting network NQ is

and

1
2
3

3
2
1

is a pseudoline arrangement on NQ.

Given a pseudoline arrangement supported by NQ, if we let J = (r1, . . . , rm) be the
subword of Q with ri 6= − precisely when there is a contact at the i-th commutator, then
the product w = (Q \ J)(m) is an element of W and the pseudoline ending on the right
at level i will start on the left at level w(i). We call such an arrangement a w-pseudoline
arrangement. There is a one-to-one correspondence between faces J of ∆(Q,w) and w-
pseudoline arrangements supported by NQ. The pseudoline arrangement in the previous
example corresponds to the subword J = (1,−,−,−, 5). In this setup, we have that
w(J, j) is the characteristic vector of the pseudolines passing below the j-th brick of NQ.
Moreover, the i-th coordinate of the brick vector B(J) is the number of bricks in NQ
that lie above the i-th pseudoline with contacts J , and the brick polytope B(Q,w) is the
following convex hull:

B(Q,w) := conv{B(J) : J ∈ ∆(Q,w) and (Q \ J)(m) = w}.

Example 8. Let Q = (s1, s2, s1, s2, s1), the pseudoline arrangement corresponding to the
subword J = (1,−,−,−, 5) gives the vector B(J) = (2, 1, 4) obtained by counting bricks
above each line. The brick polytope B(Q,w) is pictured below.
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B(−,−,−, 4, 5) = (0, 3, 4)B(1,−,−,−, 5) = (2, 1, 4)

B(1, 2,−,−,−) = (2, 3, 2)

B(−,−, 3, 4,−) = (0, 4, 3)

B(−, 2, 3,−,−) = (1, 4, 2)

For more pictures of brick polytopes of various Q and w, see [14].

A purpose of this paper is to assign geometry to these polytopes. To do so, we use
the Bott-Samelson varieties which we define in the following section.

3.2 Definition of Bott-Samelson varieties for SLn(C)

Let G = SLn(C) and fix an ordered basis for Cn. Let B be the subgroup of SLn(C) con-
sisting of upper triangular matrices with respect to this basis. We then get an ascending
flag of B-invariant vector spaces

〈e1〉 ⊂ · · · ⊂ 〈e1, . . . , en〉,

which we refer to as the base flag. Let T be the subgroup consisting of all diagonal matrices
in G, so T is a maximal torus contained in B. Let Pi be the minimal parabolic subgroup
consisting of all matrices that are upper triangular except possibly at the position (i+1, i).
The quotient G/B is the flag variety, that is, the space of flags {0} ⊂ V1 ⊂ · · · ⊂
Vn = Cn where each Vi is an i-dimensional vector space. Moreover, the Weyl group
of G is W = An−1 with generators S = {s1, . . . , sn−1}. The fundamental weights are
∇(W ) = {ωi : i = 1, . . . , n− 1} where the first i entries of ωi are 1 and the rest are 0.

We begin the definition of BSQ with an example.

Example 9. Let G = SL3(C) and Q = (s1, s2, s1, s2, s1). Then the Bott-Samelson variety
BSQ is constructed by starting with the base flag and then iteratively reading the word
from left to right: if the k-th letter of Q is si, we have an i-th dimensional vector space
Vk such that Vk−1 ⊂ Vk ⊂ Vk+1. In this example we have that

BSQ = {(V1, V2, V3, V4, V5) : the diagram below holds}

C3

〈e1, e2〉

〈e1〉 V1

V2

V3

V4

V5

0
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More generally, if Q = (q1, . . . , qm) then BSQ consists of a list of m+1 flags where the
zeroth one is the base flag and such that the k-th one agrees with the previous one except
possibly on the k-th subspace Vk. We can give a point in BSQ by giving the subspaces
(V1, . . . , Vm) such that the incidence relations given by the flags hold. This carries a

B-action, and the map BSQ
mQ−→ G/B mapping the list to the last flag is B-equivariant.

Example 10. Continuing with the previous example, we have that

mQ : BS(s1,s2,s1,s2,s1) → G/B

is the map

C3

〈e1, e2〉

〈e1〉 L1

P1

L2

P2

L3

0

7−→

C3

P2

L3

0

We now define the main object of study in this paper.

Definition 11. Let Q = (q1, . . . , qm) be a word in the generators of W with Dem(Q) = w,
then the brick manifold is the fiber m−1Q (wB/B).

The group SLn(C) acts on Cn by multiplying matrices in SLn(C) times vectors in Cn.
This induces an action of SLn(C) on the Grassmannian Gr(k,Cn) of k-dimensional sub-
spaces of Cn, where if M ∈ SLn(C) and 〈b1, · · · , bk〉 ∈ Gr(k,Cn), then M · 〈b1, · · · , bk〉 :=
〈M · b1, · · · ,M · bk〉. This induces an action of SLn(C) on BSQ, namely if M ∈ SLn(C)
and (V1, . . . , Vm) ∈ BSQ then M · (V1, . . . , Vm) := (M · V1, . . . ,M · Vm). We can restrict
this action to any subgroup of SLn(C), in particular to B and T .

Notice that V is a T -fixed point of Gr(k,Cn) if and only if V is spanned by a subset
of {e1, . . . , en} and the same is true for elements of BSQ. The T -fixed point p(J) ∈ BSQ
corresponding to the subword J = (r1, . . . , rm) is determined by deciding between = and
6= in each diamond

Vb = Va
⊕
〈ex, ey〉

=, 6=Vi = Va
⊕
〈ex〉 Vj

Va

using the rule: for Q = (q1, . . . , qm), we pick “=” if rj 6= − and “6=” if rj = −. This gives
a 1-1 correspondence between T -fixed points on BSQ and subwords J of Q such that if
p(J) is the T -fixed point corresponding to J then mQ(p(J)) = (Q \ J)(m)B/B ∈ G/B.
We illustrate this correspondence by an example.
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Example 12. The subword J = (−, 2,−,−, 5) of Q = (s1, s2, s1, s2, s1) corresponds to
the coordinate flags

C3

〈e1, e2〉

〈e1〉 6=

=

〈e2〉

〈e1, e2〉

6=

6=

〈e1〉

〈e1, e3〉

= 〈e1〉

0

and its image under mQ : BSQ → G/B is (Q \ J)(m)B = (s1s1s2)B = (s2)B.

This correspondence motivates the relation between fibers of the map mQ and sub-
word complexes. The main tool connecting brick polytopes with fibers of Bott-Samelson
varieties will be moment maps of symplectic manifolds. We will discuss the symplectic
manifold structure on general BSQ in Section 4.1. Namely, we will show that Bott-
Samelson varieties are Hamiltonian symplectic manifolds with respect to the torus action
described above. Therefore, a Bott-Samelson variety comes equipped with a moment map
associated to the torus action. The image of this map is the moment polytope and it equals
the convex hull of the images of the T -fixed points. Every toric variety is a Hamiltonian
symplectic manifold with respect to the torus action. Moreover, if X is the toric variety
associated to a Delzant polytope P then the image of the moment map is the polytope
P .

In order to motivate latter sections and, more importantly, to be able to state the
theorem connecting Bott-Samelson varieties and brick polytopes, we now describe the
moment map of BSQ for the current case of interest, G = SLn(C). The moment map is
a map

µ : BSQ −→ R〈∇(W )〉,

where R〈∇(W )〉 is the real span of the fundamental weights of W . Let πV : Cn → V
denote the orthogonal projection onto V and let PV be the corresponding matrix with
respect to the basis e1, . . . , en. Given p = (V1, . . . , Vm) ∈ BSQ the moment map is

BSQ
µ−→ Rn

(V1, . . . , Vm)
µ7−→

m∑
i=1

diag(PVi),

where diag(PVi) is the vector with entries the diagonal entries of PVi .
In the following section we give a precise statement about the relation between brick

polytopes and Bott-Samelson varieties.
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3.3 Toric varieties for brick polytopes in the SLn(C) case

Recall from section 3.2 that subwords J of Q are in bijective correspondence with T -fixed
points of BSQ, and that if p(J) is the point corresponding to J , as defined in the previous
section, then mQ(p(J)) = (Q \ J)(m)B/B ∈ G/B, where m = |Q|. This means that
the rightmost flag of the configuration p(J) is the flag corresponding to (Q \ J)(m) ∈ W
and so, for J a facet of ∆(Q,w0) the pseudoline arrangement corresponding to J is an
(Q \ J)(m)-arrangement. In this section, we will abuse notation and use the term w-
pseudoline arrangement to refer to a collection of n pseudolines where two can have more
than one crossing, but they can’t overlap on any levels. The following example shows the
correspondence.

Example 13. The pseudoline arrangement for the subword J = (1,−,−,−, 5) gives a
T -fixed point of BS(s1,s2,s1,s2,s1). The diagram below exhibits this correspondence. Each
brick of the sorting network corresponds to a coordinate subspace of a point in the Bott-
Samelson variety. Given a pseudoline arrangement supported in the sorting network of Q,
the j-th subspace corresponding to the j-th brick is the coordinate subspace spanned by
the ei where i ranges over those pseudolines passing below the j-th brick. Note then that
two bricks share a contact if and only if the corresponding coordinate spaces are equal.
This will be proven in the theorem that follows.

= =6=〈e1〉 〈e1〉 〈e3〉 〈e3〉
6= 6=〈e1, e2〉 〈e1, e3〉 〈e2, e3〉

C3

〈e1, e2〉

〈e1〉 =

6=

〈e1〉

〈e1, e3〉

6=

6=

〈e3〉

〈e2, e3〉

= 〈e3〉

0

Theorem 14. Suppose w 6 Dem(Q) in Bruhat order. There is a bijective correspondence
between w-pseudoline arrangements supported by NQ and T -fixed points of m−1Q (wB/B).
Moreover, this correspondence makes the composite map

m−1Q (wB/B)T ↪→ m−1Q (wB/B)
µ−→ Rn

be equivalent to the mapping

B : {w-pseudoline arrangements supported by NQ} −→ Rn

given in [13].

Proof. The first part of the proposition is proven in the first paragraph of Section 3.3.
We prove the second part of this theorem using induction on |Q| = m to prove that
µ(p(J)) = B(J) for all subwords J , where p(J) = (V1, . . . , Vm) is the point in BSQ

corresponding to J . We are proving this correspondence of ll subwords of Q, not only
those for which (Q \ J)m = w. Let Q = (q1, . . . , qm+1). Recall that the rightmost flag of
the fixed point p(J) corresponding to the subword J is
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〈ew(1), . . . , ew(n)〉 = Cn

...

〈ew(1), ew(2)〉

〈ew(1)〉

0

where w = (Q\J)(m+1). Let J be a subword of Q and consider the words Q′ = (q1, . . . , qm)
and J ′ = (j1, . . . , jm). By induction we have that µ(p(J ′)) = B(J ′). Now notice that

µ(p(J)) = µ(p(J ′)) + (dime1(Vk+1), . . . , dimen(Vk+1))

= µ(p(J ′)) + w · (1, . . . , 1, 0, . . . , 0),

where the 0-1 vector has as many ones as dim(Vk+1). The vector w · (1, . . . , 1, 0, . . . , 0)
adds one to the i-th coordinate if and only if the brick corresponding to the commutator
qk+1 is above the i-th pseudoline.

Theorem 15. Let w = Dem(Q). The fiber m−1Q (wB/B) is a toric variety with respect
to the torus T if and only if Q is root independent and `(w) < |Q| 6 `(w) + dim(T ).
Moreover, m−1Q (wB/B) is the toric variety associated to the polytope B(Q,w).

We have proved the if part of this theorem; however the only if part will follow from
Theorem 23. The following corollary follows from the work of Pilaud and Santos in [13].
We define a Coxeter element c to be the product of all simple reflections in some order
using each reflection only once. Define the c-sorting word of w to be the lexicographically
first subword of c∞ that is a reduced expression for w.

Corollary 16. If Q is the concatenation of a word c representing a Coxeter element c
and the c-sorting word for w0, then m−1Q (w0B/B) is the toric variety of the associahedron
as realized in [9] and in [13].

Example 17. The toric variety of the pentagon from example 8, i.e. the associahedron
corresponding to the Coxeter element c = (s1, s2), is

m−1Q (wB/B) = {(V1, V2, V3) : the diagram below holds}

C3

〈e1, e2〉

〈e1〉 V1

V2

V3

〈e2, e3〉

〈e3〉

0
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4 Brick manifolds in the general case

Let G be a complex semisimple Lie group, let B be a Borel subgroup of G, i.e., a maximal
solvable subgroup, and T be the maximal torus contained in B. Let W be the Weyl group
of G with generators S = {s1, . . . , sn}, which correspond to the simple roots ∆(W ) =
{α1, . . . , αn}. Let P be a parabolic subgroup of G, i.e., a subgroup of G for which the
quotient P/B is a projective algebraic variety; this condition is equivalent to P contains
B. We denote by Pi the minimal parabolic subgroup corresponding to si, we then have
that Pi/B ∼= CP1. The torus T acts on this quotient and this action has exactly two
T -fixed points: one corresponding to the identity element and one corresponding to the
generator si.

Definition 18. Let Q = (si1 , . . . , sim) be a word in the generators of W . Then the
product Pi1 × · · · × Pim has an action of Bm given by:

(b1, . . . , bm) · (p1, . . . , pm) = (p1b1, b
−1
1 p2b2, . . . , b

−1
m−1pmbm)

The Bott-Samelson variety of Q is the quotient of the product of the Pi’s by this action

BSQ := (Pi1 × · · · × Pim)/Bm.

Bott-Samelson varieties are smooth, irreducible and |Q|-dimensional algebraic vari-
eties. They have a B action given by

b · (p1, p2, . . . , pm) = (b · p1, p2, . . . , pm).

and they come equipped with a natural B-equivariant map

BSQ
mQ−→ G/B

(p1, . . . , pm) 7−→ (p1 · · · pm)B/B.

The image of this map is the opposite Schubert variety Xw := BwB/B, where w =
Dem(Q). In the case in which Q is reduced, this map is a resolution of singularities for
Xw, however in this paper we are studying cases in which Q is not reduced.

Definition 19. Let Q = (q1, . . . , qm) be a word in the generators of W and w = Dem(Q),
then the brick manifold is the fiber m−1Q (wB/B).

Theorem 20. Brick manifolds are smooth, irreducible and dim(m−1Q (wB/B)) = |Q| −
`(w).

Proof. We can write the fiber as the fibered product (wB/B)×Xw BSQ, so by Kleiman’s
transversality theorem, see [10], we have that this fiber is a smooth variety of the desired
dimension. Let N be the unipotent subgroup corresponding to B and N− the opposite
unipotent subgroup. A consequence of the Bruhat decomposition of G/B is that if Nw :=
N∩wN−w−1, thenNw·wB/B is a free dense orbit inXw. Since BSQ maps B-equivariantly
to Xw, the preimage of Nw · wB/B is isomorphic to m−1Q (wB/B) × Nw. Since BSQ is
irreducible, it follows that the brick manifold is irreducible.
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4.1 Symplectic structure on Bott-Samelson varieties and brick manifolds

A reference for toric moment maps of coadjoint orbits is Chapter 5 of [7]. Let Pî be
the maximal parabolic subgroup of G corresponding to the subset of generators Sî :=
{s1, . . . , ŝi, . . . , sn}. Note that for G = SLn(C) each quotient G/Pî is a Grassmannian.
Let K be the maximal compact subgroup of G. Then we can view G/Pî as a coadjoint
orbit, i.e., a K-orbit through the fundamental weight ωi ∈ k∗, where k is the Lie algebra
of K. This interpretation gives us a symplectic structure on G/Pî with respect to the
action of K such that the inclusion

G/Pî ↪−→ k∗

is a moment map for the K-action. Then the composition

G/Pî ↪−→ k∗ −→ t∗

is the moment map of G/Pî with respect to the torus action, where t is the Lie algebra
of the torus. Moreover, the moment map for the diagonal T -action on a product

∏
G/Pî

is the sum of the moment maps G/Pî −→ t∗.
Let T act on BSQ by

t · (p1, p2, . . . , pm) = (t · p1, p2, . . . , pm).

Given Q = (q1, . . . , qm) we have a T -equivariant inclusion

BSQ
ϕ
↪−→

∏
i:si∈Q

G/Pî

where ϕ = (ϕ1, . . . , ϕm) and the k-th component is

BSQ
ϕk−→ G/Pk̂

(p1, . . . , pm) 7−→ (
∏
i<j

pi)Pk̂.

This map makes BSQ a symplectic submanifold. The composition

BSQ
ϕ
↪−→

∏
i:si∈Q

G/Pî −→ t∗

gives us a moment map for this Bott-Samelson variety with respect to the T -action. Thus
Bott-Samelson varieties are Hamiltonian symplectic manifolds with respect to this torus
action. The image of this map is the moment polytope and by Atiyah [1], Guillemin-
Sternberg [8], it equals the convex hull of the images of the T -fixed points. Recall the
correspondence between T -fixed points on BSQ and subwords J of Q: if p(J) is the T -fixed
point corresponding to J then

mQ(p(J)) = (Q \ J)(m)B/B ∈ G/B.
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This correspondence motivates the relation between fibers of the map mQ : BSQ −→ G/B
and subword complexes.

We now describe the image of the T -fixed points under the moment map. For each k
we have the moment map

µk : G/Pk̂ −→ t∗,

where µk(Pk̂) = ωk, the fundamental weight corresponding to sk, and it maps a general
element to a Weyl conjugate of this fundamental weight. Before we finish describing the
maps µk, we note that the moment map of BSQ is then

m∑
k=1

ϕk ◦ µk.

Consider the fixed point (p1, . . . , pm) in BSQ corresponding to the subword J of Q then
under the moment map µk each pj corresponds to either the reflection sij if qj ∈ J or to
the identity in W . In other words, pj corresponds to sij if pj /∈ B and to the identity in
W otherwise. In conclusion we have that for J subword of Q and

pJ = the fixed point corresponding to J

BSQ
ϕk◦µk−→ t∗

pJ 7−→ (J)(k−1)(ωk).

It then follows that

BSQ
µ−→ t∗ (3)

pJ 7−→
m∑
k=1

(J)(k−1)(ωk) (4)

4.2 Moment polytopes of brick manifolds

We now state and prove the main results of the paper.

Theorem 21. Let w = Dem(Q). The image of m−1Q (wB/B) under the moment map is
the brick polytope B(Q,w).

To prove this theorem we will use the following lemma.

Lemma 22. Let i < j, we have that q1 · · · qi−1(αqi) = ±q1 · · · qj−1(αqj) if and only if

q1 · · · q̂i · · · qm = q1 · · · q̂j · · · qm, (5)

where all the q1, . . . , qm ∈ S. Moreover, if there is no k ∈ (i, j) such that q1 · · · q̂k · · · qm
equals to the product in equation (5) then q1 · · · qi−1(αqi) = −q1 · · · qj−1(αqj). We do not
assume that any of these expressions are reduced.
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Proof. This follows from induction on |(i, j)| and Lemma 3.3 of [4].

Proof of Theorem 21. Theorem 3.7 of [4] states that ∆(Q,w) is isomorphic to ∆(Q′, w0)
where Q′ is obtained from Q by appending to Q any reduced expression for Dem(Q)−1w0.
Therefore, we are not losing generality by assuming that Dem(Q) = w0.

The T -fixed points of BSQ are in 1-1 correspondence with subwords J of Q. This
induces a 1-1 correspondence between T -fixed points of m−1Q (w0B/B) and the subwords
J of Q with (Q \ J)(m) = w0, where Dem(Q) = w0. If the subword J is not a facet of
the subword complex ∆(Q,w0) then it gives a non reduced product (Q \ J)(m). We will
show that for any such J , the cone of the moment polytope around pJ contains a line
and thus it cannot be a vertex. This cone is spanned by the T -weights on the tangent
space TpJ (m−1Q (w0B/B)), which is equal to the multiset difference of the T -weights on the

tangent spaces TpJ (BSQ) and TpJ (Xw0). We have that

{{r(J, i) : i = 1, . . . ,m}}, T -weights of the tangent space TpJ (BSQ),

Φ+(W ) ∩ w0Φ
−(W ) = Φ+(W ), T -weights of the tangent space TpJ (Xw0).

Since (Q \ J)(m) = w0 is not reduced, then |J | 6 `(w0) − 2. Take j to be the first
index such that r(J, j) ∈ Φ−(W ), we then have that (Q \ J)(j−1) is reduced and there
exists i < j such that (Q \ J ∪ {qi, qj})(j) = (Q \ J)(j). By Lemma 22 we have that
r(J, i) = −r(J, j) ∈ Φ+(W ). By the exchange condition we have that there exists k > j
such that (Q \ J ∪ {qj, qk})(j) = (Q \ J)(j) and if we pick k to be the first that satisfies
this property then by Lemma 22 we have that r(J, i) = r(J, k). Therefore, the cone of
the moment polytope around pJ contains the cone spanned by r(J, i), r(J, j), which is a
line.

Note that this theorem does not assume that the fiber is a toric variety so the relation
between brick polytopes and brick manifolds is quite strong. The following theorem
classifies toric brick manifolds.

Theorem 23. Let w = Dem(Q). The fiber m−1Q (wB/B) is a toric variety with respect
to the torus T if and only if Q is root independent and `(w) < |Q| 6 `(w) + dim(T ).
Moreover, m−1Q (wB/B) is the toric variety associated to the polytope B(Q,w).

Proof. Note that dim(m−1Q (wB/B)) 6 dim(T ). However, if we have < then we can make
the torus smaller and so without loss of generality we can assume the dimensions are
equal. It suffices to show that T doesn’t have generic stabilizer of positive dimension.
This is true if and only if µ(m−1Q (wB/B)) spans Rn and this happens precisely when Q is
root independent.

4.3 Stratification of the brick manifold

We give a stratification whose dual, in some sense, is the subword complex. We now
introduce and recall some notation. Consider a complex semisimple Lie group G with
upper and lower Borel subgroups B = B+ and B−, and Weyl group W . For u ∈ W we
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have the Schubert cell X̊v := B−uB/B and the opposite Schubert cell X̊v := B+uB/B.
The Schubert variety Xv and opposite Schubert variety Xu are the closure of X̊u and
X̊u, respectively. Given u, v ∈ W , the open Richardson variety is X̊v

u := X̊v ∩ X̊u.
The Richardon variety Xv

u is the closure of X̊v
u This variety is nonempty if and only if

u 6 v in the Bruhat order, and its dimension is `(v) − `(u). Then Xv
u =

∐
u6x<y6v

X̊y
x is a

stratification.
Given a Bott-Samelson variety BSQ := (Pi1 × · · · × Pim)/Bm and a subword R of Q,

we can realize BSR inside BSQ by

BSR = {(p1, . . . , pm) : pij = id if ij /∈ R};

note that BSR ∩ BSS = BSR∩S. Let ˚BSRu := BSR ∩ m−1Q (X̊u) then these subvarieties

yield a stratification of BSQ, where R ranges over all subwords of Q and u ∈ W . We
have that BSRu 6= ∅ if and only if Dem(R) > u. Moreover, BSRu ⊆ BSSv if and only if R is
a subword of S and u > v in Bruhat order. This induces a stratification of m−1Q (wB/B),
described in the following theorem, that is dual to the subword complex ∆(Q,Dem(Q)).

Theorem 24. Let w = Dem(Q). Brick manifolds have the stratification

m−1Q (wB/B) =
∐
R

˚BSRw ,

where R ranges over all subwords of Q with Dem(R) = w. This stratifications satisfies the
nice property that the intersection of any two strata, when nonempty, is again a stratum
(instead of a union of strata).

Proof. If p ∈ ˚BSQw , then mQ(p) ∈ Xw
w = {wB/B} and so m−1Q (wB/B) is a stratum of

BSQ. Moreover, if ˚BSRw ⊂ m−1Q (wB/B) is nonempty then R is a subword and Dem(R) >
u > w but then Dem(R) = u = w. Therefore, the stratification of the Bott-Samelson

variety restricts to a stratification of the brick manifold and ˚BSRw ∩ B̊SSw = ˚BSR∩Sw .

4.4 Brick manifolds and Richardson varieties

A subfamily of brick varieties were used before by Brion in [2] in the proof of Theorem 4.2.1
as a resolution of singularities for Richardson varieties. Given a word Q = (q1, . . . , qm),
the opposite Bott-Samelson variety BSQ is defined analogously to BSQ. More precisely,

BSQ := (P−i1 × · · · × P
−
im

)/(B−)m,

where B− is the opposite Borel and the P−i are the opposite minimal parabolics. The
natural map to the flag variety is

BSQ
mQ−→ G/B

(p1, . . . , pm) 7−→ (p1 · · · pmw0)B/B.
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Given an element u ∈ W the opposite Bott-Samelson variety BSQ is a resolution of the
Schubert variety Xu, where Q is a reduced word for uw0. Given u, v ∈ W , let R be a
reduced word for v and T be a reduced word word for uw0, then the fibered product
BSR ×G/B BST with the map induced by mR is Brion’s resolution of the Richardson
variety Xv

u. We will prove that this fibered product is a brick manifold.
Given u, v ∈ W , let R be a reduced word for v and S be a reduced word for u−1w0,

where w0 is the longest word in W . Now, if Q = R + S, i.e. Q is the concatenation of
R and S, and u 6 v then Dem(Q) = w0. Moreover, the brick manifold m−1Q (w0B/B)
together with the map to the flag in the middle gives a resolution of the Richardson
variety Xv

u.

Example 25. Let R = (s1, s2, s3, s1, s2) and S = (s3, s1, s2, s1). Then m−1Q (w0B/B)
together with the map given by the red flag is a resolution of singularities for Xv

u with
v = s1s2s3s1s2 and u = s1s2.

C4

〈e1, e2, e3〉

〈e1, e2〉

〈e1〉

V3

V2

V1

〈e2, e3, e4〉

V5

V4 V6 〈e4〉

〈e3, e4〉

0

Theorem 26. Let u 6 v and Q = R + S, where R is a reduced word for v and S
is a reduced word for u−1w0. The brick manifold m−1Q (w0B/B) together with the map

mR : BSRw → G/B is a resolution of the singularities of the Richardson variety Xv
u.

Proof. Let T be the reduced word for uw0 obtained by taking S−1 and conjugating each
letter by w0. The result follows from identifying the fibered product BSR ×G/B BST
with the brick manifold m−1Q (w0B/B). If R = (q1, . . . , q|R|), then then the points in BSR

consist of lists of m+ 1 flags in G/B

(F0 = B/B,F1, . . . , F|R|) ∈ BSR

such that the k-th flag agrees with the previous one except possibly on the subspace
corresponding to qk, and if Fk−1 = gB/B and Fk = hB/B, then h−1gB/B ∈ Xqk .
Similarly, if T = (q1, . . . , q|T |), then then the points in BSS−1 consist of lists of m+ 1 flags
in G/B

(E0 = w0B/B,E1, . . . , E|T |) ∈ BST
such that the k-th flag agrees with the previous one except possibly on the subspace
corresponding to qk, and if Ek−1 = gB/B and Ek = hB/B, then h−1gB/B ∈ Xw−1

0 qkw0 .
Therefore, the fibered product BSR ×G/B BST consists of the lists of flags of the form

(F0 = B/B,F1, . . . , F|R| = E|T |, E|T |−1, . . . , E0 = w0B/B)
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such that consecutive flags agree in the described way, together with the maps

BSR
mR−→ G/B and BST

mT−→ G/B

that map the list of flags to F|R| = E|T |. This is precisely the brick manifold m−1Q (w0B/B).
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