A family of symmetric graphs with complete quotients

Teng Fang*

Beijing International Center for Mathematical Research, Peking University Beijing 100871, P. R. China

tengfang@pku.edu.cn

Binzhou Xia[†]

Beijing International Center for Mathematical Research, Peking University Beijing 100871, P. R. China

binzhouxia@pku.edu.cn

Xin Gui Fang

School of Mathematical Sciences Peking University Beijing 100871, P. R. China

xgfang@math.pku.edu.cn

Sanming Zhou[‡]

School of Mathematics and Statistics The University of Melbourne Parkville, VIC 3010, Australia

sanming@unimelb.edu.au

Submitted: Nov 13, 2015; Accepted: Apr 22, 2016; Published: May 13, 2016 Mathematics Subject Classifications: 05C25, 20B25

Abstract

A finite graph Γ is G-symmetric if it admits G as a group of automorphisms acting transitively on $V(\Gamma)$ and transitively on the set of ordered pairs of adjacent vertices of Γ . If $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B} such that for blocks $B, C \in \mathcal{B}$ adjacent in the quotient graph $\Gamma_{\mathcal{B}}$ relative to \mathcal{B} , exactly one vertex of B has no neighbour in C, then we say that Γ is an almost multicover of $\Gamma_{\mathcal{B}}$. In this case there arises a natural incidence structure $\mathcal{D}(\Gamma, \mathcal{B})$ with point set \mathcal{B} . If in addition $\Gamma_{\mathcal{B}}$ is a complete graph, then $\mathcal{D}(\Gamma, \mathcal{B})$ is a (G, 2)-point-transitive and G-block-transitive 2-($|\mathcal{B}|, m+1, \lambda$) design for some $m \geq 1$, and moreover either $\lambda = 1$ or $\lambda = m+1$. In this paper we classify such graphs in the case when $\lambda = m+1$; this together with earlier classifications when $\lambda = 1$ gives a complete classification of almost multicovers of complete graphs.

Key words: Symmetric graph; arc-transitive graph; almost multicover

^{*}Research supported by a scholarship from the China Scholarship Council (CSC).

[†]Research supported by the National Science Foundation of China (NSFC 11501011).

[‡]Research supported by the Australian Research Council (FT110100629) as well as an MRGSS grant of the University of Melbourne.

1 Introduction

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a finite graph, and G a finite group acting on $V(\Gamma)$ as a group of automorphisms of Γ (that is, G preserves the adjacency and non-adjacency relations of Γ). If G is transitive on $V(\Gamma)$ and transitive on the set of arcs of Γ , then Γ is said to be G-symmetric or G-arc-transitive, where an arc is an ordered pair of adjacent vertices. Beginning with Tutte's seminal work [30], the study of symmetric graphs has long been one of the central topics in algebraic graph theory. See [24, 25] for two useful surveys in this area.

A G-symmetric graph Γ is called an *imprimitive G-symmetric graph* if $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B} , that is, $1 < |B| < |V(\Gamma)|$ and $B^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$ for any $B \in \mathcal{B}$ and $g \in G$. In this case the quotient graph $\Gamma_{\mathcal{B}}$ of Γ relative to \mathcal{B} is defined to be the graph with vertex set \mathcal{B} in which $B, C \in \mathcal{B}$ are adjacent if and only if there exists an edge of Γ joining a vertex of B and a vertex of C. We assume without mentioning explicitly that $\Gamma_{\mathcal{B}}$ has at least one edge, so that each block of \mathcal{B} is an independent set of Γ . Denote by $B(\alpha)$ the block of \mathcal{B} containing α . Since \mathcal{B} is G-invariant, $B(\alpha^g) = (B(\alpha))^g$ for any $\alpha \in V(\Gamma)$ and $g \in G$. For each $B \in \mathcal{B}$, define [14] $\mathcal{D}(B)$ to be the 1-design with point set B and blocks $\Gamma(C) \cap B$ (with possible repetitions) for all $C \in \Gamma_{\mathcal{B}}(B)$, where $\Gamma(C) := \bigcup_{\alpha \in C} \Gamma(\alpha)$ with $\Gamma(\alpha)$ the neighbourhood of α in Γ , and $\Gamma_{\mathcal{B}}(B)$ is the neighbourhood of B in $\Gamma_{\mathcal{B}}$. As in [14], for adjacent blocks B, C of \mathcal{B} , we use $\Gamma[B,C]$ to denote the induced bipartite subgraph of Γ with bipartition $\{\Gamma(C) \cap B, \Gamma(B) \cap C\}$. Since Γ is G-symmetric, up to isomorphism, $\mathcal{D}(B)$ and $\Gamma[B,C]$ are independent of the choice of $B \in \mathcal{B}$ and $C \in \Gamma_{\mathcal{B}}(B)$. Thus the block size $k := |\Gamma(C) \cap B|$ of $\mathcal{D}(B)$ and the number of times each block of $\mathcal{D}(B)$ is repeated are independent of the choice of B; denote this number by m and call it the multiplicity of $\mathcal{D}(B)$. We use v := |B| to denote the block size of the partition \mathcal{B} .

Various possibilities for $\Gamma[B,C]$ can happen. In the "densest" case where $\Gamma[B,C] \cong K_{v,v}$ is a complete bipartite graph, Γ is uniquely determined by $\Gamma_{\mathcal{B}}$, namely, $\Gamma \cong \Gamma_{\mathcal{B}}[K_v]$ is the lexicographic product of $\Gamma_{\mathcal{B}}$ by the complete graph K_v . The "sparsest" case where $\Gamma[B,C] \cong K_2$ (that is, k=1) can also happen; in this case Γ is called a *spread* of $\Gamma_{\mathcal{B}}$ in [16], where it was shown that spreads play a significant role in the study of edge-primitive graphs. See [14, Section 4], [32, Section 4] and [21, 31, 33] for discussions on spreads, and [13] for a recent classification of spreads of complete graphs. As the dual of spreads in some sense [21], the case when $v=k+1\geqslant 3$ is also of considerable interest; in this case we call Γ an almost multicover of $\Gamma_{\mathcal{B}}$. This case was first studied in [21], where it was proved that G is transitive on the set of 2-arcs (that is, oriented paths of length 2) of $\Gamma_{\mathcal{B}}$ if and only if $\mathcal{D}(B)$ has no repeated blocks. It was proved in [31] that if in addition $\Gamma_{\mathcal{B}}$ is not a complete graph and $\Gamma[B,C]$ is a matching then $\Gamma_{\mathcal{B}}$ is a near polygonal graph. In the case when $\mathcal{D}(B)$ has no repeated blocks and $\Gamma_{\mathcal{B}}$ is a complete graph, all graphs Γ have been classified in [15, Theorem 1.1(b)(ii)(iii)(iv)] (and independently in [33, Theorem 3.19] by using a different approach).

In the case when Γ is an almost multicover of $\Gamma_{\mathcal{B}}$, a certain 1-design $\mathcal{D}(\Gamma, \mathcal{B})$ with point set \mathcal{B} arises naturally (see Section 2.2), and on the other hand Γ can be reconstructed

from this 1-design by using the flag graph construction introduced in [33] (see Theorem 2.2). If in addition $\Gamma_{\mathcal{B}}$ is a complete graph, then $\mathcal{D}(\Gamma, \mathcal{B})$ is a 2- $(mv+1, m+1, \lambda)$ design with $\lambda = 1$ or m+1 admitting G as a 2-point-transitive and block-transitive group of automorphisms (see Corollary 2.3). In the case when $\lambda = 1$, $\mathcal{D}(\Gamma, \mathcal{B})$ is a (G, 2)-point-transitive and G-block-transitive linear space, and the corresponding graphs Γ have been classified in [15, Theorem 1.1(b)(ii)(iii)(iv)] (see also [33, Theorem 3.19]), [17] and [6] together. These three papers deal with the cases when the linear space $\mathcal{D}(\Gamma, \mathcal{B})$ is trivial (that is, with block size two), nontrivial with G almost simple, and nontrivial with G affine, respectively. The purpose of the present paper is to classify almost multicovers of complete graphs in the case when $\lambda = m+1$ and thus complete the classification of all almost multicovers of complete graphs. The main result is as follows.

Theorem A. Let Γ be a G-symmetric graph whose vertex set admits a nontrivial G-invariant partition \mathcal{B} such that the quotient $\Gamma_{\mathcal{B}}$ is a complete graph and is almost multi-covered by Γ . In the case when $\mathcal{D}(\Gamma, \mathcal{B})$ is a 2-(mv + 1, m + 1, m + 1) design with m > 1, all graphs Γ are classified and will be described in Sections 3 and 4.

A major tool for the proof of Theorem A is the flag graph construction introduced in [33]. By this construction, the problem of classifying the graphs in Theorem A is equivalent to the one of classifying all (G,2)-point-transitive and G-block-transitive 2-(mv+1,m+1,m+1) designs that admit a "feasible" G-orbit Ω on their sets of flags together with all self-paired G-orbitals on Ω "compatible" with Ω in some sense. (See Definition 2.1 for the definitions involved.) The next theorem gives the latter classification, which seems to be of interest for its own sake, from which Theorem A follows immediately.

Theorem B. Let \mathcal{D} be a (G, 2)-point-transitive and G-block-transitive $2 \cdot (|V|, m+1, m+1)$ design with point set V, where m > 1 and $G \leq \operatorname{Sym}(V)$. Suppose that there exists a feasible G-orbit on the set of flags of \mathcal{D} . Then (\mathcal{D}, G) is one of the following:

- (a) \mathcal{D} is a design with $|V| = q^2 + 1$ and $m = q = 2^{2e+1} > 2$ associated with the Suzuki group $\operatorname{Sz}(q)$, and G can be any subgroup of $\operatorname{Sym}(V)$ containing $\operatorname{Sz}(q)$ as a normal subgroup;
- (b) \mathcal{D} is a design with $|V| = q^3 + 1$ and $m = q^2$ associated with the Ree group R(q), $q = 3^{2e+1} \geqslant 3$, and G can be any subgroup of Sym(V) containing R(q) as a normal subgroup;
- (c) $G \leq A\Gamma L(1, p^d)$ with p prime and $d \geq 1$, and (\mathcal{D}, G) is determined by an admissible quintuple (see Definition 4.4);
- (d) $V = \mathbb{F}_p^2$, $G \leq \mathrm{AGL}(2,p)$, p = 5,7 or 11, $G_0 \geq \mathrm{SL}(2,3)$ or $G_0 \geq \mathrm{SL}(2,5)$, where G_0 is the stabiliser in G of the zero vector $\mathbf{0}$ of V, and each block of \mathcal{D} is the union of at least two lines of the affine space $\mathrm{AG}(2,p)$;
- (e) $V = \mathbb{F}_3^4$, $G \leq \text{AGL}(4,3)$, $G_0 \geq E$, where E is an extraspecial group of order 32 with $G_0/E \cong \text{AGL}(1,5)$, A_5 or S_5 , and one of the blocks of \mathcal{D} is the union of two 2-dimensional subspaces V_1 and V_2 such that $V_1 \oplus V_2 = V$.

	G	\mathcal{D}	$\Gamma(\mathcal{D}, \Omega, \Psi)$	Details
$\overline{\rm (a)}$	soc(G) = Sz(q)	$2 - (q^2 + 1, q + 1, q + 1)$	C, ord = $q(q^2 + 1)$ and	L3.7
	$q = 2^{2e+1} > 2$		$val = (q^2 - q)i/\gcd(f, i)$	
(b)	soc(G) = R(q)	$2 - (q^3 + 1, q^2 + 1, q^2 + 1)$	C, ord = $q(q^3 + 1)$ and	L3.12
	$q = 3^{2e+1} \geqslant 3$		$val = (q^3 - q^2)i/\gcd(f, i)$	
(c)	$G \leqslant A\Gamma L(1,q)$	2 - $(q, L , L); \mathcal{D}$ has a	C, ord = $q(q-1)/ P $	L4.5
	$q = p^d$	block $L = P \cup \{0\}$	and val = $q - L $	L4.7
		with P a subgroup of	D, ord = $q(q-1)/ P $	
		$\mid \mathbb{F}_q^{\times} \text{ and } \mid \mathbb{F}_q^{\times} : P \mid \text{ prime }$	and val = $q - L $,	
			(q-1)/ P components	
(d)	$G \leqslant AGL(2, p)$	$2-(p^2, m+1, m+1),$	ord = $\frac{p^2(p^2-1)}{m}$	Cases
	$G_{0} \trianglerighteq \mathrm{SL}(2,3)$ or	m = 8 when p = 5;	and val = $p^2 - m - 1$	1–3 in
	$G_{0} \trianglerighteq \mathrm{SL}(2,5)$	m = 12 when p = 7;		§4.9
	p = 5, 7, 11	m = 40 or 20 when		
	$V = \mathbb{F}_p^2$	p = 11		
(e)	$G \leqslant AGL(4,3)$	2-(81, 17, 17)	ord = 405	Case
	$G_{0} \trianglerighteq E, G_{0}/E \cong$		and $val = 64$	2 in
	AGL(1,5)			§4.10
	$G \leqslant AGL(4,3)$	As above	ord = 405 , val = 64	Case
	$G_0 \trianglerighteq E, G_0/E \cong$		ord = 405 , val = 192	2 in
	$A_5 \text{ or } S_5$			§4.10

Table 1. Theorem B: Acronym: L = Lemma, C = Connected, D = Disconnected, ord = Order, val = Valency

Moreover, in each case the unique feasible G-orbit Ω on the flag set of \mathcal{D} and all self-paired G-orbitals Ψ on Ω compatible with Ω are determined, the adjacency relations of the corresponding G-flag graphs $\Gamma(\mathcal{D}, \Omega, \Psi)$ (see Definition 2.1) are given, and the connectedness of those G-flag graphs in (a), (b) and (c) is determined.

Information about \mathcal{D} , G and $\Gamma(\mathcal{D}, \Omega, \Psi)$ in Theorem B is summarized in Table 1.

Several interesting families of graphs (that is, graphs in Theorem A up to isomorphism) arise from our classification. In particular, we obtain several infinite families of connected G-flag graphs (see Definition 2.1) with soc(G) = Sz(q), soc(G) = R(q), and G a certain 2-transitive subgroup of $A\Gamma L(1, p^d)$, respectively. All these graphs as well as infinite families of disconnected graphs from (c) and the sporadic graphs from (d)-(e) in Theorem B will be given in the course of the proof of Theorem B; see Lemma 3.7, Lemma 3.12, Lemma 4.7, Cases 1-3 in Section 4.9 and Case 2 in Section 4.10, respectively.

Theorem A follows from Theorem B and Corollary 2.3. So we will prove Theorem B only. In Sections 2.1 and 2.2 we will set up notation and introduce the flag graph construction, respectively. Section 2.3 gives a few basic results on the flag graph construction that will be used later, and Section 2.4 outlines our method for the proof of Theorem B.

Since the group G in Theorem B is 2-transitive, it is almost simple or affine, and our proof in these two cases will be given in Sections 3 and 4 respectively, by using the classification of finite 2-transitive groups.

2 Preliminaries

2.1 Notation and definitions

The reader is referred to [10], [1] and [27] for notation and terminology on permutation groups, block designs and finite geometries, respectively. Unless stated otherwise, all designs in the paper are assumed to have no repeated blocks.

Let G be a group acting on a set Ω . That is, for any $\alpha \in \Omega$ and $g \in G$ there corresponds a point in Ω denoted by α^g , such that $\alpha^{1_G} = \alpha$ and $(\alpha^g)^h = \alpha^{gh}$ for any $\alpha \in \Omega$ and $g, h \in G$, where 1_G is the identity element of G. Let P_i be a point or subset of Ω for $i = 1, 2, \ldots, n$, where $n \ge 1$. Define $(P_1, P_2, \ldots, P_n)^g := (P_1^g, P_2^g, \ldots, P_n^g)$ for $g \in G$, where $P_i^g := \{\alpha^g : \alpha \in P_i\}$ if P_i is a subset of Ω . Let $P_i^G := \{P_i^g : g \in G\}$. In particular, α^G is the G-orbit on Ω containing α . Define $G_{P_1,P_2,\ldots,P_n} := \{g \in G : P_i^g = P_i, i = 1,\ldots,n\} \le G$. In particular, if α is a point and P a subset of Ω , then G_{α} is the stabiliser of α in α 0. The natural action of α 1 on α 2 is defined as $\alpha^g := \alpha$ 2 for α 3 and α 4 on α 5 on α 5.

Let G and H be groups acting on Ω and Δ , respectively. These two actions are said to be permutation isomorphic if there exist a bijection $\rho:\Omega\to\Delta$ and an isomorphism $\eta:G\to H$ such that $\rho(\alpha^g)=(\rho(\alpha))^{\eta(g)}$ for $\alpha\in\Omega$ and $g\in G$. If in addition G=H and η is the identity automorphism of G, then these two actions are said to be permutation equivalent. It is known that if $\varphi:G\to \operatorname{Sym}(\Omega)$ and $\psi:H\to \operatorname{Sym}(\Omega)$ are monomorphisms, then G and H are permutation isomorphic if and only if $\varphi(G)$ and $\psi(H)$ are conjugate in $\operatorname{Sym}(\Omega)$. Let Γ and Σ be G-symmetric graphs. If there exists a graph isomorphism $\rho:V(\Gamma)\to V(\Sigma)$ such that the actions of G on $V(\Gamma)$ and $V(\Sigma)$ are permutation equivalent with respect to ρ , then Γ and Σ are said to be G-isomorphic with respect to the G-isomorphism ρ , denoted by $\Gamma\cong_G\Sigma$.

2.2 Flag graphs

Let \mathcal{D} be a 1-design with point set V. We identify each block L of \mathcal{D} with the subset of V consisting of the points incident with L. Let Ω be a subset of (point-block) flags of \mathcal{D} , and let $\Psi \subseteq \Omega \times \Omega$. If Ψ is self-paired, that is, $((\sigma, L), (\tau, N)) \in \Psi$ implies $((\tau, N), (\sigma, L)) \in \Psi$, then we define [33] the flag graph of \mathcal{D} with respect to (Ω, Ψ) , denoted by $\Gamma(\mathcal{D}, \Omega, \Psi)$, to be the graph with vertex set Ω in which two "vertices" $(\sigma, L), (\tau, N) \in \Omega$ are adjacent if and only if $((\sigma, L), (\tau, N)) \in \Psi$. Given a point σ of \mathcal{D} , denote by $\Omega(\sigma)$ the set of flags of Ω with point entry σ . If Ω is a G-orbit on the flags of \mathcal{D} , for some group G of automorphisms of \mathcal{D} , then $\Omega(\sigma)$ is a G_{σ} -orbit on the flags of \mathcal{D} with point entry σ . In this case $\Gamma(\mathcal{D}, \Omega, \Psi)$ is G-vertex-transitive and its vertex set Ω admits a natural G-invariant partition, namely,

$$\mathcal{B}(\Omega) := \{ \Omega(\sigma) : \sigma \in V \}.$$

If in addition Ψ is a G-orbit on $\Omega \times \Omega$ (under the induced action), then $\Gamma(\mathcal{D}, \Omega, \Psi)$ is G-symmetric. Obviously, for a flag (σ, L) of \mathcal{D} , $G_{\sigma, L}$ is the stabiliser of (σ, L) in G.

Definition 2.1. ([33]) Let \mathcal{D} be a 1-design that admits a point- and block-transitive group G of automorphisms. Let σ be a point of \mathcal{D} . A G-orbit Ω on the set of flags of \mathcal{D} is said to be *feasible* if the following conditions are satisfied:

- (a) $|\Omega(\sigma)| \geqslant 3$;
- (b) $L \cap N = {\sigma}$, for distinct $(\sigma, L), (\sigma, N) \in \Omega(\sigma)$;
- (c) $G_{\sigma,L}$ is transitive on $L \setminus {\sigma}$, for $(\sigma, L) \in \Omega$; and
- (d) $G_{\sigma,\tau}$ is transitive on $\Omega(\sigma) \setminus \{(\sigma, L)\}$, for $(\sigma, L) \in \Omega$ and $\tau \in L \setminus \{\sigma\}$.

Denote

$$F(\mathcal{D}, \Omega) := \{ ((\sigma, L), (\tau, N)) \in \Omega \times \Omega : \sigma \notin N, \tau \notin L,$$
and $\sigma, \tau \in L' \cap N'$ for some $(\sigma, L'), (\tau, N') \in \Omega \}.$ (1)

If Ω is a feasible G-orbit on the set of flags of \mathcal{D} and Ψ a self-paired G-orbit on $F(\mathcal{D}, \Omega)$, then Ψ is said to be *compatible* with Ω and $\Gamma(\mathcal{D}, \Omega, \Psi)$ is called a G-flag graph of \mathcal{D} .

Since G is transitive on the points of \mathcal{D} , the validity of (a)-(d) above does not depend on the choice of σ . Note that $F(\mathcal{D}, \Omega)$ is G-invariant, and is non-empty if \mathcal{D} is (G, 2)-point-transitive.

Using the notation in Section 1, we will assume that (Γ, G, \mathcal{B}) is a triple such that Γ is an almost multicover of $\Gamma_{\mathcal{B}}$ with $v = k + 1 \geqslant 3$. Then, for each $\alpha \in V(\Gamma)$, $B(\alpha) \setminus \{\alpha\}$ appears m times as a block of $\mathcal{D}(B(\alpha))$, where m is the multiplicity of $\mathcal{D}(B(\alpha))$ as defined in Section 1. Set

$$\mathcal{B}(\alpha) := \{ C \in \mathcal{B} : \Gamma(C) \cap B(\alpha) = B(\alpha) \setminus \{\alpha\} \}$$

so that $|\mathcal{B}(\alpha)| = m$. Define Γ' to be the graph with the same vertices as Γ in which α and β are adjacent if and only if $B(\alpha) \in \mathcal{B}(\beta)$ and $B(\beta) \in \mathcal{B}(\alpha)$. It was proved in [21, Proposition 3] that Γ' is a G-symmetric graph. One can check that for each $B \in \mathcal{B}$, $\mathbf{B}(B) := \{\mathcal{B}(\alpha) : \alpha \in B\}$ is a G_B -invariant partition of $\Gamma_{\mathcal{B}}(B)$, and hence G_B induces an action on $\mathbf{B}(B)$. Set

$$\mathcal{L}(\alpha) := \{B(\alpha)\} \cup \mathcal{B}(\alpha)$$

for each $\alpha \in V(\Gamma)$. Denote by **L** the set of all $\mathcal{L}(\alpha)$, $\alpha \in V(\Gamma)$, with repeated ones identified. Then the action of G on \mathcal{B} induces a natural action on **L** defined by $(\mathcal{L}(\alpha))^g := \mathcal{L}(\alpha^g)$ for $\alpha \in V(\Gamma)$ and $g \in G$. The subset $\mathbf{L}(B) := \{\mathcal{L}(\alpha) : \alpha \in B\}$ of **L** is G_B -invariant under this action, and thus G_B induces an action on $\mathbf{L}(B)$. It can be verified that the action of G_B on G_B is permutation equivalent to the actions of G_B on G_B and G_B with respect to the bijections defined by $G_B \mapsto \mathcal{B}(\alpha)$, $G_B \mapsto \mathcal{L}(\alpha)$, $G_B \mapsto \mathcal{L}(\alpha)$, $G_B \mapsto \mathcal{L}(\alpha)$ are the setwise stabilisers of $\mathcal{L}(\alpha)$ in G_B , respectively. Define [33]

$$\mathcal{D}(\Gamma, \mathcal{B}) := (\mathcal{B}, \mathbf{L})$$

to be the incidence structure with point set \mathcal{B} and block set \mathbf{L} in which a "point" B is incident with a "block" $\mathcal{L}(\alpha)$ if and only if $B \in \mathcal{L}(\alpha)$. The flags of $\mathcal{D}(\Gamma, \mathcal{B})$ of the form $(B(\alpha), \mathcal{L}(\alpha))$ are pairwise distinct, and we define

$$\Omega(\Gamma, \mathcal{B}) := \{ (B(\alpha), \mathcal{L}(\alpha)) : \alpha \in V(\Gamma) \}$$

to be the set of all such flags. Then by [33, Lemma 2.1(c), Lemma 2.2], $\Omega(\Gamma, \mathcal{B})$ is a feasible G-orbit on the set of flags of $\mathcal{D}(\Gamma, \mathcal{B})$.

The following is a slight extension of [33, Theorem 1.1], the only difference being the specification of the parameters of \mathcal{D} that can be easily worked out by using [33, Lemma 2.1(d)] and a similar argument as in the proof of [32, Theorem 4.3].

Theorem 2.2. Suppose that Γ is a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} such that $v=k+1\geqslant 3$. Then $\Gamma\cong_G\Gamma(\mathcal{D},\Omega,\Psi)$ for a certain G-point-transitive and G-block-transitive 1-design \mathcal{D} with point set \mathcal{B} and block size m+1, a certain feasible G-orbit Ω on the flags of \mathcal{D} , and a certain self-paired G-orbit Ψ on $\Gamma(\mathcal{D},\Omega)$, where m is the multiplicity of $\mathcal{D}(B)$. Moreover, \mathcal{D} is either a 1-($|\mathcal{B}|$, m+1, v) design or a 1-($|\mathcal{B}|$, m+1, m+1)v) design.

Conversely, for any G-point-transitive and G-block-transitive 1-design \mathcal{D} with block size m+1, any feasible G-orbit Ω on the flags of \mathcal{D} , and any self-paired G-orbit Ψ on $F(\mathcal{D},\Omega)$, the graph $\Gamma = \Gamma(\mathcal{D},\Omega,\Psi)$, group G and partition $\mathcal{B} = \mathcal{B}(\Omega)$ satisfy all the conditions above. Moreover, the multiplicity of the 1-design $\mathcal{D}(B)$ (where $B \in \mathcal{B}$) is equal to m.

As noted in [33], in both parts of this theorem, G is faithful on the vertices of Γ if and only if it is faithful on the points of \mathcal{D} . In the first part of the theorem, we have $\mathcal{D} = \mathcal{D}(\Gamma, \mathcal{B})$, $\Omega = \Omega(\Gamma, \mathcal{B})$ and $\Psi = \{((B(\alpha), \mathcal{L}(\alpha)), (B(\beta), \mathcal{L}(\beta))) : (\alpha, \beta) \in Arc(\Gamma)\}$, where $Arc(\Gamma)$ is the set of arcs of Γ .

In the case when in addition $\Gamma_{\mathcal{B}}$ is a complete graph, we have $\Gamma_{\mathcal{B}} \cong K_{mv+1}$ as $\operatorname{val}(\Gamma_{\mathcal{B}}) = mv$ ([21, Theorem 5(a)]). Since $\Gamma_{\mathcal{B}}$ is G-symmetric, this occurs precisely when G is 2-transitive on \mathcal{B} . Hence in this case $\mathcal{D}(\Gamma, \mathcal{B})$ is a (G, 2)-point-transitive and G-block-transitive 2- $(mv + 1, m + 1, \lambda)$ design for some integer $\lambda \geq 1$. Conversely, if \mathcal{D} is a (G, 2)-point-transitive and G-block-transitive 2- $(mv + 1, m + 1, \lambda)$ design, then for any G-flag graph $\Gamma = \Gamma(\mathcal{D}, \Omega, \Psi)$ of \mathcal{D} , we have $\Gamma_{\mathcal{B}(\Omega)} \cong K_{mv+1}$. Thus Theorem 2.2 has the following consequence, which is a slight extension of [33, Corollary 2.6].

Corollary 2.3. Let $v \ge 3$ and $m \ge 1$ be integers, and let G be a group. Then the following statements are equivalent.

- (a) Γ is a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} of block size v such that $\mathcal{D}(B)$ has block size v-1 and $\Gamma_{\mathcal{B}} \cong K_{mv+1}$.
- (b) $\Gamma \cong_G \Gamma(\mathcal{D}, \Omega, \Psi)$, for a (G, 2)-point-transitive and G-block-transitive 2- $(mv + 1, m + 1, \lambda)$ design \mathcal{D} , a feasible G-orbit Ω on the flags of \mathcal{D} , and a self-paired G-orbit Ψ on $F(\mathcal{D}, \Omega)$.

Moreover, either $\lambda = 1$ or $\lambda = m + 1$, and the set of points of \mathcal{D} other than a fixed point σ admits a G_{σ} -invariant partition of block size m, namely, $\{L \setminus \{\sigma\} : (\sigma, L) \in \Omega\}$. In particular, \mathcal{D} is not (G, 3)-point-transitive when $m \geq 2$.

As in Theorem 2.2, the integer m above is equal to the multiplicity of $\mathcal{D}(B)$, and G is faithful on $V(\Gamma)$ if and only if it is faithful on the points of \mathcal{D} . The statements in the last paragraph of Corollary 2.3 follow from Theorem 2.2 and basic relations [1, 2.10, Chapter I] among parameters of a 2-design (and also from [32, Corollary 4.4] since $(\Gamma', G, \mathcal{D})$ satisfies all conditions of [32, Corollary 4.4]). As mentioned earlier, the G-symmetric graphs Γ in Corollary 2.3 have been classified when $\lambda = 1$.

In the rest of this paper, we will classify all graphs in part (a) of Corollary 2.3 by classifying all $\Gamma(\mathcal{D}, \Omega, \Psi)$ with $\lambda = m+1 > 2$ in part (b), thus proving Theorems A and B.

2.3 Orbits and feasible orbits on the set of flags

In this section we assume that \mathcal{D} is a (G,2)-point-transitive and G-block-transitive 2- $(|V|, m+1, \lambda)$ design with point set V.

Let $\sigma, \tau \in V$ be distinct points. Denote by L_1, \ldots, L_{λ} the λ blocks of \mathcal{D} containing σ and τ . Since $\sigma, \tau \in L_i$ for each i, any G-orbit on the flag set of \mathcal{D} satisfying (b) in Definition 2.1 contains at most one flag (σ, L_i) for some $i = 1, 2, \ldots, \lambda$. Denote

$$\Omega_i := (\sigma, L_i)^G, \quad i = 1, 2, \dots, \lambda.$$

Proposition 2.4. $\Omega_1, \ldots, \Omega_{\lambda}$ are all possible G-orbits on the flag set of \mathcal{D} (possibly with $\Omega_i = \Omega_j$ for distinct i and j).

Proof. In fact, let (ξ, N) be any flag of \mathcal{D} and $\eta \in N \setminus \{\xi\}$. Since G is 2-transitive on V, there exists $g \in G$ such that $(\xi, \eta)^g = (\sigma, \tau)$. Since $(\xi, N)^g = (\sigma, N^g)$ and $\sigma, \tau = \eta^g \in N^g$, we have $N^g = L_i$ for some i and hence $(\xi, N)^G = (\sigma, L_i)^G$.

Proposition 2.5. If G_L is transitive on L for some block L of \mathcal{D} , then G is transitive on the flag set of \mathcal{D} (that is, $\Omega_1 = \cdots = \Omega_{\lambda}$ is the flag set of \mathcal{D}). If in addition the flag set of \mathcal{D} satisfies (b) in Definition 2.1, then $\lambda = 1$.

Proof. Suppose that G_L is transitive on L for some block L of \mathcal{D} . Let N be any block of \mathcal{D} . Then G_N is transitive on N and there exists $g \in G$ such that $(\sigma^g, N) = (\sigma, L_1)^g \in \Omega_1$ by the G-block-transitivity of \mathcal{D} . Hence $(\eta, N) \in \Omega_1$ for any $\eta \in N$, which implies that G is transitive on the set of flags of \mathcal{D} . Consequently, if in addition the flag set Ω_1 of \mathcal{D} satisfies (b) in Definition 2.1, then we must have $\lambda = 1$.

Proposition 2.6. If there exists a G-orbit $\Omega = (\xi, L)^G$ on the flag set of \mathcal{D} satisfying (b) and (c) in Definition 2.1 and G_L is not transitive on L, then $\lambda = m + 1$.

Proof. By (b) in Definition 2.1 we have |V| = mv + 1 for some integer v. Let η be a fixed point of V. For each $\pi \in V \setminus {\eta}$, by (b) in Definition 2.1 there is only one flag in $\Omega(\pi)$ whose block entry contains η .

On the other hand, if there are two distinct flags (τ_1, M) , (τ_2, M) in Ω for some $M \in L^G$, then there is some $g \in G$ such that $(\tau_1, M) = (\tau_2, M)^g$. Thus $g \in G_M$ and $\tau_1 = \tau_2^g$. Since Ω satisfies (c) in Definition 2.1, G_M is transitive on M, which contradicts our assumption. Hence the block entries of the flags in $\Omega(\eta)$ and the block entries containing η of the flags in $\Omega(\pi)$ with $\pi \in V \setminus \{\eta\}$ are pairwise distinct, and there are $|\Omega(\eta)| + (|V| - 1) = v + mv = (m+1)v$ blocks of \mathcal{D} containing η . By the relations between parameters of the 2-design \mathcal{D} , we get $\lambda = m + 1$.

Proposition 2.7. If m > 1, then there is at most one G-orbit on the flag set of \mathcal{D} that satisfies (b) and (c) in Definition 2.1.

Proof. Suppose $\Omega_i \neq \Omega_j$ and each of them satisfies (b) and (c) in Definition 2.1. Since \mathcal{D} is G-block-transitive, there exists a point ξ of \mathcal{D} such that $(\xi, L_j) \in \Omega_i$. The assumption $\Omega_i \neq \Omega_j$ implies $\sigma \neq \xi$, and by (c) in Definition 2.1 we obtain $G_{L_j} = G_{\xi,L_j} \leqslant G_{\xi}$ (for otherwise G_{L_j} is transitive on L_j and thus $\Omega_i = \Omega_j$ by Proposition 2.5). Since $\xi \in L_j \setminus \{\sigma\}$, $G_{\sigma,L_j} \leqslant G_{L_j} \leqslant G_{\xi}$ and $|L_j| = m+1 \geqslant 3$, G_{σ,L_j} cannot be transitive on $L_j \setminus \{\sigma\}$, which contradicts the assumption that Ω_i satisfies (c) in Definition 2.1.

The results above imply the following:

Lemma 2.8. Let \mathcal{D} be a (G,2)-point-transitive and G-block-transitive 2- $(|V|, m+1, \lambda)$ design with point set V and m>1. Then there is at most one feasible G-orbit on the flag set of \mathcal{D} . Moreover, if such an orbit exists, say, $\Omega=(\xi,L)^G$, then either (a) G_L is transitive on L (or equivalently $G_L \nleq G_{\xi}$), $\lambda=1$, and Ω is the set of all flags of \mathcal{D} ; or (b) G_L is not transitive on L (or equivalently $G_L \leqslant G_{\xi}$) and $\lambda=m+1$.

The following result enables us to check whether a G-orbit on the flag set of \mathcal{D} is feasible in another way.

Lemma 2.9. Suppose that \mathcal{D} is a (G, 2)-point-transitive and G-block-transitive $2 \cdot (|V|, m+1, \lambda)$ design with point set V and m > 1. Let $\Omega = (\sigma, L)^G$ be a G-orbit on the flag set of \mathcal{D} . Then Ω is feasible if and only if the following hold:

- (a) $|\Omega(\sigma)| \geqslant 3$;
- (b*) $L \setminus \{\sigma\}$ is an imprimitive block for the action of G_{σ} on $V \setminus \{\sigma\}$; and
- (d*) $G_{\sigma,L}$ is transitive on $V \setminus L$.

Proof. Since G is 2-transitive on V, G_{σ} is transitive on $V \setminus \{\sigma\}$. Suppose Ω satisfies (b) in Definition 2.1. If $(L \setminus \{\sigma\})^g \cap (L \setminus \{\sigma\}) \neq \emptyset$ for some $g \in G_{\sigma}$, then $(L^g \cap L) \setminus \{\sigma\} \neq \emptyset$ and hence $L^g = L$ by (b). Therefore, (b) in Definition 2.1 implies (b*). The converse can be easily seen, and so (b) in Definition 2.1 is equivalent to (b*). We can see that (b*) implies (c) in Definition 2.1 as $G_{\sigma,L} = (G_{\sigma})_{L \setminus \{\sigma\}}$.

Now suppose that Ω satisfies (a) and (b) in Definition 2.1 so that it also satisfies (b*) (we have |V| = mv + 1 for some integer v). We aim to prove that (d) in Definition 2.1 is equivalent to (d*). Define $\mathcal{P} := \{N \setminus \{\sigma\} : (\sigma, N) \in \Omega\} = \{L^g \setminus \{\sigma\} : g \in G_\sigma\}$ and $P := L \setminus \{\sigma\}$ so that $G_{\sigma,L} = G_{\sigma,P}$. By (b*), $G_{\sigma,\eta} \leq G_{\sigma,L}$ for $\eta \in P$, $|G_{\sigma,P}| = |P||G_{\sigma,\eta}| = m|G_{\sigma,\eta}|$ and $|L^{G_\sigma}| = |\mathcal{P}| = v$. We then have: (d) in Definition 2.1 holds $\Leftrightarrow G_{\sigma,\eta}$ is transitive on $\mathcal{P} \setminus \{P\}$ \Leftrightarrow for any $Q \in \mathcal{P} \setminus \{P\}$ (so $\eta \notin Q$), $v - 1 = |Q^{G_{\sigma,\eta}}| = |G_{\sigma,\eta}|/|G_{\sigma,\eta,Q}| = |G_{\sigma,P}|/|m|G_{\sigma,Q,\eta}|$) $\Leftrightarrow |G_{\sigma,P}| = m(v-1)|G_{\sigma,Q,\eta}| = m(v-1)|G_{\sigma,Q,\eta}| = m(v-1)|G_{\sigma,Q,\eta}| = m(v-1)|G_{\sigma,Q,\eta}| = m(v-1)|G_{\sigma,Q,\eta}| = m(v-1)|G_{\sigma,Q,\eta}|$ (as the transitivity of G_σ on \mathcal{P} implies $|G_{\sigma,P}| = |G_{\sigma,Q}| \Leftrightarrow |\eta^{G_{\sigma,Q}}| = m(v-1) = |(V \setminus \{\sigma\}) \setminus Q|$ $\Leftrightarrow G_{\sigma,Q}$ is transitive on $V \setminus (\{\sigma\} \cup Q) \Leftrightarrow G_{\sigma,L}$ is transitive on $V \setminus L$ (as G_σ is transitive on \mathcal{P}) \Leftrightarrow (d*) holds.

Lemma 2.10. Suppose that \mathcal{D} is a (G,2)-point-transitive and G-block-transitive 2-(|V|, $m+1,\lambda$) design with point set V and m>1 such that there is a feasible G-orbit $\Omega=(\sigma,L)^G$ on the flags of \mathcal{D} . Let $P:=L\setminus\{\sigma\}$. Then the following hold:

- (a) for any subgroup H of G_{σ} transitive on $V \setminus \{\sigma\}$, P is an imprimitive block of H on $V \setminus \{\sigma\}$ and P is the union of some H_{η} -orbits (including the H_{η} -orbit $\{\eta\}$ of length 1), where $\eta \in P$;
- (b) G_{σ} is 2-transitive on $\mathcal{P} := \{N \setminus \{\sigma\} : (\sigma, N) \in \Omega\}$ and $G_{\sigma,L} = G_{\sigma,P}$ is a maximal subgroup of G_{σ} ; moreover, $v := |G_{\sigma} : G_{\sigma,L}| = |\mathcal{P}|$, v 1 divides $|G_{\sigma}|/(|V| 1)$, and $G_{\sigma,L}$ is self-normalizing in G_{σ} .
- **Proof.** (a) The first statement follows from Lemma 2.9 (b*) and the assumption that $H \leq G_{\sigma}$, and the second statement follows from the first one and the fact that H_{η} stabilises P as $\eta \in P$.
- (b) Since G_{σ} is transitive on \mathcal{P} and $G_{\sigma,L}$ ($\geqslant G_{\sigma,\eta}$ for $\eta \in P$) is transitive on $\mathcal{P} \setminus \{P\}$, G_{σ} acts 2-transitively on \mathcal{P} . In addition, since $G_{\sigma,L}$ contains the kernel K of the action of G_{σ} on \mathcal{P} , the point stabiliser $G_{\sigma,L}/K$ is maximal in the primitive permutation group G_{σ}/K on \mathcal{P} , and thus $G_{\sigma,L}$ is maximal in G_{σ} . If $G_{\sigma,L}$ is not self-normalizing in G_{σ} , then $G_{\sigma,L}$ is a normal subgroup of G_{σ} , which implies $G_{\sigma,L} \leqslant K$ and so $G_{\sigma,L}$ is not transitive on $\mathcal{P} \setminus \{P\}$ as $|\mathcal{P} \setminus \{P\}| \geqslant 2$, a contradiction. Hence $G_{\sigma,P}$ is self-normalizing in G_{σ} and $v = |\{(G_{\sigma,P})^g : g \in G_{\sigma}\}| = |\{G_{\sigma,Q} : Q \in \mathcal{P}\}|$. Let $Q \in \mathcal{P} \setminus \{P\}$. By Lemma 2.9 (d*), $G_{\sigma,Q} \neq G_{\sigma,P}$ and thus $v = |\mathcal{P}|$. Since $G_{\sigma,\eta}$ is transitive on $\mathcal{P} \setminus \{P\}$, where $\eta \in P$, $v 1 = |\mathcal{P} \setminus \{P\}|$ is a divisor of $|G_{\sigma,\eta}| = |G_{\sigma}|/(|V| 1)$.

2.4 Overview of the proof of Theorem B

We will use the set-up below in the next two sections. Without loss of generality we may assume that the group G in Theorem B is faithful on V. Thus in the rest of this paper we assume that $G \leq \operatorname{Sym}(V)$ is 2-transitive on V with degree u := |V|. Then the socle of G, $\operatorname{soc}(G)$, is either a nonabelian simple group (almost simple case) or an abelian group (affine case). We will deal with these two cases in Sections 3 and 4, respectively.

Let σ be a point in V. Using Lemma 2.10, we will search for an imprimitive block of G_{σ} on $V \setminus \{\sigma\}$ by using the following approaches.

- (i) Suppose H is a subgroup of G_{σ} that is transitive on $V \setminus \{\sigma\}$. For each imprimitive block P of H on $V \setminus \{\sigma\}$ satisfying $(|V|-1)/|P| \ge 3$ and $|P| \ge 2$, we need to check that P is also an imprimitive block of G_{σ} on $V \setminus \{\sigma\}$. By Lemma 2.10(a), P is the union of some H_{τ} -orbits on $V \setminus \{\sigma\}$, where $\tau \in P$.
- (ii) Suppose H is a subgroup of G_{σ} . If there is a point $\tau \in V \setminus \{\sigma\}$ such that $H_{\tau} = G_{\sigma,\tau}$, then $P := \tau^H$ is an imprimitive block of G_{σ} on $V \setminus \{\sigma\}$ by [10, Theorem 1.5A].

For each imprimitive block P of G_{σ} on $V \setminus \{\sigma\}$ from (i) or (ii), define

$$\mathcal{D} := (V, L^G), \text{ where } L := P \cup \{\sigma\},\$$

to be the incidence structure with point set V and block set L^G . Then $\sigma \in V$ and $N \in L^G$ are incident if and only if $\sigma \in N$. By [1, Proposition III.4.6], \mathcal{D} is a 2-($|V|, |L|, \lambda$) design admitting G as an automorphism group. By Proposition 2.7, the only possible feasible G-orbit on the flag set of \mathcal{D} is $\Omega := (\sigma, L)^G$. We will test whether Ω is feasible with the help of Lemma 2.9. If Ω is indeed feasible, then we will move on to determine all self-paired G-orbits on $F(\mathcal{D}, \Omega)$ (see (1)). Suppose Ψ is a self-paired G-orbit on $F(\mathcal{D}, \Omega)$. Then by the definition of $\Gamma(\mathcal{D}, \Omega, \Psi)$, for each $\eta \in V \setminus L$, (σ, L) has a neighbour in $\Omega(\eta)$, and (σ, L) has no neighbour in $\Omega(\xi)$ when $\xi \in L$. Hence the valency of $\Gamma(\mathcal{D}, \Omega, \Psi)$ is (|V| - |L|)n, where n is the valency of $\Gamma[\Omega(\delta), \Omega(\pi)]$ for distinct $\delta, \pi \in V$.

In order to obtain the connectedness of $\Gamma(\mathcal{D}, \Omega, \Psi)$, we need the following construction. Given a group G, a subgroup T of G, and an element $g \in G$ with $g \notin N_G(T)$ and $g^2 \in T \cap T^g$, define the coset graph $\operatorname{Cos}(G, T, TgT)$ to be the graph with vertex set $[G:T]:=\{Tx:x\in G\}$ and edge set $\{\{Tx,Ty\}:xy^{-1}\in TgT\}$. It is well known (see e.g. [24]) that $\operatorname{Cos}(G,T,TgT)$ is a G-symmetric graph with G acting on [G:T] by right multiplication, and $\operatorname{Cos}(G,T,TgT)$ is connected if and only if $\langle T,g\rangle=G$. Conversely, any G-symmetric graph Γ is G-isomorphic to $\operatorname{Cos}(G,T,TgT)$ (see e.g. [24]), where g is an element of G interchanging two adjacent vertices G and G of G and G is a satisfying G is G-isomorphism is given by G is G-isomorphism is given by G is G-isomorphism is given by G-isomorphism is G-isomorphism.

Lemma 2.11. Let $((\sigma, L), (\tau, N)) \in \Psi$ and $T := G_{\sigma,L}$. Let $g \in G$ interchange (σ, L) and (τ, N) , and set $H := \langle T, g \rangle$. Then $\rho : \Omega \to [G : T], \gamma \mapsto Tx$, with $x \in G$ satisfying $(\sigma, L)^x = \gamma$, defines a G-isomorphism from $\Gamma(\mathcal{D}, \Omega, \Psi)$ to Cos(G, T, TgT), under which the preimage of the subgraph Cos(H, T, TgT) of Cos(G, T, TgT) is the connected component of $\Gamma(\mathcal{D}, \Omega, \Psi)$ containing the vertex (σ, L) .

By Lemma 2.8, the parameter λ of \mathcal{D} is equal to 1 or |P|+1. We will repeatedly use the following result to exclude those \mathcal{D} with $\lambda=1$.

Lemma 2.12. ([23, Theorem B]) Let G be a 2-transitive permutation group on a finite set V. Suppose that, for $\sigma \in V$, G_{σ} has a system $\Sigma := \{P_1, \ldots, P_v\}$ of blocks of imprimitivity in $V \setminus \{\sigma\}$, where $|\Sigma| = v > 1$ and $|P_i| = m > 1$. If m < v and for $\tau \in P_1$, $G_{\sigma,\tau}$ is transitive on $\Sigma \setminus \{P_1\}$, then G is a group of automorphisms of a 2-design with $\lambda = 1$, the blocks of which are the images under G of the set $P_1 \cup \{\sigma\}$.

3 Almost simple case

In this section we deal with the case when $G \leq \operatorname{Sym}(V)$ is 2-transitive on V of degree u := |V| with $\operatorname{soc}(G)$ a nonabelian simple group. Then $\operatorname{soc}(G)$ and u are as follows ([19], [5, p.196], [4]):

(i)
$$soc(G) = A_u, u \geqslant 5;$$

(ii)
$$\operatorname{soc}(G) = \operatorname{PSL}(d,q), d \ge 2, q \text{ is a prime power and } u = (q^d - 1)/(q - 1), \text{ where } (d,q) \ne (2,2), (2,3);$$

(iii)
$$soc(G) = PSU(3, q), q \ge 3$$
 is a prime power and $u = q^3 + 1$;

(iv)
$$soc(G) = Sz(q)$$
, $q = 2^{2e+1} > 2$ and $u = q^2 + 1$;

(v)
$$soc(G) = R(q)'$$
, $q = 3^{2e+1}$ and $u = q^3 + 1$;

(vi)
$$G = \operatorname{Sp}_{2d}(2)$$
, $d \geqslant 3$ and $u = 2^{2d-1} \pm 2^{d-1}$;

(vii)
$$G = PSL(2, 11), u = 11;$$

(viii)
$$soc(G) = M_u, u = 11, 12, 22, 23, 24;$$

(ix)
$$G = M_{11}, u = 12;$$

(x)
$$G = A_7$$
, $u = 15$;

(xi)
$$G = HS$$
, $u = 176$;

(xii)
$$G = \text{Co}_3, u = 276.$$

We will show that, in all cases above except (iv) and (v), there is no 2-design as in Lemma 2.10 admitting G as a group of automorphisms, or there is such a 2- $(u, m + 1, \lambda)$ design but its parameter λ is equal to 1.

In fact, in cases (i), (viii) and (ix), $\operatorname{soc}(G)$ is 3-transitive and so a 2-design as in Lemma 2.10 does not exist. In case (x), $G_{\sigma,\tau}$ has orbit-lengths 1 and 12 on $V \setminus \{\sigma,\tau\}$ ([19]). If there exists a 2-(15, m+1, λ) design as in Lemma 2.10, then $\lambda=1$ by Lemma 2.12. In case (vii), $G_{\sigma,\tau}$ has orbit-lengths 3 and 6 on $V \setminus \{\sigma,\tau\}$ ([19]), and hence there is no 2-design as in Lemma 2.10. In case (xi), $G_{\sigma,\tau}$ has orbit-lengths 12, 72 and 90 on $V \setminus \{\sigma,\tau\}$ by [19], and similarly in case (xii), $G_{\sigma,\tau}$ has orbit-lengths 112 and 162 on $V \setminus \{\sigma,\tau\}$. Thus there is no 2-design as in Lemma 2.10 in these two cases.

In case (ii), if d=2 and $q \ge 5$, then all $G_{\sigma,\tau}$ -orbits on $V \setminus \{\sigma,\tau\}$ have lengths at least (q-1)/2, and so a 2-design as in Lemma 2.10 does not exist. If $d \ge 3$, then $G_{\sigma,\tau}$ has orbit-lengths q-1 and u-(q+1) on $V \setminus \{\sigma,\tau\}$, and so by Lemma 2.12 any 2- $(u,m+1,\lambda)$ design as in Lemma 2.10 must have parameter $\lambda=1$.

In case (vi), G_{σ} acts on $V \setminus \{\sigma\}$ as $O^{\pm}(2d,2)$ does on its singular vectors ([19]), and $G_{\sigma,\tau}$ has orbit-lengths $2(2^{d-1} \mp 1)(2^{d-2} \pm 1)$ and 2^{2d-2} on $V \setminus \{\sigma,\tau\}$. Since the length of an orbit of $G_{\sigma,\tau}$ on $V \setminus \{\sigma,\tau\}$ plus 1 cannot divide u-1, a 2-design as in Lemma 2.10 does not exist.

3.1 $soc(G) = PSU(3, q), u = q^3 + 1, q \ge 3$ a prime power

We prove that a 2- $(u, m+1, \lambda)$ design as in Lemma 2.10 with $\lambda > 1$ does not exist in this case. We need the following lemma whose proof is straightforward and hence omitted.

Lemma 3.1. Suppose that $q \ge 3$ is a prime power with $3 \mid (q+1)$ and ℓ a nonnegative integer.

(a) If
$$(\ell(q^2-1)/3+q) \mid q^3$$
, then $\ell=0$ or $3q$;

(b) if
$$(\ell(q^2-1)/3+1) \mid q^3$$
, then $\ell=0$ or 3.

We take the advantage of the following permutation representation of PSU(3, q) (see [10, pp.248–249]). Denote by W the 3-dimensional vector space over \mathbb{F}_{q^2} . The mapping $f: \xi \mapsto \xi^q$ is an automorphism of \mathbb{F}_{q^2} and $f^2 = 1$. Let $w = (\xi_1, \xi_2, \xi_3)$ and $z = (\eta_1, \eta_2, \eta_3)$ be arbitrary vectors in W. Using $\xi \mapsto \overline{\xi} = \xi^q$ to denote the automorphism of \mathbb{F}_{q^2} of order 2, we define a hermitian form $\varphi: W \times W \to \mathbb{F}_{q^2}$, $\varphi(w, z) = \xi_1 \overline{\eta_3} + \xi_2 \overline{\eta_2} + \xi_3 \overline{\eta_1}$. It is straightforward to calculate that for this hermitian form the set of 1-dimensional isotropic subspaces is

$$V = \{ \langle (1,0,0) \rangle \} \cup \{ \langle (\alpha,\beta,1) \rangle : \alpha + \overline{\alpha} + \beta \overline{\beta} = 0, \alpha, \beta \in \mathbb{F}_{q^2} \}.$$

(A vector $w \in W$ is called isotropic if $\varphi(w, w) = 0$.) Thus $|V| = q^3 + 1$.

Let

$$t_{lpha,eta} := egin{bmatrix} 1 & -\overline{eta} & lpha \ 0 & 1 & eta \ 0 & 0 & 1 \end{bmatrix} \quad ext{and} \quad h_{\gamma,\delta} := egin{bmatrix} \gamma & 0 & 0 \ 0 & \delta & 0 \ 0 & 0 & \overline{\gamma}^{-1} \end{bmatrix}.$$

If $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q^2}$ satisfy $\delta \overline{\delta} = 1$, $\gamma \neq 0$ and $\alpha + \overline{\alpha} + \beta \overline{\beta} = 0$, then they define elements of PGU(3, q), to which we give the same names. There are q^3 matrices of type $t_{\alpha,\beta}$ and $(q^2 - 1)(q + 1)$ of type $h_{\gamma,\delta}$. Let $e_1 = (1,0,0)$ and $e_3 = (0,0,1)$. Then the stabiliser PGU(3, q)_{$\langle e_1 \rangle$} of the subspace spanned by e_1 consists of the elements of the form $x = h_{\gamma,\delta}t_{\alpha,\beta}$ (where $\delta \overline{\delta} = 1$, $\gamma \neq 0$, $\alpha + \overline{\alpha} + \beta \overline{\beta} = 0$). The stabiliser in GU(3, q) of two points $\langle e_1 \rangle$ and $\langle e_3 \rangle$ is GU(3, q)_{$\langle e_1 \rangle, \langle e_3 \rangle} = \{h_{\gamma,\delta} : \delta \overline{\delta} = 1, \gamma \neq 0\}$. Obviously, $t_{\alpha,\beta} \in SU(3,q)$, and $h_{\gamma,\delta} \in SU(3,q)$ if and only if $\delta = \gamma^{q-1}$. Moreover, $h_{\gamma,\delta} \in SU(3,q)$ is a scalar matrix if and only if $\gamma^{q-2} = 1$.}

In the rest of this section we set J := PSU(3, q) and $Z := V \setminus \{\langle e_1 \rangle\}$.

Lemma 3.2. Let $\langle (\eta_1, \eta_2, 1) \rangle \in V \setminus \{ \langle e_1 \rangle, \langle e_3 \rangle \}$. Denote by Q the $J_{\langle e_1 \rangle, \langle e_3 \rangle}$ -orbit containing $\langle (\eta_1, \eta_2, 1) \rangle$. If $\eta_2 = 0$, then |Q| = q - 1. If $\eta_2 \neq 0$, then

$$|Q| = |J_{\langle e_1 \rangle, \langle e_3 \rangle}| = \begin{cases} q^2 - 1, & \text{if } 3 \nmid (q+1), \\ (q^2 - 1)/3, & \text{if } 3 \mid (q+1). \end{cases}$$
 (2)

Proof. The action of $J_{\langle e_1 \rangle}$ on Z can be represented as follows:

$$\langle (\xi_1, \xi_2, 1) \rangle^{t_{\alpha, \beta}} = \langle (\xi_1 + \alpha - \overline{\beta}\xi_2, \xi_2 + \beta, 1) \rangle, \ \langle (\xi_1, \xi_2, 1) \rangle^{h_{\gamma, \delta}} = \langle (\gamma \overline{\gamma}\xi_1, \delta \overline{\gamma}\xi_2, 1) \rangle.$$

Since $\delta \overline{\delta} = 1$, $\gamma \neq 0$ and $\alpha + \overline{\alpha} + \beta \overline{\beta} = 0$, setting $a = (\gamma/\delta)^q$ and $g_a := h_{\gamma,\delta}$, we can write

$$\langle (\xi_1, \xi_2, 1) \rangle^{g_a} = \langle (a\overline{a}\xi_1, a\xi_2, 1) \rangle.$$

Hence $J_{\langle e_1 \rangle, \langle e_3 \rangle} = \langle g_a \mid a = r^{2q-1}, r \in \mathbb{F}_{q^2}^{\times} \rangle$ (since $h_{\gamma, \delta} \in SU(3, q)$ if and only if $\delta = \gamma^{q-1}$, we have $a = \gamma^{2q-1}$), and

$$\langle (a\overline{a}\eta_1, a\eta_2, 1)\rangle = \langle (b\overline{b}\eta_1, b\eta_2, 1)\rangle \Leftrightarrow \begin{cases} a = b, & \text{if } \eta_2 \neq 0, \\ a^{q+1} = b^{q+1}, & \text{if } \eta_2 = 0. \end{cases}$$

Moreover, $|\{(\alpha,0,1):(\alpha,0,1)\in V\}|=q$ and each orbit of $J_{\langle e_1\rangle,\langle e_3\rangle}$ on $V\setminus\{\langle e_1\rangle,\langle e_3\rangle\}$ has length q-1 or at least $(q^2-1)/3$ ([19, p.69]). Therefore, if $\eta_2=0$, then |Q|=q-1; if $\eta_2\neq 0$, then $|Q|=|J_{\langle e_1\rangle,\langle e_3\rangle}|$. Since $\gcd(2q-1,q^2-1)=\gcd(q+1,3)$, in the latter case we obtain (2).

Now suppose P is an imprimitive block of $J_{\langle e_1 \rangle}$ on Z containing $\langle e_3 \rangle$ with |P| > 1 and $|Z|/|P| \geqslant 3$. We know that $P \setminus \{\langle e_3 \rangle\}$ is the union of some $J_{\langle e_1 \rangle, \langle e_3 \rangle}$ -orbits on $Z \setminus \{\langle e_3 \rangle\}$. By Lemma 3.1, we have |P| = q or $|P| = q^2$. By Lemma 2.12, we may assume $|P| = q^2$ in the following.

Denote the q solutions in \mathbb{F}_{q^2} of the equation $x + \overline{x} = 0$ by $\varepsilon_0 = 0, \varepsilon_1, \ldots, \varepsilon_{q-1}$. We know that $\langle (\varepsilon_1, 0, 1) \rangle, \ldots, \langle (\varepsilon_{q-1}, 0, 1) \rangle$ form a $J_{\langle e_1 \rangle, \langle e_3 \rangle}$ -orbit on $Z \setminus \{\langle e_3 \rangle\}$. By Lemma 3.1, $\langle (\varepsilon_i, 0, 1) \rangle$ is not contained in P for i > 0.

Now $\Sigma := \{P^g : g \in J_{\langle e_1 \rangle}\}$ is a system of blocks of $J_{\langle e_1 \rangle}$ on Z with $|\Sigma| = q$, and $T := \langle t_{\alpha,\beta} \mid \alpha + \overline{\alpha} + \beta \overline{\beta} = 0 \rangle$ is transitive on Σ . Actually T is a normal subgroup of $J_{\langle e_1 \rangle}$ acting regularly on Z (see [10, p.249]). Hence the stabiliser of P in T has order q^2 , that is, $|T_P| = q^2$. Let $t_{\alpha_1,\beta}$, $t_{\alpha_2,\beta} \in T_P$. Then $\langle (0,0,1) \rangle^{t_{\alpha_1,\beta}t_{\alpha_2,\beta}^{-1}} = \langle (\alpha_1,\beta,1) \rangle^{t_{-\alpha_2-\beta\overline{\beta},-\beta}} = \langle (\alpha_1-\alpha_2,0,1) \rangle \in P$. Since $\langle (\varepsilon_i,0,1) \rangle$ is not contained in P for i>0, we have $\alpha_1=\alpha_2$ and $t_{\alpha_1,\beta}=t_{\alpha_2,\beta}$. Therefore,

$$\{\beta : \langle (\alpha, \beta, 1) \rangle \in P\} = \{\beta : t_{\alpha, \beta} \in T_P\} = \mathbb{F}_{q^2}. \tag{3}$$

For any $\langle (\eta_1, \eta_2, 1) \rangle$, $\langle (\xi_1, \xi_2, 1) \rangle \in P$, η_2 , $\xi_2 \neq 0$, since by our assumption P is an imprimitive block of $J_{\langle e_1 \rangle}$ on Z, both t_{η_1, η_2} and t_{ξ_1, ξ_2} fix P setwise. Thus

$$\langle (0,0,1) \rangle^{t_{\eta_1,\eta_2}t_{\xi_1,\xi_2}} = \langle (\eta_1,\eta_2,1) \rangle^{t_{\xi_1,\xi_2}} = \langle (\eta_1+\xi_1-\overline{\xi_2}\eta_2,\eta_2+\xi_2,1) \rangle \in P,$$

$$\langle (0,0,1) \rangle^{t_{\xi_1,\xi_2}t_{\eta_1,\eta_2}} = \langle (\xi_1,\xi_2,1) \rangle^{t_{\eta_1,\eta_2}} = \langle (\xi_1+\eta_1-\overline{\eta_2}\xi_2,\xi_2+\eta_2,1) \rangle \in P.$$

Hence by (3) we have $\eta_1 + \xi_1 - \overline{\xi_2}\eta_2 = \xi_1 + \eta_1 - \overline{\eta_2}\xi_2$, that is, $(\xi_2/\eta_2)^{q-1} = 1$, which implies $(\xi_2/\eta_2) \in F_0 := \operatorname{Fix}_f(\mathbb{F}_{q^2})$. Fix $\eta_2 = 1$. Then $\xi_2 \in F_0$ and thus $\mathbb{F}_{q^2} \subseteq F_0$, a contradiction. Hence there is no 2- $(u, m+1, \lambda)$ design as in Lemma 2.10 with $\lambda > 1$ admitting G as a group of automorphisms with $\operatorname{soc}(G) = \operatorname{PSU}(3, q)$.

3.2 $\operatorname{soc}(G) = \operatorname{Sz}(q), \ q = 2^{2e+1} > 2 \text{ and } u = q^2 + 1$

We need the following two lemmas that can be easily proved.

Lemma 3.3. Suppose that ℓ and n are positive integers, and q > 1 is a power of prime. If $(\ell(q-1)+1) \mid q^n$, then $\ell = (q^i-1)/(q-1)$ for some $i=1,2,\ldots,n$.

Lemma 3.4. Let \mathbb{F} be a field with characteristic p > 0 and let $\kappa \in \mathbb{F}$. If $\kappa^{p^a} = \kappa = \kappa^{p^b}$ for some positive integers a and b, then $\kappa^{p^{\gcd(a,b)}} = \kappa$.

We use the permutation representation of $\operatorname{Sz}(q)$ in [10, p.250]. The mapping $\sigma: \xi \mapsto \xi^{2^{e+1}}$ is an automorphism of \mathbb{F}_q and σ^2 is the Frobenius automorphism $\xi \mapsto \xi^2$. Define

$$V := \{ (\eta_1, \eta_2, \eta_3) \in \mathbb{F}_q^3 : \eta_3 = \eta_1 \eta_2 + \eta_1^{\sigma+2} + \eta_2^{\sigma} \} \cup \{ \infty \}.$$
 (4)

Thus $|V| = q^2 + 1$. For $\alpha, \beta, \kappa \in \mathbb{F}_q$ with $\kappa \neq 0$, define the following permutations of V fixing ∞ :

$$t_{\alpha,\beta}: (\eta_1, \eta_2, \eta_3) \mapsto (\eta_1 + \alpha, \eta_2 + \beta + \alpha^{\sigma} \eta_1, \mu),$$

$$n_{\kappa}: (\eta_1, \eta_2, \eta_3) \mapsto (\kappa \eta_1, \kappa^{\sigma+1} \eta_2, \kappa^{\sigma+2} \eta_3),$$

where $\mu = \eta_3 + \alpha\beta + \alpha^{\sigma+2} + \beta^{\sigma} + \alpha\eta_2 + \alpha^{\sigma+1}\eta_1 + \beta\eta_1$. Define the involution w fixing V by

$$w: (\eta_1, \eta_2, \eta_3) \leftrightarrow \left(\frac{\eta_2}{\eta_3}, \frac{\eta_1}{\eta_3}, \frac{1}{\eta_3}\right) \text{ for } \eta_3 \neq 0, \ \infty \leftrightarrow \mathbf{0} := (0, 0, 0).$$

The Suzuki group $\operatorname{Sz}(q)$ is the group generated by w and all $t_{\alpha,\beta}$ and n_{κ} . The stabiliser of ∞ is $\operatorname{Sz}(q)_{\infty} = \langle t_{\alpha,\beta}, n_{\kappa} \mid \alpha, \beta, \kappa \in \mathbb{F}_q, \kappa \neq 0 \rangle$. The stabiliser of ∞ and $\mathbf{0}$ is the cyclic group $\langle n_{\kappa} \mid \kappa \in \mathbb{F}_q, \kappa \neq 0 \rangle$.

Lemma 3.5. Each orbit of $Sz(q)_{\infty,0}$ on $V \setminus \{\infty,0\}$ has length q-1.

Proof. Since $\gcd(2^{e+1}+1,2^{2e+1}-1)=1$ and \mathbb{F}_q^{\times} is a cyclic group of order $q-1=2^{2e+1}-1$, the mapping $\mathbb{F}_q^{\times} \to \mathbb{F}_q^{\times}$, $z \mapsto z^{2^{e+1}+1}=z^{\sigma+1}$ is a group automorphism. Thus, if $\eta_1 \neq 0$ or $\eta_2 \neq 0$, then $(a\eta_1,a^{\sigma+1}\eta_2,a^{\sigma+2}\eta_3)=(b\eta_1,b^{\sigma+1}\eta_2,b^{\sigma+2}\eta_3) \Leftrightarrow a=b$. Therefore each orbit of $\operatorname{Sz}(q)_{\infty,\mathbf{0}}$ on $V \setminus \{\infty,\mathbf{0}\}$ has length q-1.

Lemma 3.6. Suppose that P is an imprimitive block of $\operatorname{Sz}(q)_{\infty}$ on $V \setminus \{\infty\}$ containing $\mathbf{0}$, and $1 < |P| < q^2$. Then $P = \{(0, \eta, \eta^{\sigma}) \in V : \eta \in \mathbb{F}_q\}$ and $\operatorname{Sz}(q)_{\infty, P} = \langle t_{0, \xi}, n_{\kappa} \mid \kappa \in \mathbb{F}_q^{\times}, \xi \in \mathbb{F}_q \rangle$.

Proof. By Lemma 3.3 we can assume that $P \setminus \{\mathbf{0}\}$ is a $\operatorname{Sz}(q)_{\infty,\mathbf{0}}$ -orbit on $V \setminus \{\infty,\mathbf{0}\}$. The elements of P have the form $(\kappa\eta_1,\kappa^{\sigma+1}\eta_2,\kappa^{\sigma+2}\eta_3)$, where $\kappa \in \mathbb{F}_q$ and (η_1,η_2,η_3) is a fixed point in P. Suppose $P^{t_{\alpha,\beta}} \cap P \neq \emptyset$ for some $\alpha,\beta \in \mathbb{F}_q$, that is,

$$(\kappa_1 \eta_1, \kappa_1^{\sigma+1} \eta_2, \kappa_1^{\sigma+2} \eta_3)^{t_{\alpha,\beta}} = (\kappa_0 \eta_1, \kappa_0^{\sigma+1} \eta_2, \kappa_0^{\sigma+2} \eta_3) \text{ for some } \kappa_0, \kappa_1 \in \mathbb{F}_q.$$
 (5)

Then we have the following equations (since the third coordinate of each element in V is determined by the first two, we can just consider the equations given by the first two coordinates):

$$\alpha = (\kappa_0 + \kappa_1)\eta_1, \ \beta = (\kappa_1^{\sigma+1} + \kappa_0^{\sigma+1})\eta_2 + (\kappa_0^{\sigma} + \kappa_1^{\sigma})\kappa_1\eta_1^{\sigma+1}.$$
 (6)

Hence, if α, β are as in (6) with respect to η_1 and η_2 , then (5) holds. Since by our assumption P is an imprimitive block of $\operatorname{Sz}(q)_{\infty}$ on $V \setminus \{\infty\}$, we need to verify that $P^{t_{\alpha,\beta}} = P$, that is, for any $\ell \in \mathbb{F}_q$ there exists $\ell_0 \in \mathbb{F}_q$ such that $(\ell \eta_1, \ell^{\sigma+1} \eta_2, \ell^{\sigma+2} \eta_3)^{t_{\alpha,\beta}} = (\ell_0 \eta_1, \ell_0^{\sigma+1} \eta_2, \ell_0^{\sigma+2} \eta_3)$. This is to say that, for any $\ell \in \mathbb{F}_q$, the equation system

$$(\ell + x)\eta_1 = \alpha, \ (\ell^{\sigma+1} + x^{\sigma+1})\eta_2 + (\ell^{\sigma} + x^{\sigma})\ell\eta_1^{\sigma+1} = \beta$$
 (7)

has a solution $x \in \mathbb{F}_q$. We claim that this happens only when $\eta_1 = 0$. In fact, if $P^{t_{\xi,\theta}} \cap P = \emptyset$ for any $t_{\xi,\theta} \neq \mathrm{id}$, then different $t_{\xi,\theta}$ must map P to different elements in $P^{\mathrm{Sz}(q)_{\infty}}$, and thus $q^2 = |\langle t_{\xi,\theta} \mid \xi, \theta \in \mathbb{F}_q \rangle| \leq |P^{\mathrm{Sz}(q)_{\infty}}| = q$, a contradiction. Hence we can assume that at most one of α, β is 0 in (5). If $\eta_1 \neq 0$, then $x = \alpha/\eta_1 - \ell$. The second equation of (7) becomes $\frac{\alpha\eta_2}{\eta_1}\ell^{\sigma} + \left(\frac{\alpha^{\sigma}\eta_2}{\eta_1^{\sigma}} + \alpha^{\sigma}\eta_1\right)\ell + \frac{\alpha^{\sigma+1}\eta_2}{\eta_1^{\sigma+1}} - \beta = 0$, and it holds for every $\ell \in \mathbb{F}_q$. From the knowledge of polynomials over fields we have $\alpha\eta_2/\eta_1 = 0$, $\alpha^{\sigma}\eta_2/\eta_1^{\sigma} + \alpha^{\sigma}\eta_1 = 0$ since q > 2. If $\alpha = 0$, then from (6) we have $\beta = 0$, which contradicts our assumption. Thus $\alpha \neq 0, \eta_2 = 0, \alpha^{\sigma}\eta_1 = 0$, the latter being a contradiction. Therefore, $\eta_1 = 0$.

By Lemma 3.5, $P = \{\mathbf{0}\} \cup (0, 1, 1)^{\operatorname{Sz}(q)_{\infty, 0}} = \{(0, \eta, \eta^{\sigma}) \in V : \eta \in \mathbb{F}_q\}$. This P is indeed an imprimitive block of $\operatorname{Sz}(q)_{\infty}$ on $V \setminus \{\infty\}$, and $\operatorname{Sz}(q)_{\infty, P} = \langle t_{0, \xi}, n_{\kappa} \mid \kappa \in \mathbb{F}_q^{\times}, \xi \in \mathbb{F}_q \rangle$. \square

Let G be a subgroup of $\operatorname{Sym}(V)$ containing $\operatorname{Sz}(q)$ as a normal subgroup. Since $\operatorname{Sz}(q)$ has index 2e+1 in its normalizer Q in $\operatorname{Sym}(V)$ (see [5, Table 7.4]), $Q/\operatorname{Sz}(q)$ is a cyclic group of order 2e+1 and $G=\langle\operatorname{Sz}(q),\zeta\rangle$, where ζ is an automorphism of \mathbb{F}_q inducing a permutation of V with ζ fixing ∞ and acting on elements of $V\setminus\{\infty\}$ componentwise. Hence the group G has b possibilities, where b is the number of divisors of 2e+1.

Lemma 3.7. Let $\mathcal{D} := (V, L^{\operatorname{Sz}(q)})$ and $\Omega := (\infty, L)^{\operatorname{Sz}(q)}$, where V is as in (4) and $L := P \cup \{\infty\}$ with $P = \{(0, \eta, \eta^{\sigma}) \in V : \eta \in \mathbb{F}_q\}$. Let G be a subgroup of $\operatorname{Sym}(V)$ containing $\operatorname{Sz}(q)$ as a normal subgroup with $|G/\operatorname{Sz}(q)| = (2e+1)/f$ for some integer f. Then the following hold:

- (a) \mathcal{D} is a 2-($q^2+1,q+1,q+1$) design admitting G as a 2-point-transitive and block-transitive group of automorphisms, and Ω is a feasible G-orbit on the set of flags of \mathcal{D} :
- (b) any G-orbit $\Psi = ((\infty, M), (\mathbf{0}, N))^G$ on $F(\mathcal{D}, \Omega)$ is self-paired, and the corresponding G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$ is connected with order $|\Omega| = q(q^2 + 1)$; moreover, by (d) in Definition 2.1 we may assume $M = L^{t_{1,0}} = \{(1, \eta, \eta + 1 + \eta^{\sigma}) \in V : \eta \in \mathbb{F}_q\} \cup \{\infty\}$ and $N = M^{n_{\kappa_0}w}$ for some $\kappa_0 \in \mathbb{F}_q^{\times}$; the valency of $\Gamma(\mathcal{D}, \Omega, \Psi)$ is equal to $(q^2 q)i/\gcd(f, i)$, where i is the smallest positive integer satisfying $\kappa_0^{2^i} = \kappa_0$.

Proof. From the discussion above we see that \mathcal{D} is a 2- $(q^2+1,q+1,\lambda)$ design admitting $\operatorname{Sz}(q)$ as a 2-point-transitive and block-transitive group of automorphisms. Let $\tau \in V \setminus L$. Then $|\tau^{\operatorname{Sz}(q)_{\infty,L}}| = |\operatorname{Sz}(q)_{\infty,L}|/|\operatorname{Sz}(q)_{\infty,L,\tau}| = |\operatorname{Sz}(q)_{\infty,L}| = q(q-1)$. Hence $\operatorname{Sz}(q)_{\infty,L}$ is transitive on $V \setminus L$, and by Lemma 2.9, Ω is a feasible $\operatorname{Sz}(q)$ -orbit on the flag set of \mathcal{D} . Since w does not stabilise L, $\lambda \neq 1$ and thus $\lambda = q+1$.

Let $G = \langle \operatorname{Sz}(q), \zeta \rangle$, where $\zeta : \mathbb{F}_q \to \mathbb{F}_q$, $\xi \mapsto \xi^{2^f}$. One can verify that $G_{\infty} = \langle \operatorname{Sz}(q)_{\infty}, \zeta \rangle$ and P is an imprimitive block of G_{∞} on $V \setminus \{\infty\}$. Moreover, $(\infty, L)^G = (\infty, L)^{\operatorname{Sz}(q)}$ and $L^G = L^{\operatorname{Sz}(q)}$. By Lemma 2.9, Ω is a feasible G-orbit on the flag set of \mathcal{D} . Since $N^{n_{\kappa_0}w} = M^{n_{\kappa_0}wn_{\kappa_0}w} = M^{n_{\kappa_0}n_{\kappa_0}^{-1}} = M$, $n_{\kappa_0}w$ interchanges (∞, M) and $(\mathbf{0}, N)$. Therefore, Ψ is self-paired and so produces the G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$.

Set $L_{\kappa} := P_{\kappa} \cup \{\infty\}$ for each $\kappa \in \mathbb{F}_q$, where $P_{\kappa} = \{(\kappa, \eta, \kappa \eta + \kappa^{\sigma+2} + \eta^{\sigma}) \in V : \eta \in \mathbb{F}_q\}$. Consider the set $(\mathbf{0}, N)^{G_{\infty,M,\mathbf{0}}}$ of neighbours of (∞, M) in $\Gamma(\mathcal{D}, \Omega, \Psi)$ contained in $\Omega(\mathbf{0})$. Since $\zeta w = w\zeta$ and $G_{\infty,M,\mathbf{0}} = \langle n_{\kappa}, \zeta \mid \kappa \in \mathbb{F}_q^{\times} \rangle_M = \langle \zeta \rangle$, we have $N^{G_{\infty,M,\mathbf{0}}} = M^{n_{\kappa_0}w\langle \zeta \rangle} = M^{n_{\kappa_0}\langle \zeta \rangle w}$ and $M^{n_{\kappa_0}\varphi} = M^{\varphi\varphi^{-1}n_{\kappa_0}\varphi} = M^{n_{\kappa_0}^{\circ}} = L_{\kappa_0^{\varphi}}$ for any $\varphi \in \langle \zeta \rangle$. It follows that $N^{G_{\infty,M,\mathbf{0}}} = (L_{\kappa_0^{\langle \zeta \rangle}})^w$, and in particular $|(\mathbf{0}, N)^{G_{\infty,M,\mathbf{0}}}| = |\kappa_0^{\langle \zeta \rangle}|$.

By Lemma 3.4 we have $|\kappa_0^{\langle\zeta\rangle}| = \text{lcm}(f,i)/f = i/\text{gcd}(f,i)$. Therefore, (∞,M) is adjacent to i/gcd(f,i) vertices in $\Omega(\mathbf{0})$, namely, $(\mathbf{0},(L_{\kappa_0^{\zeta^\ell}})^w)$, $\ell=1,2,\ldots,i/\text{gcd}(f,i)$. By the discussion in Section 2.4, $\Gamma(\mathcal{D},\Omega,\Psi)$ has valency $(q^2-q)i/\text{gcd}(f,i)$.

Denote $H:=\langle t_{0,\xi}, n_{\kappa_0}w: \xi \in \mathbb{F}_q \rangle$. For any $(\eta_1, \eta_2, \eta_3) \in V \setminus \{\infty, \mathbf{0}\}$, if $\eta_1 = 0$ then $\mathbf{0}^{t_{0,\eta_2}} = (\eta_1, \eta_2, \eta_3)$, and if $\eta_1 \neq 0$ then $\mathbf{0}^{t_{0,\theta}n_{\kappa_0}wt_{0,\eta_2}} = (\eta_1, \eta_2, \eta_3)$, where $\theta/\theta^{\sigma} = \eta_1\kappa_0$. Hence H is transitive on V, and thus $(q^2+1)q$ divides |H|. So |H| does not divide $q^2(q-1), 2(q-1), 4(q+\sqrt{2q}+1)$ or $4(q-\sqrt{2q}+1)$. Thus, by [26, p.137, Theorem 9], $|H| = (s^2+1)s^2(s-1)$, where $s^j = q$ for some positive integer j. It follows that j=1, $|H| = (q^2+1)q^2(q-1)$, and thus $\mathrm{Sz}(q) = H$. Therefore, $\mathrm{Sz}(q) = \langle \mathrm{Sz}(q)_{\infty,M}, n_{\kappa_0}w \rangle$ as $\langle t_{0,\xi} : \xi \in \mathbb{F}_q \rangle \leqslant \mathrm{Sz}(q)_{\infty,M}$, and so $\Gamma(\mathcal{D}, \Omega, \Psi)$ is connected by Lemma 2.11.

Example 3.8. Suppose that $G = \langle \operatorname{Sz}(8), \zeta \rangle$, where $\zeta : \mathbb{F}_8 \to \mathbb{F}_8$, $\xi \mapsto \xi^2$ is the Frobenius map. Let $\Psi := ((\infty, M), (\mathbf{0}, N))^G$, where $M = L_1 = \{(1, \eta, 1 + \eta + \eta^4) \in V : \eta \in \mathbb{F}_8\} \cup \{\infty\}$, $N = M^{n_{\kappa_0} w}$, and κ_0 is a generator of \mathbb{F}_8^{\times} . Then the edges of the G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$ between $\Omega(\infty)$ and $\Omega(\mathbf{0})$ are as shown in Figure 1.

Figure 1

3.3
$$soc(G) = R(q), q = 3^{2e+1} > 3, u = q^3 + 1; or G = R(3), R(3)' \cong PSL(2,8), u = 28$$

We will use the following lemma that can be easily proved.

Lemma 3.9. Suppose that $\ell \geqslant 0$ is an integer, n a positive integer, and q an odd power of q. Then $\ell(q-1)+(q-1)/2+1 \nmid q^n$.

We use the permutation representation of R(q) in [10, p.251]. The mapping $\sigma: \xi \mapsto \xi^{3e^{+1}}$ is an automorphism of \mathbb{F}_q and σ^2 is the Frobenius automorphism $\xi \mapsto \xi^3$. The set V of points on which R(q) acts consists of ∞ and the set of sixtuples $(\eta_1, \eta_2, \eta_3, \lambda_1, \lambda_2, \lambda_3)$ with $\eta_1, \eta_2, \eta_3 \in \mathbb{F}_q$ and

$$\begin{cases}
\lambda_{1} = \eta_{1}^{2} \eta_{2} - \eta_{1} \eta_{3} + \eta_{2}^{\sigma} - \eta_{1}^{\sigma+3}, \\
\lambda_{2} = \eta_{1}^{\sigma} \eta_{2}^{\sigma} - \eta_{3}^{\sigma} + \eta_{1} \eta_{2}^{2} + \eta_{2} \eta_{3} - \eta_{1}^{2\sigma+3}, \\
\lambda_{3} = \eta_{1} \eta_{3}^{\sigma} - \eta_{1}^{\sigma+1} \eta_{2}^{\sigma} + \eta_{1}^{\sigma+3} \eta_{2} + \eta_{1}^{2} \eta_{2}^{2} - \eta_{2}^{\sigma+1} - \eta_{3}^{2} + \eta_{1}^{2\sigma+4}.
\end{cases} (8)$$

Thus $|V| = q^3 + 1$. For $\alpha, \beta, \gamma, \kappa \in \mathbb{F}_q$ with $\kappa \neq 0$, define the following permutations of V fixing ∞ :

$$t_{\alpha,\beta,\gamma} : (\eta_{1}, \eta_{2}, \eta_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}) \mapsto (\eta_{1} + \alpha, \eta_{2} + \beta + \alpha^{\sigma} \eta_{1}, \eta_{3} + \gamma - \alpha \eta_{2} + \beta \eta_{1} - \alpha^{\sigma+1} \eta_{1}, \mu_{1}, \mu_{2}, \mu_{3}),$$

$$n_{\kappa} : (\eta_{1}, \eta_{2}, \eta_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}) \mapsto (\kappa \eta_{1}, \kappa^{\sigma+1} \eta_{2}, \kappa^{\sigma+2} \eta_{3}, \kappa^{\sigma+3} \lambda_{1}, \kappa^{2\sigma+3} \lambda_{2}, \kappa^{2\sigma+4} \lambda_{3}),$$

where μ_1 , μ_2 and μ_3 can be calculated from the formulas in (8). Define the involution w fixing V by

$$w: (\eta_1, \eta_2, \eta_3, \lambda_1, \lambda_2, \lambda_3) \leftrightarrow \left(\frac{\lambda_2}{\lambda_3}, \frac{\lambda_1}{\lambda_3}, \frac{\eta_3}{\lambda_3}, \frac{\eta_2}{\lambda_3}, \frac{\eta_1}{\lambda_3}, \frac{1}{\lambda_3}\right) \text{ for } \lambda_3 \neq 0,$$

$$\infty \leftrightarrow \mathbf{0} := (0, 0, 0, 0, 0, 0).$$

(We correct the action of w on V in [10, p.251] according to [11].) The Ree group R(q) is the group generated by w and all $t_{\alpha,\beta,\gamma}$ and n_{κ} . We have $R(q)_{\infty} = \langle t_{\alpha,\beta,\gamma}, n_{\kappa} \mid \alpha, \beta, \gamma, \kappa \in \mathbb{F}_q, \kappa \neq 0 \rangle$ and $R(q)_{\infty,\mathbf{0}}$ is the cyclic group $\langle n_{\kappa} \mid \kappa \in \mathbb{F}_q, \kappa \neq 0 \rangle$. Since the first three coordinates in each element of V determine the last three, in the following we simply present an element of V in the form $(\eta_1, \eta_2, \eta_3, \ldots)$.

Lemma 3.10. Let $(\eta_1, \eta_2, \eta_3, \ldots) \in V \setminus \{\infty, \mathbf{0}\}$. Then

$$|(\eta_1, \eta_2, \eta_3, \ldots)^{\mathbf{R}(q)_{\infty, \mathbf{0}}}| = \begin{cases} q - 1, & \text{if } \eta_1 \neq 0 \text{ or } \eta_3 \neq 0, \\ (q - 1)/2, & \text{if } \eta_1 = \eta_3 = 0. \end{cases}$$

Proof. Since id: $\mathbb{F}_q^{\times} \to \mathbb{F}_q^{\times}$, $\xi \mapsto \xi$ and $\varphi : \mathbb{F}_q^{\times} \to \mathbb{F}_q^{\times}$, $\xi \mapsto \xi^{\sigma+2}$ are both group automorphisms, if $\eta_1 \neq 0$ or $\eta_3 \neq 0$, then $(a\eta_1, a^{\sigma+1}\eta_2, a^{\sigma+2}\eta_3, \ldots) = (b\eta_1, b^{\sigma+1}\eta_2, b^{\sigma+2}\eta_3, \ldots) \Leftrightarrow a = b$.

Let δ be a generator of the cyclic group \mathbb{F}_q^{\times} . Since $\delta^{\sigma+1} = \delta^{3^{e+1}+1}$ and $\gcd(3^{e+1}+1, q-1) = 2$, we have $|\delta^{\sigma+1}| = (q-1)/2$, and thus

$$L_1 := (0, 1, 0, \dots)^{R(q)_{\infty, 0}} \text{ and } L_2 := (0, \delta, 0, \dots)^{R(q)_{\infty, 0}}$$
 (9)

are two orbits of length (q-1)/2 of $R(q)_{\infty,0}$ on $V \setminus \{\infty,0\}$.

By the result above we know that $R(q)_{\infty,0}$ has two orbits of length (q-1)/2 and q(q+1) orbits of length q-1 on $V \setminus \{\infty, 0\}$.

Let G be a subgroup of $\operatorname{Sym}(V)$ containing R(q) as a normal subgroup. Since R(q) has index 2e+1 in its normalizer Q in $\operatorname{Sym}(V)$ ([5, Table 7.4]), Q/R(q) is a cyclic group of order 2e+1 and $G=\langle R(q),\zeta\rangle$, where ζ is an automorphism of \mathbb{F}_q inducing a permutation of V with ζ fixing ∞ and acting on elements of $V\setminus\{\infty\}$ componentwise.

Lemma 3.11. Let $G = \langle R(q), \zeta \rangle$ be a subgroup of Sym(V) containing R(q) as a normal subgroup, where ζ is an automorphism of \mathbb{F}_q . Suppose that P is an imprimitive block of G_{∞} on $V \setminus \{\infty\}$ containing $\mathbf{0}$ with $1 < |P| < q^3$. Then |P| = q or $|P| = q^2$. Moreover, if $|P| = q^2$ and $G_{\infty,\mathbf{0}}$ is transitive on $P^{G_{\infty}} \setminus \{P\}$, then

$$P = \{ (0, \eta_2, \eta_3, \dots) : \eta_2, \eta_3 \in \mathbb{F}_q \}, \tag{10}$$

$$G_{\infty,P} = \langle t_{0,\beta,\gamma}, n_{\kappa}, \zeta \mid \beta, \gamma \in \mathbb{F}_q, \kappa \in \mathbb{F}_q^{\times} \rangle.$$
(11)

Proof. By Lemma 2.10 (a), $P \setminus \{\mathbf{0}\}$ is the union of some $R(q)_{\infty,\mathbf{0}}$ -orbits on $V \setminus \{\infty,\mathbf{0}\}$. By Lemmas 3.3 and 3.9, we have |P| = q or $|P| = q^2$.

Suppose $|P| = q^2$ and $G_{\infty,0}$ is transitive on $P^{G_{\infty}} \setminus \{P\}$. Let L_1 and L_2 be as in the proof of Lemma 3.10. Then by Lemma 3.9 either $L_1 \cup L_2 \subseteq P$ or $(L_1 \cup L_2) \cap P = \emptyset$. Since $G_{\infty,0} = \langle n_{\kappa}, \zeta \mid \kappa \in \mathbb{F}_q^{\times} \rangle$, L_1 and L_2 are $G_{\infty,0}$ -orbits on $V \setminus \{\infty, 0\}$. If $(L_1 \cup L_2) \cap P = \emptyset$, then $G_{\infty,0}$ has an orbit of length at most (q-1)/2 on $P^{G_{\infty}} \setminus \{P\}$ and $G_{\infty,0}$ is not transitive on $P^{G_{\infty}} \setminus \{P\}$. Hence $L_1 \cup L_2 \subseteq P$ and thus $\{(0, \eta, 0, \ldots) : \eta \in \mathbb{F}_q\} \subseteq P$. Since $(0, \eta, 0, \ldots)^{t_{\alpha,\beta,\gamma}} = (\alpha, \eta + \beta, \gamma - \alpha\eta, \ldots)$, we have $\langle t_{0,\beta,0} \mid \beta \in \mathbb{F}_q \rangle \leqslant G_{\infty,P}$ and $H := \langle t_{0,\beta,0}, n_{\kappa} \mid \beta \in \mathbb{F}_q, \kappa \in \mathbb{F}_q^{\times} \rangle \leqslant G_{\infty,P}$.

If P has a point $(\eta_1, \eta_2, \eta_3, \ldots)$ with $\eta_1 \neq 0$, then by the action of H, we can assume that $\rho := (1, 0, \varepsilon_0, \ldots) \in P$ for some $\varepsilon_0 \in \mathbb{F}_q$. Since $|\rho^H| = |H|/|H_\rho| = |H| = q(q-1)$ and $\rho^H \cap \{(0, \eta, 0, \ldots) : \eta \in \mathbb{F}_q\} = \emptyset$, we have

$$P = \rho^H \cup \{(0, \eta, 0, \ldots) : \eta \in \mathbb{F}_q\} = \{(\eta_1, \eta_2, \eta_3, \ldots) \in V : \eta_3 = \eta_1^{\sigma+2} \varepsilon_0 + \eta_1 \eta_2\}.$$
 (12)

However, this P is not an imprimitive block of $R(q)_{\infty}$ on $V\setminus\{\infty\}$. In fact, if $(0,1,0,\ldots)^{t_{a,b,c}}=(1,0,\varepsilon_0,\ldots)$, then $a=1,b=-1,c=1+\varepsilon_0$. On the other hand, $(0,-1,0,\ldots)\in P$, and $(0,-1,0,\ldots)^{t_{1,-1,1+\varepsilon_0}}=(1,-2,2+\varepsilon_0,\ldots)=(1,1,2+\varepsilon_0,\ldots)$. We can check that the first three coordinates of $(1,1,2+\varepsilon_0,\ldots)$ do not satisfy the equation (see (12)) for the elements of P. Hence $(0,-1,0,\ldots)^{t_{1,-1,1+\varepsilon_0}}\notin P$, and P given in (12) is not an imprimitive block of $R(q)_{\infty}$ on $V\setminus\{\infty\}$. Therefore, every element in P must have 0 as the first coordinate. It follows that P is as given in (10). It is straightforward to check that P is indeed an imprimitive block of $G_{\infty}=\langle R(q)_{\infty},\zeta\rangle$ on $V\setminus\{\infty\}$ and $G_{\infty,P}$ is as shown in (11).

We will ignore the case |P| = q in Lemma 3.11, since in this case the design in Lemma 2.10 (if it exists) is a linear space by Lemma 2.12.

Lemma 3.12. Let $\mathcal{D} := (V, L^{R(q)})$ and $\Omega := (\infty, L)^{R(q)}$, where $L := P \cup \{\infty\}$ with P as defined in (10). Let G be a subgroup of $\operatorname{Sym}(V)$ containing R(q) as a normal subgroup such that |G/R(q)| = (2e+1)/f for some integer f. Then the following hold:

- (a) \mathcal{D} is a 2- (q^3+1,q^2+1,q^2+1) design admitting G as a 2-point-transitive and block-transitive group of automorphisms, and Ω is a feasible G-orbit on the set of flags of \mathcal{D} ;
- (b) any G-orbit $\Psi = ((\infty, M), (\mathbf{0}, N))^G$ on $F(\mathcal{D}, \Omega)$ is self-paired, and the G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$ is connected with order $|\Omega| = q(q^3 + 1)$; moreover, by (d) in Definition 2.1, we may assume $M = L^{t_{1,0,0}} = \{(1, \eta_2, \eta_3, \ldots) \in V : \eta_2, \eta_3 \in \mathbb{F}_q\} \cup \{\infty\}$ and $N = M^{n_{\kappa_0}w}$ for some $\kappa_0 \in \mathbb{F}_q^{\times}$; the valency of $\Gamma(\mathcal{D}, \Omega, \Psi)$ is equal to $(q^3 q^2)i/\gcd(f, i)$, where i is the smallest positive integer satisfying $\kappa_0^{3^i} = \kappa_0$.

Proof. Using the notation above, we have $G = \langle R(q), \zeta \rangle$, where $\zeta : \mathbb{F}_q \to \mathbb{F}_q$, $\xi \mapsto \xi^{2^f}$. Then $(\infty, L)^G = (\infty, L)^{R(q)}$, $L^G = L^{R(q)}$, and \mathcal{D} is a 2- $(q^3 + 1, q^2 + 1, \lambda)$ design admitting G as a 2-point-transitive and block-transitive group of automorphisms. Let $\theta := (1, 0, 0, \ldots) \in V \setminus L$. Since $|\theta^{R(q)_{\infty,L}}| = |R(q)_{\infty,L}|/|R(q)_{\infty,L,\theta}| = |R(q)_{\infty,L}| = q^2(q-1)$, $R(q)_{\infty,L}$ and $G_{\infty,L}$ are transitive on $V \setminus L$ and by Lemma 2.9, Ω is a feasible G-orbit on the flag set of \mathcal{D} . Since W does not stabilise L, $\lambda \neq 1$ and thus $\lambda = q^2 + 1$.

the flag set of \mathcal{D} . Since w does not stabilise L, $\lambda \neq 1$ and thus $\lambda = q^2 + 1$. Since $N^{n_{\kappa_0}w} = M^{n_{\kappa_0}wn_{\kappa_0}w} = M^{n_{\kappa_0}n_{\kappa_0}^{-1}} = M$, $n_{\kappa_0}w$ interchanges (∞, M) and $(\mathbf{0}, N)$. Therefore, Ψ is self-paired and so produces the G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$.

Set $L_{\kappa} := P_{\kappa} \cup \{\infty\}$ for each $\kappa \in \mathbb{F}_q$, where $P_{\kappa} = \{(\kappa, \eta_2, \eta_3, \ldots) \in V : \eta_2, \eta_3 \in \mathbb{F}_q\}$. Note that $(\mathbf{0}, N)^{G_{\infty,M,\mathbf{0}}}$ is the set of neighbours of (∞, M) in $\Gamma(\mathcal{D}, \Omega, \Psi)$ contained in $\Omega(\mathbf{0})$. Since $\zeta w = w\zeta$ and $G_{\infty,M,\mathbf{0}} = \langle n_{\kappa}, \zeta \mid \kappa \in \mathbb{F}_q^{\kappa} \rangle_M = \langle \zeta \rangle$, we have $N^{G_{\infty,M,\mathbf{0}}} = M^{n_{\kappa_0}w\langle\zeta\rangle} = M^{n_{\kappa_0}\langle\zeta\rangle w}$ and $M^{n_{\kappa_0}\varphi} = M^{\varphi\varphi^{-1}n_{\kappa_0}\varphi} = M^{n_{\kappa_0}\varphi} = L_{\kappa_0^{\varphi}}$ for any $\varphi \in \langle\zeta\rangle$. It follows that $N^{G_{\infty,M,\mathbf{0}}} = (L_{\kappa_0^{\zeta\zeta\rangle}})^w$, and in particular $|(\mathbf{0}, N)^{G_{\infty,M,\mathbf{0}}}| = |\kappa_0^{\zeta\zeta\rangle}|$.

By Lemma 3.4 we have $|\kappa_0^{\langle\zeta\rangle}| = \text{lcm}(f,i)/f = i/\text{gcd}(f,i)$. Therefore, (∞,M) is adjacent to i/gcd(f,i) vertices in $\Omega(\mathbf{0})$, namely, $(\mathbf{0},(L_{\kappa_0^{\ell^\ell}})^w)$, $\ell=1,2,\ldots,i/\text{gcd}(f,i)$. By the discussion in Section 2.4, $\Gamma(\mathcal{D},\Omega,\Psi)$ has valency $(q^3-q^2)i/\text{gcd}(f,i)$.

Recall the following known result (see [20, p.60, Theorem C] or [12, p.3758, Lemma 2.2]): For any subgroup H of R(q), either $|H|=(s^3+1)s^3(s-1)$, where $s^j=q$ for some positive integer j, or |H| divides $q^3(q-1)$, 12(q+1), q^3-q , $6(q+\sqrt{3q}+1)$, $6(q-\sqrt{3q}+1)$, 504 or 168. By Lemma 2.11, in order to prove $\Gamma(\mathcal{D},\Omega,\Psi)$ is connected, it suffices to prove $R(q)=H:=\langle t_{0,\xi,\eta},n_{\kappa_0}w:\xi,\eta\in\mathbb{F}_q\rangle$ as $\langle t_{0,\xi,\eta}:\xi,\eta\in\mathbb{F}_q\rangle\leqslant R(q)_{\infty,M}$. For any $(\eta_1,\eta_2,\eta_3,\ldots)\in V\setminus\{\infty,0\}$, if $\eta_1=0$ then $\mathbf{0}^{t_{0,\eta_2,\eta_3}}=(\eta_1,\eta_2,\eta_3,\ldots)$, and if $\eta_1\neq 0$, then similar to the proof of Lemma 3.7, there exist some $\delta,\xi,\eta\in\mathbb{F}_q$ such that $\mathbf{0}^{t_{0,0,\delta}n_{\kappa_0}wt_{0,\xi,\eta}}=(\eta_1,\eta_2,\eta_3,\ldots)$. Hence H is transitive on V, and thus $|H|=|V||H_\infty|$ is divisible by $(q^3+1)q^2$. When $q\geqslant 27$, we have $|H|=(s^3+1)s^3(s-1)$, where $s^j=q$ for some odd positive integer j. It follows that j=1 and H=R(q). When q=3, we use the permutation representation of R(3) as a primitive group of degree 28 in the database of primitive groups in MAGMA [3]. Now R(3) acts on $\Delta:=\{1,2,\ldots,28\}$, and the two actions of R(3) on V and Δ are permutation isomorphic. Let Q be the normal subgroup

of R(3)₁ (the stabiliser of $1 \in \Delta$ in R(3)) which is regular on $\Delta \setminus \{1\}$. Q has two subgroups of order 9 which are normal in R(3)₁. One of them, say X, is elementary abelian, while the other is cyclic. So H is (permutation) isomorphic to $\widetilde{H} := \langle X, \tau \rangle$ for some involution $\tau \in R(3)$ as $n_{\kappa_0}w$ is an involution. Computation in MAGMA shows that $|\widetilde{H}| = 18$ or 1512 for any involution τ in R(3). Since $|H| \geq 28 \cdot 9$, it follows that H = R(3).

4 Affine case

In this section we deal with the case where G is a finite 2-transitive group with an abelian socle acting on a point set V, which we always assume to be some vector space over a finite field. Let $u := |V| = p^d$ be the degree of G, where p is a prime and $d \ge 1$. Then u and the stabiliser G_0 in G of the zero vector $\mathbf{0}$ are as follows ([19], [5, p.194], [4], [18, p.386]):

- (i) $G_0 \leqslant \Gamma L(1,q), q = p^d;$
- (ii) $G_0 \supseteq SL(n,q), n \geqslant 2, q^n = p^d;$
- (iii) $G_0 \triangleright \operatorname{Sp}(n,q), n \geqslant 4, n \text{ is even, } q^n = p^d;$
- (iv) $G_0 \supseteq G_2(q), q^6 = p^d, q > 2, q \text{ is even};$
- (v) $G_0 = G_2(2)' \cong PSU(3,3), u = 2^6;$
- (vi) $G_0 \cong A_6$ or A_7 , $u = 2^4$;
- (vii) $G_0 \cong SL(2, 13), u = 3^6$;
- (viii) $G_0 \supseteq SL(2,5)$ or $G_0 \supseteq SL(2,3)$, d=2, p=5,7,11,19,23,29 or 59;
- (ix) d=4, p=3, $G_0 \supseteq SL(2,5)$ or $G_0 \supseteq E$, where E is an extraspecial group of order 32.

$4.1 \quad G_0 \leqslant \Gamma \mathrm{L}(1,q), \ q=p^d$

Now G acts on $V = \mathbb{F}_q$, and a typical element in G is of the form

$$\tau(a, b, \varphi) : \mathbb{F}_q \to \mathbb{F}_q, z \mapsto az^{\varphi} + b,$$

where $a \in \mathbb{F}_q^{\times}$, $b \in \mathbb{F}_q$ and $\varphi \in \operatorname{Aut}(\mathbb{F}_q) = \langle \zeta \rangle$. Here $\zeta : \mathbb{F}_q \to \mathbb{F}_q$, $z \mapsto z^p$ is the Frobenius map. For convenience, we also use t(a,j) to denote $\tau(a,0,\zeta^j)$, where j is an integer. For $\delta = \zeta^n$ and an integer $i \geqslant 0$, where $n = \min\{n_1 > 0 : \delta = \zeta^{n_1}\}$, we use $[\delta,i]$ to denote $(p^{ni}-1)/(p^n-1)$, and $\delta-1$ to denote p^n-1 . Thus, for i > 0 and $c \in \mathbb{F}_q^{\times}$, $c^{[\delta,i]}$ is the product of $c^{\delta^{i-1}}$, $c^{\delta^{i-2}}$, ..., c^{δ} , c in \mathbb{F}_q^{\times} .

Lemma 4.1. Suppose that H is a subgroup of \mathbb{F}_q^{\times} , $b \in \mathbb{F}_q^{\times} \setminus H$, and δ is a field automorphism of \mathbb{F}_q . In the sequence: H, $Hb^{[\delta,1]}$, $Hb^{[\delta,2]}$, ..., $Hb^{[\delta,n]}$, ..., if j is the smallest positive integer such that $Hb^{[\delta,j]}$ equals some previous term, then $Hb^{[\delta,j]} = H$.

Proof. If $Hb^{[\delta,j]} \neq H$, then $Hb^{[\delta,j]} = Hb^{[\delta,i]}$ for some i with $1 \leqslant i < j$. Thus $H = H(b^{[\delta,j-i]})^{\delta^i} = (Hb^{[\delta,j-i]})^{\delta^i}$ and $H = H^{\delta^{-i}} = Hb^{[\delta,j-i]}$, contradicting the definition of j. Lemma 4.2. Suppose that H is a subgroup of \mathbb{F}_q^{\times} and $x \in \mathbb{F}_q^{\times}$. Then $x \in H$ if and only if $x^{|H|} = 1$.

Proof. This follows from the fact that the polynomial $\alpha^{|H|} - 1$ with indeterminate α has at most (actually exactly) |H| solutions in \mathbb{F}_q^{\times} .

Lemma 4.3. Let $G \leq A\Gamma L(1,q)$ act 2-transitively on \mathbb{F}_q , where $q = p^d$ and p is a prime. Suppose that P is an imprimitive block of G_0 on \mathbb{F}_q^{\times} containing 1 such that $(q-1)/|P| \geq 3$ and $G_{0,1}$ is transitive on $P^{G_0} \setminus \{P\}$. Then P is a subgroup of \mathbb{F}_q^{\times} and $|\mathbb{F}_q^{\times}/P| = (q-1)/|P|$ is a prime.

Proof. Set $Y := \{\ell > 0 : t(a,\ell) \in G_0 \text{ for some } a \in \mathbb{F}_q^{\times} \}$. Let s be the smallest integer in Y and $\varphi := \zeta^s$. For $t(a_i,\ell_i) \in G_0$, i = 1, 2, we have $t(a_1,\ell_1)t(a_2,\ell_2) = t(a_2a_1^{\zeta^{\ell_2}},\ell_1+\ell_2) \in G_0$ and $t(a_i,\ell_i)^{-1} = t((1/a_i)^{\zeta^{-\ell_i}},-\ell_i) \in G_0$. Hence $s \mid d$ and $Y = \{js: j = 1,2,\ldots\}$. If s = d, then $G_0 \leq \operatorname{GL}(1,q)$, $G_{0,1} = \{1\}$ and $G_{0,1}$ would not be transitive on $P^{G_0} \setminus \{P\}$ as $|P^{G_0} \setminus \{P\}| = (q-1)/|P| - 1 \geqslant 2$. Thus s is a proper divisor of d. For each integer i, set

$$A_i := \{t(a, si) : t(a, si) \in G_0\}, \text{ and } H_i := \{a : t(a, si) \in G_0\}.$$

Let $H := H_0$. Then A_0 is a normal cyclic subgroup of G_0 , H is a cyclic subgroup of \mathbb{F}_q^{\times} , and $A_i = A_j$ if and only if $d \mid (i-j)s$. Let t(b,s) be an arbitrary element of A_1 . Since $A_i t(b,s)^j \subseteq A_{i+j}$ for any two integers i and j, $|A_i|$ is a constant and thus $A_i t(b,s)^j = A_{i+j}$. Hence, for $i = 1, 2, \ldots, d/s - 1$,

$$A_i = A_0 t(b, s)^i, \ H_i = H b^{[\varphi, i]}$$

and $A_{d/s} = A_0 t(b,s)^{d/s} = A_0$ and $H_{d/s} = H b^{[\varphi,d/s]} = H$. Since G_0 is the (disjoint) union $G_0 = A_0 \cup A_1 \cup \cdots \cup A_{d/s-1}$ and G_0 is transitive on \mathbb{F}_q^{\times} , we have $\mathbb{F}_q^{\times} = H \cup H_1 \cup H_2 \cup \cdots \cup H_{d/s-1}$.

If $b \in H$, then $H = \mathbb{F}_q^{\times}$, which means $\mathrm{GL}(1,q) \leqslant G_0$. Hence, for any $a \in P$, since $t(a,0) \in G_0$ and $1^{t(a,0)} = a \in P$, we have $Pa = P^{t(a,0)} = P$. Therefore P is closed under multiplication and thus P is a subgroup of \mathbb{F}_q^{\times} . In the rest of the proof we assume $b \notin H$.

Let $r := \min\{n > 0 : t(1, ns) \in G_{0,1}\}$. Then $r \leqslant d/s$, $G_{0,1} = \langle t(1, rs) \rangle$ and $|G_{0,1}| = d/(rs)$. Let $b \in H_1$. Since $1 \in H_r = Hb^{[\varphi,r]}$, we have $Hb^{[\varphi,r]} = H$. In the case when r > 1, if $H_j = H$ for some positive integer j < r, then $t(1, js) \in A_j \subseteq G_0$, which contradicts the definition of r. Hence by Lemma 4.1, in the sequence: H, $Hb^{[\varphi,1]}$, $Hb^{[\varphi,2]}$, ..., $Hb^{[\varphi,r-1]}$, $Hb^{[\varphi,r]}$, ..., the first r terms are pairwise distinct, and the subsequent terms repeat the previous ones. Since G_0 is transitive on \mathbb{F}_q^{\times} , we have

$$\mathbb{F}_q^{\times} = H \cup Hb^{[\varphi,1]} \cup \dots \cup Hb^{[\varphi,r-1]}, \quad |\mathbb{F}_q^{\times} : H| = r, \quad r \mid [\varphi,r]. \tag{13}$$

Now $G_{0,1} \leqslant G_{0,P} \leqslant G_0 \leqslant \Gamma L(1,q)$. If $G_{0,P} \leqslant GL(1,q)$, then $G_{0,1} = \{1\}$ and is not transitive on $P^{G_0} \setminus \{P\}$. Therefore $G_{0,P} \nleq GL(1,q)$. Set $e := \min\{j > 0 : t(c,js) \in G_{0,P} \text{ for some } c \in \mathbb{F}_q^{\times}\}$, and $\psi := \varphi^e = \zeta^{se}$. Then $G_{0,P} \subseteq \bigcup_{i \geqslant 0} A_{ie}$. For each integer i, set

$$C_i := \{t(a, ies) : t(a, ies) \in G_{0,P}\}, \text{ and } K_i := \{a : t(a, ies) \in G_{0,P}\}.$$

Then $K := K_0 \leq H$. Let t(w, es) be an element of $G_{0,P}$. For j = 1, 2, ..., r/e - 1, we have

$$A_{je} = A_0 t(w, es)^j$$
, $H_{je} = Hw^{[\psi,j]}$, $C_j = C_0 t(w, es)^j$, and $K_j = Kw^{[\psi,j]}$. (14)

Let i_0 be the smallest positive integer such that $Kw^{[\psi,i_0]}=K$. Then $t(1,i_0es)\in G_{0,1}$. Since $G_{0,1}\leqslant G_{0,P}$, by the definition of r we have $r=ei_0$. By Lemma 4.1, in the sequence: $K,\,Kw^{[\psi,1]},\,Kw^{[\psi,2]},\,\ldots,\,Kw^{[\psi,r/e-1]},\,Kw^{[\psi,r/e]},\,\ldots$, the first r/e terms must be pairwise distinct, and the subsequent terms repeat the previous ones. Since $G_{0,P}$ is transitive on P, we have

$$P = K \cup Kw^{[\psi,1]} \cup Kw^{[\psi,2]} \cup \dots \cup Kw^{[\psi,r/e-1]}, \text{ and } Kw^{[\psi,r/e]} = K.$$
 (15)

Suppose that e > 1. Let $t(b,s) \in A_1$. Since $P \subseteq H \cup H_e \cup H_{2e} \cup \cdots \cup H_{r-e}$, we have $P^{t(b,s)} \subseteq H_1 \cup H_{e+1} \cup \cdots \cup H_{r-e+1}$ and thus $P^{t(b,s)} \in P^{G_0} \setminus \{P\}$. Since $A_jt(1,rs) = A_{j+r}$ and $H_j^{t(1,rs)} = H_{j+r} = H_j$ $(j = 1, 2, \ldots)$, t(1,rs) stabilises each term in the sequence: H, $Hb, Hb^{[\varphi,2]}, Hb^{[\varphi,3]}, \ldots$

If K = H, then by (14) and (15) we have $e = (q-1)/|P| \ge 3$ and $P^{t(b,s)} = H_1 \cup H_{e+1} \cup \cdots \cup H_{r-e+1}$. Hence t(1,rs) stabilises $P^{t(b,s)}$ and $G_{0,1} = \langle t(1,rs) \rangle$ is not transitive on $P^{G_0} \setminus \{P\}$, a contradiction.

If $K \neq H$, then take $a \in H \setminus K$ and $t(a,0) \in G_0$. We have $Pa = P^{t(a,0)} \in P^{G_0} \setminus \{P\}$ and $Pa \subseteq H \cup H_e \cup H_{2e} \cup \cdots \cup H_{r-e}$. Hence Pa can not be mapped to $P^{t(b,s)}$ by elements of $G_{0,1}$, a contradiction.

Therefore, e=1, $\psi=\varphi$, and $|H/K|=(q-1)/|P|\geqslant 3$. Moreover, set $\pi:=(q-1)/|P|$ and let $\{h_1=1,h_2,\ldots,h_\pi\}$ be a transversal of K in H. Then $P^{G_0}\setminus\{P\}=\{Ph_2,Ph_3,\ldots,Ph_\pi\}$, and thus $G_{0,1}$ is transitive on $P^{G_0}\setminus\{P\}$ if and only if the induced action of $G_{0,1}$ on the quotient group H/K is transitive on the set of non-identity elements of H/K. $G_{0,1}$ induces an automorphism group $\widehat{G}_{0,1}:=\{\widehat{\tau}(1,0,\delta):\tau(1,0,\delta)\in G_{0,1}\}$ on H/K, where $\widehat{\tau}(1,0,\delta):H/K\to H/K$, $Kb\mapsto Kb^\delta$. If $\widehat{\tau}(1,0,\delta)=\mathrm{id}_{H/K}$, that is, $Kb^\delta=Kb$ for any $b\in H$, then $b^{\delta-1}\in K$ for any $b\in H$. By Lemma 4.2, this is equivalent to saying that $b^{(\delta-1)|K|}=1$ for any $b\in H$. In particular, for a generator y of H, $y^{(\delta-1)|K|}=1$. Hence |H| divides $(\delta-1)|K|$, or equivalently $\pi\mid (\delta-1)$, and

$$\widehat{\tau}(1,0,\delta) = \mathrm{id}_{H/K} \Leftrightarrow \pi \mid (\delta - 1). \tag{16}$$

Since the automorphism group $\widehat{G}_{0,1}$ is transitive on the set of non-identity elements of H/K, H/K must be elementary abelian (see [28, Theorem 11.1]). In addition, since H/K is cyclic, $\pi = |H/K|$ has to be a prime.

Now $P = K \cup Kw \cup Kw^{[\varphi,2]} \cup \cdots \cup Kw^{[\varphi,r-1]}$ and |P| = |K|r. Let $w = \rho^j$, where ρ is a generator of \mathbb{F}_q^{\times} and $j \geqslant 1$.

If $w^{|K|r} \neq 1$, then $|\rho^{|K|r}| = |H|r/(|K|r) = \pi$ is a prime, and $|w^{|K|r}| = |(\rho^{|K|r})^j| = \pi/\gcd(j,\pi) = \pi$. Since $Kw^{[\varphi,r]} = K$ by (15), we have $w^{[\varphi,r]|K|} = 1$. Also, $r \mid [\varphi,r]$ by (13), and thus $1 = (w^{|K|r})^{[\varphi,r]/r}$. Hence $\pi = |w^{|K|r}|$ is a divisor of $[\varphi,r]/r$, and $\pi \mid (\varphi^r - 1)$. By (16) we have $\widehat{\tau}(1,0,\varphi^r) = \mathrm{id}_{H/K}$, and $\widehat{G}_{0,1} = \{1\}$ as $G_{0,1} = \langle \tau(1,0,\varphi^r) \rangle$. Thus $G_{0,1}$ is not transitive on $P^{G_0} \setminus \{P\}$.

Therefore $w^{|K|r} = 1$, $w^r \in K$, which means $(Kw)^r = K$. Thus $P/K = \langle Kw \rangle$ is a subgroup of order r of the quotient group \mathbb{F}_q^{\times}/K , and P is a subgroup of \mathbb{F}_q^{\times} . This completes the proof of Lemma 4.3.

The following notion will be used in our construction of all G-flag graphs (see Lemmas 4.5 and 4.7).

Definition 4.4. A quintuple of positive integers (p, d, π, r, s) is called *admissible* if the following conditions are satisfied:

- (a) p is a prime, d is a positive integer, and π is an odd prime;
- (b) $p \pmod{\pi}$ is a generator of the multiplication group $\mathbb{F}_{\pi}^{\times}$;
- (c) $gcd(rs, \pi 1) = 1$ and $rs(\pi 1) | d$; and

(d)
$$r = 1$$
 or $r \nmid (p^{si} - 1)/(p^s - 1)$ for $i = 1, 2, ..., r - 1$, and $r \mid (p^{sr} - 1)/(p^s - 1)$.

With the help of Dirichlet's theorem about primes in an arithmetic progression, it can be proved that there are infinitely many admissible quintuples (p, d, π, r, s) with r > 1.

Lemma 4.5. Let $q = p^d$ with p a prime and $d \ge 1$. Then there exist a group $G \le A\Gamma L(1,q)$ and a subset P of \mathbb{F}_q^{\times} containing 1 such that

- (a) G is 2-transitive on \mathbb{F}_q ,
- (b) P is an imprimitive block of G_0 on \mathbb{F}_q^{\times} and $(q-1)/|P| \geqslant 3$, and
- (c) $G_{0,1}$ is transitive on $P^{G_0} \setminus \{P\}$

if and only if (p, d, (q-1)/|P|, r, s) is an admissible quintuple for some positive integers r and s.

Proof. Let G and P satisfy (a)-(c). Then by Lemma 4.3 $P \leq \mathbb{F}_q^{\times}$ and $\pi := |\mathbb{F}_q^{\times}/P|$ is an odd prime. P^{G_0} is the set of right cosets of P in \mathbb{F}_q^{\times} . Let s, r and φ be defined as in the proof of Lemma 4.3, and let x = Ph and $h \in \mathbb{F}_q^{\times} \setminus P$. Then $G_{0,1} = \langle \tau(1,0,\theta) \rangle$ $(\theta = \zeta^{sr})$ is transitive on $P^{G_0} \setminus \{P\}$ if and only if in the sequence: $x, x^{\theta}, x^{\theta^2}, \ldots, x^{\theta^i}, x^{\theta^{i+1}}, \ldots$, the first $\pi - 1$ terms are pairwise distinct (that is, they are in the same cycle of the permutation induced by $\tau(1,0,\theta)$ on \mathbb{F}_q^{\times}/P). By a similar analysis as in the proof of Lemma 4.3 leading to (16), we have $x^{\theta^i} = x$ if and only if $\pi \mid (\theta^i - 1)$. Hence the following statements are equivalent:

- (T₁) $G_{0,1}$ is transitive on $P^{G_0} \setminus \{P\}$;
- $(T_2) \ x^{\theta^i} \neq x, \ i = 1, 2, \dots, \pi 2 \text{ and } x^{\theta^{\pi 1}} = x;$
- $(T_3) \ \pi \nmid (p^{sri} 1), \ i = 1, 2, \dots, \pi 2 \text{ and } \pi \mid (p^{sr(\pi 1)} 1);$
- $(T_4) \gcd(sr, \pi 1) = 1$, and $p \pmod{\pi}$ is a generator of $\mathbb{F}_{\pi}^{\times}$.

Thus $(\pi - 1) \mid d$ and $rs(\pi - 1) \mid d$ by (T_4) . By the proof of Lemma 4.3, we know G_0 is generated by $\{t(a,0): a \in H\}$ and t(b,s), where H is the subgroup of \mathbb{F}_q^{\times} of index r and b is some element of \mathbb{F}_q^{\times} , and (13) holds.

- (i) If r=1, then $H=\mathbb{F}_q^{\times}$ and G_0 is the group generated by $\mathrm{GL}(1,q)$ and $\tau(1,0,\varphi)$.
- (ii) If r>1, then by (13) and Lemma 4.1, we have $Hb\neq H$, $Hb^{[\varphi,2]}\neq H$, ..., $Hb^{[\varphi,r-1]}\neq H$. This is equivalent to saying that |H|=(q-1)/r and $b^{|H|}\neq 1$, $b^{[\varphi,2]|H|}\neq 1$, ..., $b^{[\varphi,r-1]|H|}\neq 1$ by Lemma 4.2. Denote the set of solutions in \mathbb{F}_q^{\times} of each of the equations

$$\alpha^{|H|} = 1, \alpha^{[\varphi,2]|H|} = 1, \dots, \alpha^{[\varphi,r-1]|H|} = 1$$

by $E_1, E_2, \ldots, E_{r-1}$, respectively. Then E_i $(i = 1, 2, \ldots, r-1)$ is a cyclic subgroup of \mathbb{F}_q^{\times} with $|E_i| = \gcd(p^d - 1, [\varphi, i]|H|) = |H| \cdot \gcd(r, [\varphi, i])$, and E_i/H is a subgroup of \mathbb{F}_q^{\times}/H of order $\gcd(r, [\varphi, i])$. Hence the existence of b satisfying (13) implies $\bigcup_{i=1}^{r-1} E_i \neq \mathbb{F}_q^{\times}$, and so $r \nmid (p^{si} - 1)/(p^s - 1)$, $i = 1, 2, \ldots, r-1$, and $r \mid (p^{sr} - 1)/(p^s - 1)$. Thus (p, d, π, r, s) is an admissible quintuple.

Conversely, suppose that (p, d, π, r, s) is an admissible quintuple. Let P be the subgroup of \mathbb{F}_q^{\times} of index π and let $\varphi := \zeta^s$. If r = 1, then choose G to be the group generated by $\mathrm{GL}(1,q)$ and $\tau(1,0,\varphi)$. If r > 1, then choose G to be the group generated by $\{t(a,0): a \in H\}$ and t(b,s), where H is the subgroup of \mathbb{F}_q^{\times} of index r and b is a generator of \mathbb{F}_q^{\times} . Then (13) together with (T_1) - (T_4) above implies that G and P satisfy (a)-(c).

Remark 4.6. For an admissible quintuple (p, d, π, r, s) , there are $\phi(r)$ different subgroups G of $A\Gamma L(1,q)$ such that $s = \min\{\ell > 0 : t(a,\ell) \in G_0$ for some $a \in \mathbb{F}_q^{\times}\}$ and $r = \min\{n > 0 : t(1,ns) \in G_{0,1}\}$, where $q := p^d$ and $\phi(r) := |\{\ell > 0 : \ell \leqslant r, \gcd(\ell,r) = 1\}|$. In fact, if r = 1, then G_0 is the group generated by GL(1,q) and $\tau(1,0,\zeta^s)$. Assume r > 1. Let $\varphi := \zeta^s$, and let H and E_i $(1 \leqslant i \leqslant r - 1)$ be as in the proof of Lemma 4.5. Then $\{[\varphi,1],\ldots,[\varphi,r]\}$ is a complete residue system modulo r by (13). It follows that $\bigcup_{i=1}^{r-1}(E_i/H)$ is the set of all non-generators of \mathbb{F}_q^{\times}/H . Let ξ be a fixed generator of \mathbb{F}_q^{\times} . Then $\mathbb{F}_q^{\times}\setminus \bigcup_{i=1}^{r-1}E_i=\bigcup_{i=1}^{\phi(r)}H\xi^{\ell_i}$, where $\{\ell_1=1,\ell_2,\ldots,\ell_{\phi(r)}\}$ is a reduced residue system modulo r, and hence G_0 is the group generated by $\{t(a,0): a \in H\}$ and $t(\xi^{\ell_i},s)$ for some $i \in \{1,2,\ldots,\phi(r)\}$.

Lemma 4.7. Assume that G and P satisfy (a)-(c) in Lemma 4.5 with |P| > 1. Let H, K, s, r be defined as in the proof of Lemma 4.3 and $\pi := (q-1)/|P|$. Set $\mathcal{D} := (\mathbb{F}_q, L^G)$ and $\Omega := (0, L)^G$, where $L := P \cup \{0\}$. Then \mathcal{D} is a 2-(q, $|P| + 1, \lambda$) design.

- (a) If $G \neq A\Gamma L(1, 16)$ or $|P| \neq 3$, then \mathcal{D} is a 2-(q, |P| + 1, |P| + 1) design admitting G as an automorphism group, Ω is a feasible orbit of G on the flag set of \mathcal{D} , and there are exactly two distinct self-paired G-orbits on $F(\mathcal{D}, \Omega)$.
- (b) Assume $\lambda > 1$. Denote the two distinct self-paired G-orbits on $F(\mathcal{D}, \Omega)$ by Ψ_1 and Ψ_2 , and denote $\Gamma_i = \Gamma(\mathcal{D}, \Omega, \Psi_i)$ for i = 1, 2. Then $\Gamma_i[\Omega(0), \Omega(1)] \cong (\pi 1) \cdot K_2$,

i=1,2. Moreover, Γ_1 has π connected components each with order $|\Omega|/\pi=q$ and valency $(\pi-1)(q-1)/\pi$, and Γ_2 is connected with order $|\Omega|=\pi q$ and valency $(\pi-1)(q-1)/\pi$.

Proof. (a) By Lemma 4.3 P is a nontrivial subgroup of \mathbb{F}_q^{\times} . If $\lambda=1$, then L is a subfield of \mathbb{F}_q by [19, Section 4]. Conversely, if L is a subfield of \mathbb{F}_q , then each element in G interchanging 0 and 1 must stabilise L, and thus $\lambda=1$. Moreover, let $|L|=p^t$. Then $(p^d-1)/(p^t-1)-1=|P^{G_0}\setminus\{P\}|\leqslant |G_{0,1}|\leqslant d$ as $G_{0,1}$ is transitive on $P^{G_0}\setminus\{P\}$. Since |P|>1, this can happen only when (p,d,t)=(2,4,2), or equivalently (p,d,|P|)=(2,4,3). Therefore $\lambda=1$ implies $G=\Lambda\Gamma L(1,16)$ (by Remark 4.6) and |P|=3.

Let $P^{G_0} = \{P_1 = P, P_2, \dots, P_{\pi}\}$ and $L_i := P_i \cup \{0\}, i = 1, 2, \dots, \pi$. Since $\gcd(r, \pi - 1) = 1$, r is odd and |H| = (q-1)/r is even when p > 2. Thus $-1 \in H$ and $\gamma := \tau(-1, 0, \mathrm{id}) \in G_0$. Similarly, we have $-1 \in P$ since $|P| = (q-1)/\pi$ is even when p > 2.

Let $\Psi = ((0, M), (1, N))^G$ be a G-orbit on $F(\mathcal{D}, \Omega)$, where $M = L_2 = Px \cup \{0\}$ and $N = L_j + 1$, for some $x \in \mathbb{F}_q^{\times} \setminus P$ and $j \geq 2$. Then Ψ is self-paired if and only if there is some $g \in G$ interchanging (0, M) and (1, N). Hence $g = h\widetilde{1}$, where $\widetilde{1}$ is the translation induced by 1, that is, $\widetilde{1} : \mathbb{F}_q \to \mathbb{F}_q$, $z \mapsto z + 1$, and $h \in G_0$ is such that $1^h = -1$ and h interchanges P_2 and P_j . Thus $h \in \gamma G_{0,1} = G_{0,1}\gamma$ and the action of h on $P^{G_0} \setminus \{P\}$ has a cycle $(P_2 P_j)$, possibly with $P_2 = P_j$. Since γ stabilises each element in $P^{G_0} \setminus \{P\}$, we just need $h\gamma$ $(\in G_{0,1})$ to have a cycle $(P_2 P_j)$ on $P^{G_0} \setminus \{P\}$. Since $G_{0,1} = \langle \tau(1,0,\theta) \rangle$ $(\theta = \zeta^{sr})$ induces a regular permutation group on $P^{G_0} \setminus \{P\}$, $\tau(1,0,\theta)^{\frac{n-1}{2}}$ induces the unique permutation on $P^{G_0} \setminus \{P\}$ which has a 2-cycle, and its cycle decomposition on $P^{G_0} \setminus \{P\}$ is $(P_2 P_2^{\varepsilon}) \cdots$, where $\varepsilon := \theta^{\frac{n-1}{2}}$. Thus Ψ is self-paired if and only if $P_j = P_2$ or P_2^{ε} .

(b) First assume $P_j = P_2$, and let $\Psi_1 := ((0, L_2), (1, L_2 + 1))^G$. One can verify that the set $(1, N)^{G_{0,1,P_x}}$ of vertices in $\Omega(1)$ adjacent to (0, M) in Γ_1 is $\{(1, N)\}$, and the set of vertices in $\Omega(1)$ adjacent to $(0, L_i)$ is $\{(1, L_i + 1)\}$, $i = 2, 3, ..., \pi$, which implies $\Gamma_1[\Omega(0), \Omega(1)] \cong (\pi - 1) \cdot K_2$.

Set $J := \langle G_{0,Px}, \kappa \rangle$, where $\kappa := \tau(-1,1,\mathrm{id})$ interchanges (0,M) and (1,N). If $(Px)^{\kappa} = Px$, then $(1,\widetilde{N}) = (0,M)^{\kappa} \in \Omega(1)$, where $\widetilde{N} = Px \cup \{1\}$. Suppose $(1,\widetilde{L})$ is the flag in $\Omega(1)$ such that $0 \in \widetilde{L}$, and let $\widetilde{P} := \widetilde{L} \setminus \{1\}$. Then $\widetilde{P}^{G_1} \setminus \{\widetilde{P}\} = (Px)^{G_{1,0}} = P^{G_0} \setminus \{P\}$ as Ω is feasible. It follows that $\widetilde{L} = L_1$ and G_{L_1} is transitive on L_1 , which is a contradiction by Lemma 2.8. Therefore κ does not stabilise Px, and J is transitive on \mathbb{F}_q as $G_{0,Px}$ is transitive on $\mathbb{F}_q^{\kappa} \setminus Px$ by Lemma 2.9. Since $\tau(-1,c,\mathrm{id})\tau(a,0,\delta) = \tau(a,0,\delta)\tau(-1,ac^{\delta},\mathrm{id})$ for $c \in \mathbb{F}_q$ and $\tau(a,0,\delta) \in G_{0,Px}$, one can see that $J_0 = G_{0,Px}$. By Lemmas 2.11 and 2.10, the number of connected components of Γ_1 is equal to $|G:J| = |G_0:J_0| = \pi$.

Next assume $P_j = P_2^{\varepsilon}$, and let $\Psi_2 := ((0, L_2), (1, L_2^{\varepsilon} + 1))^G$. One can verify that $(1, N)^{G_{0,1,Px}} = \{(1, N)\}$, and the set of vertices in $\Omega(1)$ adjacent to $(0, L_i)$ is $\{(1, L_i^{\varepsilon} + 1)\}$, $i = 2, 3, \ldots, \pi$, which implies $\Gamma_2[\Omega(0), \Omega(1)] \cong (\pi - 1) \cdot K_2$.

Set $\widetilde{J} := \langle G_{0,Px}, \eta \rangle$, where $\eta := \tau(-1,1,\varepsilon)$ interchanges (0,M) and (1,N). Similar to J, \widetilde{J} is transitive on \mathbb{F}_q . If $a \in \mathbb{F}_q^{\times} \setminus Px$, then by the transitivity of $G_{0,Px}$ on $\mathbb{F}_q^{\times} \setminus Px$, there is some $\tau(a,0,\delta) \in G_{0,Px}$, and thus $\tau(a,0,\delta)^{-1}\eta^{-1}\tau(a,0,\delta)\eta = \tau(a^{\varepsilon-1},-a^{\varepsilon}+1,\mathrm{id}) \in \widetilde{J}$. In particular, we have $\tau(a^{\varepsilon-1},-a^{\varepsilon}+1,\mathrm{id}) = \tau(1,-a+1,\mathrm{id}) \in \widetilde{J}$ for any $a \in \mathbb{F}_{\varepsilon}^{\times} \setminus Px$, where \mathbb{F}_{ε} is the subfield of \mathbb{F}_q such that $|\mathbb{F}_{\varepsilon}| = p^{sr(\pi-1)/2}$.

Case 1: p > 2. Since $|P^{G_0} \setminus \{P\}| \ge 2$, we can choose $Px \in P^{G_0} \setminus \{P\}$ such that $2 \notin Px$. Then $\tau(2^{\varepsilon-1}, -2^{\varepsilon} + 1, \mathrm{id}) = \tau(1, -1, \mathrm{id}) \in \widetilde{J}$. It follows that $\tau(1, 0, \varepsilon) \in \widetilde{J}_0 \setminus G_{0, Px}$. By Lemma 2.10, $G_{0, Px}$ is maximal in G_0 and hence $\widetilde{J}_0 = G_0$. Therefore $\widetilde{J} = G$ and Γ_2 is connected.

Case 2: p=2. First assume $\varepsilon-1\nmid \frac{q-1}{\pi}$. Then $sr(\pi-1)/2>1$ as $\varepsilon=\zeta^{sr(\pi-1)/2}$. Since $\tau(a^{\varepsilon-1},-a^{\varepsilon}+1,\mathrm{id})=\tau(1,-a+1,\mathrm{id})\in\widetilde{J}$ for any $a\in\mathbb{F}_{\varepsilon}^{\times}\setminus Px$ and $|\mathbb{F}_{\varepsilon}^{\times}\cap Py|=(\varepsilon-1)/\pi$ for any $y\in\mathbb{F}_{q}^{\times}$, we have $|\widetilde{T}|\geqslant(\varepsilon-1)(\pi-1)/\pi$, where $\widetilde{T}:=\langle\tau(1,-a+1,\mathrm{id})\,|\,a\in\mathbb{F}_{\varepsilon}^{\times}\setminus Px\rangle$. One can see that $|\widetilde{T}|$ is a divisor of $|\mathbb{F}_{\varepsilon}|=2^{sr(\pi-1)/2}$. If $|\widetilde{T}|\neq|\mathbb{F}_{\varepsilon}|$, then $2\leqslant|\mathbb{F}_{\varepsilon}|/|\widetilde{T}|\leqslant|\mathbb{F}_{\varepsilon}|/(|\mathbb{F}_{\varepsilon}^{\times}|/(\pi-1)/\pi)$, or equivalently $1/2\geqslant(\pi-1)|\mathbb{F}_{\varepsilon}^{\times}|/(\pi|\mathbb{F}_{\varepsilon}|)$. This happens only when $\pi=3$ and sr=2, which is impossible as $\gcd(sr,\pi-1)=1$ by (T_4) in the proof of Lemma 4.5. Therefore, $|\widetilde{T}|=|\mathbb{F}_{\varepsilon}|$ and $\tau(1,1,\mathrm{id})\in\widetilde{T}\leqslant\widetilde{J}$, which implies $\tau(1,0,\varepsilon)\in\widetilde{J}_0\setminus G_{0,Px}$ and $\widetilde{J}_0=G_0$ by the maximality of $G_{0,Px}$ in G_0 . Hence $\widetilde{J}=G$ and Γ_2 is connected.

Next assume $\varepsilon - 1 \mid \frac{q-1}{\pi} = |P|$. Then $\mathbb{F}_{\varepsilon}^{\times} \leqslant P$. If $sr(\pi - 1)/2 > 1$, then there are $a, b \in \mathbb{F}_{\varepsilon}^{\times}$ such that a + b = 1, and thus $\tau(1, 1, \mathrm{id}) = \tau(1, a + 1, \mathrm{id})\tau(1, b + 1, \mathrm{id}) \in \widetilde{J}$. Therefore, similar to the above discussion we have $\widetilde{J} = G$ and Γ_2 is connected. If $sr(\pi - 1)/2 = 1$, then s = r = 1, $\pi = 3$ and $\varepsilon = \zeta$. It follows that $G = \mathrm{A}\Gamma\mathrm{L}(1, 2^d)$ (by Remark 4.6) with d even. Now $\tau(a^{\varepsilon - 1}, -a^{\varepsilon} + 1, \mathrm{id}) = \tau(a, a^2 + 1, \mathrm{id})$ for $a \in \mathbb{F}_q^{\times} \setminus Px$. One can verify that $G_{0,Px}$ normalizes $\widehat{T} := \{\tau(a, b, \mathrm{id}) : \tau(a, b, \mathrm{id}) \in \widetilde{J}\} \leqslant \widetilde{J}$, $G_{0,Px} \cap \widehat{T} = \{\tau(a, 0, \mathrm{id}) : a \in P\}$, and η normalizes $\widehat{T}G_{0,Px}$. Moreover, since $\eta^2 = \tau(1, 0, \varepsilon^2) \in G_{0,Px}$, $\langle \eta \rangle \cap \widehat{T}G_{0,Px}$ is of index f in $\langle \eta \rangle$, where f = 1 or 2. Hence $|\widetilde{J}| = |(\widehat{T}G_{0,Px})\langle \eta \rangle| = |\widehat{T}G_{0,Px}|f = |\widehat{T}||G_{0,Px}|f/|P|$. We can see that $|\widehat{T}| = (q-1)n$, where n is the order of the group $\{\tau(1,c,\mathrm{id}) : \tau(1,c,\mathrm{id}) \in \widetilde{J}\}$. Hence $n \mid q = 2^d$, and $|G| : |\widetilde{J}| = 2^d |G_0|/(\pi n f |G_{0,Px}|) = 2^d/(n f)$. Since $G_{0,Px} \leqslant \widetilde{J}_0$ and $G_{0,Px}$ is maximal in G_0 by Lemma 2.10, $|G| : |\widetilde{J}|$ is equal to 1 or π . Therefore $|G| : |\widetilde{J}| = 1$, and Γ_2 is connected.

$4.2 \quad G_0 \trianglerighteq \operatorname{Sp}(n,q), \, n \geqslant 4 \, \operatorname{even}, \, u = q^n = p^d$

We denote the underlying symplectic space by (V, φ) , where $V = \mathbb{F}_q^n$ and φ is a symplectic form. Set $H := \operatorname{Sp}(n,q) \leq G_0$. Suppose that P is an imprimitive block of G_0 on $V \setminus \{0\}$ and let $\mathbf{x} \in P$. Define $C_i := \{\mathbf{z} \in V \setminus \langle \mathbf{x} \rangle : \varphi(\mathbf{z}, \mathbf{x}) = i\}$, $i \in \mathbb{F}_q$. By Witt's Lemma, each C_i is an orbit of $H_{\mathbf{x}}$ on $V \setminus \langle \mathbf{x} \rangle$. Moreover, $|C_i| = q^{n-1}$ for $i \in \mathbb{F}_q^{\times}$ and $|C_0| = q^{n-1} - q$.

First assume that $C_0 \nsubseteq P$. Suppose that P includes j orbits of $H_{\mathbf{x}}$ of length q^{n-1} ($0 \leqslant j < q$) and P contains ℓ elements in $\langle \mathbf{x} \rangle$ ($1 \leqslant \ell < q$). Then $|P| = jq^{n-1} + \ell$ and $jq^{n-1} + \ell = \gcd(jq^{n-1} + \ell, q^n - 1) = \gcd(q^n - 1, \ell q + j) \leqslant \ell q + j$. This implies j = 0 and $P \subseteq \langle \mathbf{x} \rangle$ as $n \geqslant 4$. If there is a feasible G-orbit on the flag set of the 2- $(u, |P| + 1, \lambda)$ design $\mathcal{D} := (V, L^G)$, where $L := P \cup \{\mathbf{0}\}$, then by Lemma 2.12, we have $\lambda = 1$.

Next assume that $C_0 \subseteq P$. Suppose that P includes j-1 orbits of $H_{\mathbf{x}}$ of length q^{n-1} $(1 \leqslant j < q+1)$ and P contains ℓ elements in $\langle \mathbf{x} \rangle$ $(1 \leqslant \ell < q)$. Then $|P| = jq^{n-1} + \ell - q$ and $jq^{n-1} + \ell - q = \gcd(jq^{n-1} + \ell - q, q^n - 1) = \gcd(q^n - 1, q^2 - \ell q - j)$. If $q^2 - \ell q - j \neq 0$, then $jq^{n-1} + \ell - q \leqslant q^2 - \ell q - j$, which is impossible as $n \geqslant 4$. If $q^2 - \ell q - j = 0$, then j = q, $\ell = q - 1$, and thus $P = V \setminus \{\mathbf{0}\}$, violating the condition $(u - 1)/|P| \geqslant 3$.

Therefore, there is no 2- $(u, m + 1, \lambda)$ design as in Lemma 2.10 with $\lambda > 1$ admitting G as a group of automorphisms.

4.3
$$SL(2,q) = Sp(2,q) \le G_0, u = q^2 = p^d$$

Denote the underlying symplectic space by (V, φ) , where $V = \mathbb{F}_q^2$ and φ is a symplectic form. Let $H := \operatorname{Sp}(2, q) = \operatorname{SL}(2, q) \leq G_0$. Suppose that P is an imprimitive block of G_0 on $V \setminus \{0\}$ and $\mathbf{x} \in P$. Define C_i for $i \in \mathbb{F}_q$ as in Section 4.2. Then $C_0 = \emptyset$ and $C_i = \langle \mathbf{x} \rangle + \mathbf{z}_i$ for each $i \in \mathbb{F}_q^{\times}$, where $\mathbf{z}_i \in C_i$. By Witt's Lemma, each C_i is an orbit of $H_{\mathbf{x}}$ on $V \setminus \langle \mathbf{x} \rangle$. Denote all 1-subspaces of V by $U = \langle \mathbf{x} \rangle$, U_1, \ldots, U_q .

If $P \subseteq \langle \mathbf{x} \rangle$ and there is a feasible G-orbit on the flag set of the 2- $(u, |P| + 1, \lambda)$ design $\mathcal{D} := (V, L^G)$, where $L := P \cup \{\mathbf{0}\}$, then $\lambda = 1$ by Lemma 2.12. So we assume that $P \nsubseteq \langle \mathbf{x} \rangle$ and $P = (U + \mathbf{z}_{t_1}) \cup \cdots \cup (U + \mathbf{z}_{t_j}) \cup E \ (1 \leqslant j < q)$, where E is a subset of $\langle \mathbf{x} \rangle$ of size ℓ $(1 \leqslant \ell < q)$, t_1, \ldots, t_j are pairwise distinct elements of \mathbb{F}_q^{\times} , and $\mathbf{z}_{t_n} \in C_{t_n}$, $n = 1, 2, \ldots, j$.

Since H is transitive on the set of 1-subspaces of V, there is some $\gamma \in H$ such that $U^{\gamma} = U_1$. Hence $P^{\gamma} = (U_1 + \mathbf{z}_{t_1}^{\gamma}) \cup \cdots \cup (U_1 + \mathbf{z}_{t_j}^{\gamma}) \cup E^{\gamma}$. Since U and U_1 are not parallel, $P^{\gamma} \cap P \neq \emptyset$ and thus $P = P^{\gamma} \supseteq U_1 + \mathbf{z}_{t_1}^{\gamma}$. Since $|(U_1 + \mathbf{z}_{t_1}^{\gamma}) \cap (U + \mathbf{z}_{t_n})| = 1$, $n = 1, 2, \ldots, j$, and $|(U_1 + \mathbf{z}_{t_1}^{\gamma}) \cap U| = 1$, we have $j + 1 \geqslant |U_1 + \mathbf{z}_{t_1}^{\gamma}| = q$ and thus j = q - 1. Now $|P| = q^2 - q + \ell$ is a divisor of $q^2 - 1$, that is, $q^2 - q + \ell = \gcd(q^2 - q + \ell, q^2 - 1) = \gcd(q^2 - 1, q - \ell - 1)$. Thus $\ell = q - 1$ and $P = V \setminus \{\mathbf{0}\}$, violating the condition $(u - 1)/|P| \geqslant 3$. Hence there is no 2- $(u, m + 1, \lambda)$ design as in Lemma 2.10 with $\lambda > 1$.

$4.4 \quad G_0 \trianglerighteq \operatorname{SL}(n,q), \, n \geqslant 3, \, u = q^n = p^d$

Suppose that P is an imprimitive block of $G_{\mathbf{0}}$ on $V \setminus \{\mathbf{0}\}$ and $\mathbf{x} \in P$, where $V = \mathbb{F}_q^n$. Since $V \setminus \langle \mathbf{x} \rangle$ is a $G_{\mathbf{0},\mathbf{x}}$ -orbit of length $q^n - q$, if P does not include this orbit, then $P \subseteq \langle \mathbf{x} \rangle$; if in addition there is a feasible G-orbit on the flag set of the 2- $(u, |P| + 1, \lambda)$ design $\mathcal{D} := (V, L^G)$, where $L := P \cup \{\mathbf{0}\}$, then $\lambda = 1$ by Lemma 2.12. If P contains $V \setminus \langle \mathbf{x} \rangle$, then since |P| is a divisor of $|V \setminus \{\mathbf{0}\}| = q^n - 1$, we have $P = V \setminus \{\mathbf{0}\}$, violating the condition $(u - 1)/|P| \geqslant 3$. Therefore, there is no 2- $(u, m + 1, \lambda)$ design as in Lemma 2.10 with $\lambda > 1$.

4.5 $G_0 \trianglerighteq G_2(q), u = q^6 = p^d, q > 2$ even

Suppose that P is an imprimitive block of $G_{\mathbf{0}}$ on $V \setminus \{\mathbf{0}\}$ and $\mathbf{a} \in P$, where $V = \mathbb{F}_q^6$. Then P is also an imprimitive block of $G_2(q)$ on $V \setminus \{\mathbf{0}\}$ and P is the union of some orbits of $G_2(q)_{\mathbf{a}}$ on $V \setminus \{\mathbf{0}\}$. We will determine all possible lengths of the $G_2(q)_{\mathbf{a}}$ -orbits on $V \setminus \{\mathbf{0}\}$, with the help of the knowledge about $G_2(q)$ from [29, Section 4.3.4].

Now take a basis $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_8\}$ of the octonion algebra \mathbb{O} over \mathbb{F}_q with the multiplication given by Table 2, or equivalently by Table 3, where $\mathbf{e} := \mathbf{x}_4 + \mathbf{x}_5$ is the identity element of \mathbb{O} (since the characteristic is 2, we omit the signs).

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	\mathbf{x}_8
\mathbf{x}_1	0	0	0	0	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
\mathbf{x}_2	0	0	\mathbf{x}_1	\mathbf{x}_2	0	0	\mathbf{x}_5	\mathbf{x}_6
\mathbf{x}_3	0	\mathbf{x}_1	0	\mathbf{x}_3	0	\mathbf{x}_5	0	\mathbf{x}_7
\mathbf{x}_4	\mathbf{x}_1	0	0	\mathbf{x}_4	0	\mathbf{x}_6	\mathbf{x}_7	0
\mathbf{x}_5	0	\mathbf{x}_2	\mathbf{x}_3	0	\mathbf{x}_5	0	0	\mathbf{x}_8
\mathbf{x}_6	\mathbf{x}_2	0	\mathbf{x}_4	0	\mathbf{x}_6	0	\mathbf{x}_8	0
\mathbf{x}_7	\mathbf{x}_3	\mathbf{x}_4	0	0	\mathbf{x}_7	\mathbf{x}_8	0	0
\mathbf{x}_8	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	\mathbf{x}_8	0	0	0	0

Table 2	Multiplication	table	$\circ f$	\bigcirc
Table 4.	munipheadon	uante	OI	W

	e	\mathbf{x}_1	\mathbf{x}_8	\mathbf{x}_2	\mathbf{x}_7	\mathbf{x}_3	\mathbf{x}_6	\mathbf{x}_4
e	e	\mathbf{x}_1	\mathbf{x}_8	\mathbf{x}_2	\mathbf{x}_7	\mathbf{x}_3	\mathbf{x}_6	\mathbf{x}_4
\mathbf{x}_1	\mathbf{x}_1	0	\mathbf{x}_4	0	\mathbf{x}_3	0	\mathbf{x}_2	0
\mathbf{x}_8	\mathbf{x}_8	$\mathbf{e} + \mathbf{x}_4$	0	\mathbf{x}_6	0	\mathbf{x}_7	0	\mathbf{x}_8
\mathbf{x}_2	\mathbf{x}_2	0	\mathbf{x}_6	0	$e + x_4$	\mathbf{x}_1	0	\mathbf{x}_2
\mathbf{x}_7	\mathbf{x}_7	\mathbf{x}_3	0	\mathbf{x}_4	0	0	\mathbf{x}_8	0
\mathbf{x}_3	\mathbf{x}_3	0	\mathbf{x}_7	\mathbf{x}_1	0	0	$\mathbf{e} + \mathbf{x}_4$	\mathbf{x}_3
\mathbf{x}_6	\mathbf{x}_6	\mathbf{x}_2	0	0	\mathbf{x}_8	\mathbf{x}_4	0	0
\mathbf{x}_4	\mathbf{x}_4	\mathbf{x}_1	0	0	\mathbf{x}_7	0	\mathbf{x}_6	\mathbf{x}_4

Table 3. Multiplication table of \mathbb{O}

There is a quadratic form N and an associated bilinear form f satisfying

$$N(\mathbf{x}_i) = 0 \text{ and } f(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} 0, & i+j \neq 9, \\ 1, & i+j = 9, \end{cases}$$
 $i, j = 1, 2, \dots, 8.$

 $G_2(q)$ is the automorphism group of this octonion algebra, and since it preserves the multiplication table, a straightforward computation shows that $G_2(q)$ preserves N and f. Moreover, $G_2(q)$ induces a faithful action on $\mathbf{e}^{\perp}/\langle \mathbf{e} \rangle$, where $\mathbf{e}^{\perp} = \langle \mathbf{x}_1, \mathbf{x}_8, \mathbf{x}_2, \mathbf{x}_7, \mathbf{x}_3, \mathbf{x}_6, \mathbf{e} \rangle$. Hence $G_2(q)$ can be embedded into $\operatorname{Sp}(6, q)$.

Let $\langle \mathbf{x} \rangle$ denote the subspace of \mathbb{O} spanned by \mathbf{x} , and let $\langle \overline{\mathbf{x}} \rangle$ denote the subspace of $\mathbf{e}^{\perp}/\langle \mathbf{e} \rangle$ spanned by $\overline{\mathbf{x}}$, where $\overline{\mathbf{x}} = \mathbf{x} + \langle \mathbf{e} \rangle$. The actions of $G_2(q)$ on $\mathbf{e}^{\perp}/\langle \mathbf{e} \rangle$ and V are permutation isomorphic.

We know that $G_2(q)_{\langle \overline{\mathbf{x}}_1 \rangle}$ has four orbits on the set of 1-subspaces of $\mathbf{e}^{\perp}/\langle \mathbf{e} \rangle$ ([7, Lemma 3.1], [19, p.72]), which are represented by $\langle \overline{\mathbf{x}}_1 \rangle$, $\langle \overline{\mathbf{x}}_8 \rangle$, $\langle \overline{\mathbf{x}}_2 \rangle$ and $\langle \overline{\mathbf{x}}_7 \rangle$ and have length 1, q^5 , q(q+1) and $q^3(q+1)$, respectively.

Actually, $\overline{\mathbf{x}}_8$ is not perpendicular to $\overline{\mathbf{x}}_1$, while $\overline{\mathbf{x}}_2$ and $\overline{\mathbf{x}}_7$ are perpendicular to $\overline{\mathbf{x}}_1$. Hence the orbit of $\langle \overline{\mathbf{x}}_8 \rangle$ is different from the orbit of $\langle \overline{\mathbf{x}}_2 \rangle$ and the orbit of $\langle \overline{\mathbf{x}}_7 \rangle$ under $G_2(q)_{\langle \overline{\mathbf{x}}_1 \rangle}$. On the other hand, if there exists some $\varphi \in G_2(q)_{\langle \overline{\mathbf{x}}_1 \rangle}$ such that $\varphi(\langle \overline{\mathbf{x}}_2 \rangle) = \langle \overline{\mathbf{x}}_7 \rangle$, then $\varphi(\mathbf{x}_1) = a\mathbf{x}_1 + \ell\mathbf{e}$ and $\varphi(\mathbf{x}_2) = b\mathbf{x}_7 + s\mathbf{e}$, $a, b \neq 0$, and hence $\mathbf{0} = \varphi(\mathbf{x}_1)\varphi(\mathbf{x}_2) = (a\mathbf{x}_1 + \ell\mathbf{e})(b\mathbf{x}_7 + s\mathbf{e}) = ab\mathbf{x}_3 + \ell b\mathbf{x}_7 + as\mathbf{x}_1 + \ell s\mathbf{e}$, which is a contradiction as \mathbf{x}_1 , \mathbf{x}_3 , \mathbf{x}_7 and \mathbf{e} are linearly independent.

Lemma 4.8. Let $\mathbf{a} \in V \setminus \{\mathbf{0}\}$. Then $G_2(q)_{\mathbf{a}}$ has q-1 orbits of length 1, q-1 orbits of length q^5 , one orbit of length $q(q^2-1)$ and one orbit of length $q^3(q^2-1)$ on $V \setminus \{\mathbf{0}\}$.

Proof. Denote the $G_2(q)_{\overline{\mathbf{x}}_1}$ -orbits containing $\overline{\mathbf{x}}_8$, $\overline{\mathbf{x}}_2$ and $\overline{\mathbf{x}}_7$ by Θ_8 , Θ_2 and Θ_7 , respectively. Since the actions of $G_2(q)$ on $\mathbf{e}^{\perp}/\langle \mathbf{e} \rangle$ and V are permutation isomorphic, it suffices to prove that $|\Theta_8| = q^5$, $|\Theta_2| = q(q^2 - 1)$ and $|\Theta_7| = q^3(q^2 - 1)$.

To prove $|\Theta_8| = q^5$, we first show that $\Theta_8 \cap \langle \overline{\mathbf{w}} \rangle \neq \emptyset$ for each $\langle \overline{\mathbf{w}} \rangle$ in the $G_2(q)_{\langle \overline{\mathbf{x}}_1 \rangle}$ orbit containing $\langle \overline{\mathbf{x}}_8 \rangle$. In fact, let $\varphi \in G_2(q)_{\langle \overline{\mathbf{x}}_1 \rangle}$, $\varphi(\overline{\mathbf{x}}_1) = a\overline{\mathbf{x}}_1$ for some $a \neq 0$ and $\varphi(\overline{\mathbf{x}}_8) = \overline{\mathbf{z}} \in \langle \overline{\mathbf{w}} \rangle$. Define a linear transformation ψ stabilising \mathbf{e} and $\overline{\mathbf{x}}_1$ as follows:

$$\psi(\mathbf{x}_1, \mathbf{x}_8, \mathbf{x}_2, \mathbf{x}_7, \mathbf{x}_3, \mathbf{x}_6, \mathbf{x}_4) := \left(\frac{1}{a}\varphi(\mathbf{x}_1), a\varphi(\mathbf{x}_8), \varphi(\mathbf{x}_2), \varphi(\mathbf{x}_7), \frac{1}{a}\varphi(\mathbf{x}_3), a\varphi(\mathbf{x}_6), \varphi(\mathbf{x}_4)\right).$$

Then ψ preserves Table 3 and hence $\psi \in G_2(q)_{\overline{\mathbf{x}}_1}$. Now $\psi(\overline{\mathbf{x}}_8) = a\overline{\mathbf{z}} \in \Theta_8 \cap \langle \overline{\mathbf{w}} \rangle$.

On the other hand, if there are distinct $s, t \in \mathbb{F}_q^{\times}$ such that $\psi_1(\overline{\mathbf{x}}_8) = s\overline{\mathbf{w}}$ and $\psi_2(\overline{\mathbf{x}}_8) = t\overline{\mathbf{w}}$, where $\psi_1, \ \psi_2 \in G_2(q)_{\overline{\mathbf{x}}_1}$, then $sf(\overline{\mathbf{w}}, \overline{\mathbf{x}}_1) = f(\overline{\mathbf{x}}_8, \overline{\mathbf{x}}_1) = tf(\overline{\mathbf{w}}, \overline{\mathbf{x}}_1)$ and hence s = t as $f(\overline{\mathbf{w}}, \overline{\mathbf{x}}_1) \neq 0$, a contradiction. Therefore, $|\Theta_8 \cap \langle \overline{\mathbf{w}} \rangle| = 1$ and thus $|\Theta_8| = q^5$. Similarly, for each $c \in \mathbb{F}_q^{\times}$, the length of the $G_2(q)_{\overline{\mathbf{x}}_1}$ -orbit containing $c\overline{\mathbf{x}}_8$ is q^5 .

To prove $|\dot{\Theta}_2| = q(q^2 - 1)$, let $\langle \overline{\mathbf{y}} \rangle$ be the image of $\langle \overline{\mathbf{x}}_2 \rangle$ under some $\eta \in G_2(q)_{\langle \overline{\mathbf{x}}_1 \rangle}$ with $\eta(\overline{\mathbf{x}}_1) = b\overline{\mathbf{x}}_1$ ($b \neq 0$) and $\eta(\overline{\mathbf{x}}_2) = \overline{\mathbf{y}}$. Then for each $c \in \mathbb{F}_q^{\times}$, there exists $\zeta_c \in G_2(q)_{\overline{\mathbf{x}}_1}$ stabilising \mathbf{e} such that $\zeta_c(\overline{\mathbf{x}}_2) = c\overline{\mathbf{y}}$, say, ζ_c defined by

$$\zeta_c(\mathbf{x}_1, \mathbf{x}_8, \mathbf{x}_2, \mathbf{x}_7, \mathbf{x}_3, \mathbf{x}_6, \mathbf{x}_4) := \left(\frac{1}{b}\eta(\mathbf{x}_1), b\eta(\mathbf{x}_8), c\eta(\mathbf{x}_2), \frac{1}{c}\eta(\mathbf{x}_7), \frac{1}{bc}\eta(\mathbf{x}_3), bc\eta(\mathbf{x}_6), \eta(\mathbf{x}_4)\right).$$

Then ζ_c preserves Table 3 and hence $\zeta_c \in G_2(q)_{\overline{\mathbf{x}}_1}$. Thus $|\Theta_2| = q(q+1)(q-1) = q(q^2-1)$. Similarly, one can prove $|\Theta_7| = q^3(q^2-1)$.

Since P is the union of some $G_2(q)_{\mathbf{a}}$ -orbits on $V \setminus \{\mathbf{0}\}$, we have four possibilities to consider. First, if P includes neither the orbit of length $q(q^2-1)$ nor the orbit of length $q^3(q^2-1)$, then similar to the case $C_0 \nsubseteq P$ in Section 4.2, we have $P \subseteq \langle \mathbf{a} \rangle$, and moreover if there is a feasible G-orbit on the flag set of the 2- $(u, |P| + 1, \lambda)$ design $\mathcal{D} := (V, L^G)$, where $L := P \cup \{\mathbf{0}\}$, then $\lambda = 1$ by Lemma 2.12.

Next, if P includes the orbit of length $q(q^2 - 1)$ and the orbit of length $q^3(q^2 - 1)$, then similar to case $C_0 \subseteq P$ in Section 4.2, we have $P = V \setminus \{\mathbf{0}\}$, violating the condition $(u-1)/|P| \geqslant 3$.

Next assume that P includes the orbit of length $q(q^2-1)$, i orbits of length q^5 ($0 \le i < q$) and ℓ orbits of length 1 ($1 \le \ell < q$), and P does not include the orbit of length $q^3(q^2-1)$. Then $|P|=iq^5+q^3-q+\ell$ and $iq^5+q^3-q+\ell=\gcd(|P|,q^6-1)=\gcd(\ell q^5+iq^4+q^2-1,q^4-\ell q^3-iq^2-1)$. Since $0 < q^2-1 \le q^4-\ell q^3-iq^2-1 \le q^4-q^3-1$, we have $iq^5+q^3-q+\ell \le q^4-\ell q^3-iq^2-1 \le q^4-q^3-1$, which implies i=0. Thus $|P|=q^3-q+\ell$ and $q^3-q+\ell=\gcd(\ell q^5+q^2-1,q^4-\ell q^3-1)=\gcd(q^4-\ell q^3-1,\ell q^3-q^2+\ell q+1)=\gcd(q^3-q+\ell,q^2-2\ell q+(\ell^2-1))$. Since $0 \le q^2-2\ell q+(\ell^2-1)=(\ell-q)^2-1 \le q^2-2q$, if $q^2-2\ell q+(\ell^2-1)\ne 0$, then $q^3-q+\ell \le q^2-2\ell q+(\ell^2-1)=q^3-1$. Now $v=(q^6-1)/(q^3-1)=q^3+1>|P|$, and thus if a feasible G-orbit on the flag set of the 2- $(u,|P|+1,\lambda)$ design $\mathcal{D}:=(V,L^G)$ exists, where $L:=P\cup\{\mathbf{0}\}$, then $\lambda=1$ by Lemma 2.12.

Finally, assume that P includes the orbit of length $q^3(q^2-1)$, i-1 orbits of length q^5 $(1\leqslant i< q+1)$ and ℓ orbits of length 1 $(1\leqslant \ell< q)$, and P does not include the orbit of length $q(q^2-1)$. Then $|P|=iq^5-q^3+\ell$ and $iq^5-q^3+\ell=\gcd(iq^5-q^3+\ell,q^6-1)=\gcd(q^6-1,\ell q^3+iq^2-1)$. Since $0<\ell q^3+iq^2-1$, we have $iq^5-q^3+\ell\leqslant\ell q^3+iq^2-1\leqslant q^4-1$, which is impossible.

In summary, we have proved that there is no 2- $(q^6, m+1, \lambda)$ design as in Lemma 2.10 with $\lambda > 1$ admitting G as a group of automorphisms.

4.6
$$G_0 \cong SL(2,13), u = 3^6$$

Suppose that G_0 has an imprimitive block P on $V \setminus \{0\}$, where $V = \mathbb{F}_3^6$, and there is a feasible G-orbit Ω on the flag set of the 2-design $\mathcal{D} := (V, L^G)$, where $L := P \cup \{0\}$. Then $H := G_{\mathbf{0},P}$ is maximal in G_0 by Lemma 2.10(b), and $v := |G_0 : H|$ equals the size of P^{G_0} . If the center Z of G_0 is not contained in H, then $G_0 = ZH$ and $G_0 = G'_0 = (ZH)' = H' \leq H$, a contradiction. Thus $Z \leq H$ and H/Z is maximal in $G_0/Z \cong \mathrm{PSL}(2,13)$. By [8, p.8], each maximal subgroup of $\mathrm{PSL}(2,13)$ is of index 14, 78 or 91 in $\mathrm{PSL}(2,13)$.

Since $v := |G_0 : H| = |(G_0/Z) : (H/Z)|$ is a divisor of $u - 1 = 728 = 8 \cdot 91$, we have v = 14 or 91. But by Lemma 2.10(b), v - 1 is a divisor of $|G_0|/(u - 1) = 3$, which is a contradiction. Hence in this case there is no 2-design as in Lemma 2.10.

4.7 $G_0 = G_2(2)' \cong PSU(3,3), u = 2^6$

Suppose that $G_{\mathbf{0}}$ has an imprimitive block P on $V \setminus \{\mathbf{0}\}$, where $V = \mathbb{F}_2^6$, and Ω is a feasible G-orbit on the flag set of $\mathcal{D} := (V, L^G)$, where $L := P \cup \{\mathbf{0}\}$. Let $H := G_{\mathbf{0},P}$ and $v := |G_{\mathbf{0}} : H|$. By [8, p.14], each maximal subgroup of PSU(3,3) is of index 28, 36 or 63 in PSU(3,3). Since v is a divisor of v - 1 = 0, we have $v = |G_{\mathbf{0}} : H| = 0$ and |P| = (u - 1)/v = 1. Hence there is no 2-design as in Lemma 2.10 in this case.

4.8 $G_0 \cong A_6 \text{ or } A_7, u = 2^4$

Suppose that $G_{\mathbf{0}}$ has an imprimitive block P on $V \setminus \{\mathbf{0}\}$, where $V = \mathbb{F}_2^4$, and Ω is a feasible G-orbit on the flag set of $\mathcal{D} := (V, L^G)$, where $L := P \cup \{\mathbf{0}\}$. Let $H := G_{\mathbf{0},P}$ and $v := |G_{\mathbf{0}}| : H|$. When $G_{\mathbf{0}} \cong A_6$, by [8, p.4] each maximal subgroup of A_6 is of index 6, 10 or 15 in A_6 . By Lemma 2.10(b), v - 1 divides $|G_{\mathbf{0}}|/(u - 1) = 24$, which is a contradiction. When $G_{\mathbf{0}} \cong A_7$, by [8, p.10] each maximal subgroup of A_7 is of index 7, 15, 21 or 35 in A_7 . Since v is a divisor of v - 1 = 15, we have v = 15 and v = 10. Hence in this case there is no 2-design as in Lemma 2.10.

4.9 $d=2, p=5,7,11,19,23,29 \text{ or } 59, \text{ and } G_0 \supseteq \mathrm{SL}(2,5) \text{ or } G_0 \supseteq \mathrm{SL}(2,3)$

In this case G_0 has a normal subgroup $J = \langle \gamma \rangle$ of order 2 which is the center of the normal subgroup isomorphic to $\mathrm{SL}(2,5)$ or $\mathrm{SL}(2,3)$. Thus γ is central in G_0 . Let $\mathcal{L}_{\gamma}(V)$ denote the set of vectors in $V = \mathbb{F}_p^2$ fixed by γ . Then $\mathcal{L}_{\gamma}(V)$ is a subspace of V and is G_0 -invariant. Since G_0 acts irreducibly on V and $\gamma \neq \mathrm{id}_V$, we have $\mathcal{L}_{\gamma}(V) = \{0\}$ and thus $\gamma - \mathrm{id}_V$ is nonsingular. Moreover, since $(\gamma - \mathrm{id}_V)(\gamma + \mathrm{id}_V) = \gamma^2 - \mathrm{id}_V$ is the zero map, we have $\gamma = -\mathrm{id}_V$. Hence G_0 contains $-\mathrm{id}_V$. Set $\mathbf{e}_1 := (1,0)$ and $\mathbf{e}_2 := (0,1)$.

Lemma 4.9. Let P be an imprimitive block of G_0 on $V \setminus \{0\}$ such that $|P| \ge 2$ and $v := (p^2 - 1)/|P| \ge 3$. Suppose that $G_{0,\mathbf{y}}$ is transitive on $P^{G_0} \setminus \{P\}$ for some $\mathbf{y} \in P$, and the 2- $(p^2, |L|, \lambda)$ design $\mathcal{D} := (V, L^G)$ has $\lambda > 1$, where $L := P \cup \{0\}$. Then $v \mid (p+1)$, $(v-1) \mid (p-1)$, and $G_{0,\mathbf{x}}$ is a nontrivial cyclic group with order dividing p-1 for any $\mathbf{x} \in V \setminus \{0\}$.

Proof. Let $\mathbf{z} \in P$. If $a\mathbf{z} \notin P$ for some $a \in \mathbb{F}_p^{\times}$, then $a\mathbf{z} \in R$ for some $R \in P^{G_0} \setminus \{P\}$ and $G_{\mathbf{0},\mathbf{z}} \ (\leqslant \operatorname{GL}(2,p))$ stabilises R, which is a contradiction. Hence $\mathbf{z} \in P$ implies $\langle \mathbf{z} \rangle \setminus \{\mathbf{0}\} \subseteq P$, and thus p-1 divides |P| and $v \mid (p+1)$.

Next we prove that $G_{\mathbf{0},\mathbf{x}}$ is cyclic and $|G_{\mathbf{0},\mathbf{x}}|$ divides p-1 for any $\mathbf{x} \in V \setminus \{\mathbf{0}\}$ ($G_{\mathbf{0},\mathbf{x}}$ is nontrivial as $|G_{\mathbf{0},\mathbf{x}}| = |G_{\mathbf{0},\mathbf{y}}| \ge |P^{G_{\mathbf{0}}} \setminus \{P\}| = v-1 > 1$). Since $G_{\mathbf{0}}$ is transitive on $V \setminus \{\mathbf{0}\}$, we may assume $\mathbf{x} = \mathbf{e}_1$.

For any φ , $\psi \in G_{\mathbf{0},\mathbf{e}_1}$ such that $\mathbf{e}_2^{\varphi} = (s,t)$ and $\mathbf{e}_2^{\psi} = (\ell,n)$, we have $(a,b)^{\varphi} = (a+bs,bt)$ and $\langle (a,1) \rangle^{\varphi} = \langle ((a+s)/t,1) \rangle$. Moreover, $\mathbf{e}_2^{\varphi^{-1}} = (-s/t,1/t)$, $\mathbf{e}_2^{\varphi\psi} = (s+t\ell,tn)$ and $\mathbf{e}_2^{\varphi^{-1}\psi} = ((\ell-s)/t,n/t)$. Hence $S := \{t \in \mathbb{F}_p^{\times} : (s,t) = \mathbf{e}_2^{\varphi} \text{ for some } \varphi \in G_{\mathbf{0},\mathbf{e}_1}\}$ is a subgroup of \mathbb{F}_p^{\times} and $S = \langle c \rangle$ for some $c \in \mathbb{F}_p^{\times}$. Let $\varphi_c \in G_{\mathbf{0},\mathbf{e}_1}$ with $\mathbf{e}_2^{\varphi_c} = (s,c)$.

Suppose that $G_{\mathbf{0},\mathbf{e}_1} \neq \langle \varphi_c \rangle$. Then there exists $\theta \in G_{\mathbf{0},\mathbf{e}_1}$ such that $\mathbf{e}_2^{\theta} = (h,1)$ for some $h \in \mathbb{F}_p^{\times}$. If $|P| \leq p-1$, then $P \subseteq \langle \mathbf{y} \rangle$, where $\mathbf{y} \in P$, and $\lambda = 1$ by Lemma 2.12. Therefore |P| > p-1. Let $Q \in P^{G_0}$ and $\mathbf{e}_1 \in Q$. Then $(a,1) \in Q$ for some $a \in \mathbb{F}_p$. Since $G_{\mathbf{0},\mathbf{e}_1}$ stabilises Q and $(a,1)^{\theta^j} = (a+jh,1), j=1,2,\ldots$, we have $\langle (b,1) \rangle \setminus \{\mathbf{0}\} \subseteq Q$ for any $b \in \mathbb{F}_p$, and thus $Q = V \setminus \{\mathbf{0}\}$, which contradicts our assumption that $(p^2-1)/|Q| \geqslant 3$. Therefore, $G_{\mathbf{0},\mathbf{e}_1} = \langle \varphi_c \rangle$ and $|G_{\mathbf{0},\mathbf{e}_1}| = |c|$ divides p-1 ($c \neq 1$, for otherwise $\varphi_c = \mathrm{id}_V$ and $G_{\mathbf{0},\mathbf{e}_1}$ is trivial, a contradiction). Since $G_{\mathbf{0},\mathbf{y}}$ is transitive on $P^{G_0} \setminus \{P\}$, v-1 divides $|G_{\mathbf{0},\mathbf{y}}|$ and thus $(v-1) \mid (p-1)$.

Next we search for all 2- $(p^2, m+1, \lambda)$ designs each with $\lambda > 1$ and with a feasible G-orbit on the set of flags, with the assistance of Magma [3]. Set $V^{\sharp} := V \setminus \{\mathbf{0}\}$. Denote the group consisting of all translations of V by T. Since G is 2-transitive on V, we have $G = TG_0$ with G_0 transitive on V^{\sharp} . We call a subgroup K of $\mathrm{GL}(2,p)$ almost satisfactory if K is transitive but not regular on V^{\sharp} , K contains a normal subgroup isomorphic to $\mathrm{SL}(2,5)$ or $\mathrm{SL}(2,3)$ and $K_{\mathbf{x}}$ is cyclic for some $\mathbf{x} \in V^{\sharp}$. In each case below, we will compute the conjugacy classes of subgroups by using Magma , choose one representative K from each of them that is almost satisfactory (or show that none exists), consider subgroups H of K of index V with $V \mid (p+1)$ and $(V-1) \mid (p-1)$, and then construct the corresponding 2-designs and flag graphs (or show that none exists) with the help of Lemma 2.10(b). (Note that, for conjugate K_1, K_2 , say, $K_2 = \varphi^{-1}K_1\varphi$ for some $\varphi \in \mathrm{GL}(2,p)$, we have $\varphi^{-1}(TK_1)\varphi = TK_2$ and so TK_1 and TK_2 are permutation isomorphic on V.) Denote

$$G := TK \leq AGL(2, p).$$

Then G is 2-transitive on V and $G_0 = K$.

Case 1: p = 5. There are three conjugacy classes of subgroups of GL(2,5), denoted by C_1 , C_2 and C_3 , such that every $K \in C_i$ $(1 \le i \le 3)$ is almost satisfactory.

When i=1, we have |K|=48 and $|G_{\mathbf{0},\mathbf{e_1}}|=2$. By Lemmas 4.9 and 2.10(b), we will consider subgroups of $G_{\mathbf{0}}$ of index v=3. Set K to be the group in \mathcal{C}_1 generated by $\begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$, $\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$, $\begin{bmatrix} 3 & 3 \\ 4 & 2 \end{bmatrix}$ and $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. Then $G_{\mathbf{0}}$ has only one subgroup H of index 3. Hence $H \subseteq G_{\mathbf{0}}$ and there is no 2-design as in Lemma 2.10(b) admitting a group $G \subseteq AGL(2,5)$ as an automorphism group with $G_{\mathbf{0}} \in \mathcal{C}_1$.

When i=2, we have |K|=120 and $|G_{\mathbf{0},\mathbf{e}_1}|=5$. By Lemma 4.9 this case cannot occur.

When i = 3, we have |K| = 96 and $|G_{0,e_1}| = 4$. By Lemmas 4.9 and 2.10(b), we need to consider subgroups of G_0 of index v = 3. Choose K to be the group in C_3 generated

by $\begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}$, $\begin{bmatrix} 2 & 4 \\ 3 & 4 \end{bmatrix}$, $\begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$, $\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$. The subgroups of $G_{\mathbf{0}}$ of index 3 form a conjugacy class of length 3 (thus these groups are self-normalizing in $G_{\mathbf{0}}$). Let H be a subgroup of $G_{\mathbf{0}}$ of index 3. Since |H| = 32 and $|V^{\sharp}| = 24$, $H_{\mathbf{z}} \neq \{1\}$ for any $\mathbf{z} \in V^{\sharp}$. On the other hand, if $|H_{\mathbf{z}}| = 2$ for any $\mathbf{z} \in V^{\sharp}$, then 16 = |H|/2 divides $|V^{\sharp}| = 24$, a contradiction. Hence there exists $\mathbf{x} \in V^{\sharp}$ such that $H_{\mathbf{x}} = G_{\mathbf{0},\mathbf{x}}$, and thus $R := \mathbf{x}^H$ is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp} ([10, Theorem 1.5A]). In addition, computing by MAGMA shows that H has two orbits on V^{\sharp} . Thus $\Omega := (\mathbf{0}, L)^G$ is a feasible orbit on the flags of the 2-(25, 9, λ) design $\mathcal{D} := (V, L^G)$, where $L := R \cup \{\mathbf{0}\}$.

If $\lambda = 1$, then G_L is 2-transitive on L and $|G_L| = |L| \cdot |H|$ is a divisor of |G|, which is a contradiction. Therefore, $\lambda = |R| + 1 = 9$.

Let $\Sigma := R^{G_0} = \{R = R_1, R_2, R_3\}$ and $L_{\ell} := R_{\ell} \cup \{\mathbf{0}\}, \ \ell = 1, 2, 3$. Suppose that $\Psi = ((\mathbf{0}, M), (\mathbf{x}, N))^G$ is a G-orbit on $F(\mathcal{D}, \Omega)$, where $M \setminus \{\mathbf{0}\} = R_2$ and $N \setminus \{\mathbf{x}\} = R_j + \mathbf{x}$ for some j > 1. Then Ψ is self-paired if and only if there exists $\eta \in G$ interchanging $(\mathbf{0}, M)$ and (\mathbf{x}, N) . Hence $\eta = \delta \widehat{\mathbf{x}}$, where $\widehat{\mathbf{x}}$ is the translation induced by \mathbf{x} and $\delta \in G_0$ is such that $\mathbf{x}^{\delta} = -\mathbf{x}$ and δ interchanges R_2 and R_j . Thus $\delta \in \gamma G_{0,\mathbf{x}}$, where $\gamma = -\mathrm{id}_V$, and the action of δ on $\Sigma \setminus \{R\}$ has a cycle $(R_2 R_j)$, possibly with $R_2 = R_j$. Since γ stabilises each element of Σ (by the proof of Lemma 4.9, L_{ℓ} is the union of some 1-subspaces of V, $\ell = 1, 2, 3$), we just need $\gamma \delta$ ($\in G_{0,\mathbf{x}}$) to have a cycle $(R_2 R_j)$ on $\Sigma \setminus \{R\}$. Therefore, $\Psi = ((\mathbf{0}, M), (\mathbf{x}, N))^G$ is self-paired if and only if there exists an element of $G_{0,\mathbf{x}}$ which has a cycle $(R_2 R_j)$ on $\Sigma \setminus \{R\}$. Since $G_{0,\mathbf{x}}$ acts nontrivially on $\Sigma \setminus \{R\}$, every orbit of G on $F(\mathcal{D}, \Omega)$ is self-paired. Let Ψ be such a G-orbit. Then in the G-flag graph $\Gamma = \Gamma(\mathcal{D}, \Omega, \Psi)$, $(\mathbf{0}, L_2)$ is adjacent to $(\mathbf{x}, L_j + \mathbf{x})$ and $(\mathbf{0}, L_3)$ is adjacent to $(\mathbf{x}, L_n + \mathbf{x})$, where $\{j, n\} = \{2, 3\}$, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 2 \cdot K_2$.

Case 2: p = 7. There is only one conjugacy class \mathcal{C} of subgroups of $\operatorname{GL}(2,7)$ such that every $K \in \mathcal{C}$ is almost satisfactory. We have |K| = 144 and $|G_{\mathbf{0},\mathbf{e_1}}| = 3$. By Lemmas 4.9 and 2.10(b), it suffices to consider subgroups of $G_{\mathbf{0}}$ of index v = 4. Choose K to be the group in \mathcal{C} generated by $\begin{bmatrix} 5 & 5 \\ 4 & 2 \end{bmatrix}$, $\begin{bmatrix} 2 & 4 \\ 1 & 6 \end{bmatrix}$, $\begin{bmatrix} 2 & 1 \\ 2 & 5 \end{bmatrix}$, $\begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$ and $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$. The subgroups of $G_{\mathbf{0}}$ of index 4 form a conjugacy class of length 4. Let H be a subgroup of $G_{\mathbf{0}}$ of index 4. Then H is not semiregular on V^{\sharp} and there exists $\mathbf{x} \in V^{\sharp}$ such that $H_{\mathbf{x}} \neq \{1\}$. Therefore $H_{\mathbf{x}} = G_{\mathbf{0},\mathbf{x}}$ and $R := \mathbf{x}^H$ is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp} . Computing by MAGMA shows that H has two orbits on V^{\sharp} . Thus $\Omega := (\mathbf{0}, L)^G$ is a feasible G-orbit on the flags of the 2-(49, 13, λ) design $\mathcal{D} := (V, L^G)$, where $L := R \cup \{\mathbf{0}\}$.

If $\lambda = 1$, then G_L is 2-transitive on L and $|G_L| = |L| \cdot |H|$ is a divisor of |G|, which is a contradiction. Therefore, $\lambda = |R| + 1 = 13$.

Let $\Sigma := R^{G_0} = \{R = R_1, R_2, R_3, R_4\}$ and $L_{\ell} := R_{\ell} \cup \{\mathbf{0}\}, \ell = 1, 2, 3, 4$. Suppose that $\Psi = ((\mathbf{0}, M), (\mathbf{x}, N))^G$ is a G-orbit on $F(\mathcal{D}, \Omega)$, where $M \setminus \{\mathbf{0}\} = R_2$ and $N \setminus \{\mathbf{x}\} = R_j + \mathbf{x}$ for some j > 1. Similar to case 1 above, we see that Ψ is self-paired if and only if there exists an element of $G_{\mathbf{0},\mathbf{x}}$ that has a cycle $(R_2 R_j)$ on $\Sigma \setminus \{R\}$. Since the cycle decomposition of each nonidentity element of $G_{\mathbf{0},\mathbf{x}}$ on $\Sigma \setminus \{R\}$ is a 3-cycle, Ψ is self-paired if and only if $R_j = R_2$. In this case, in the corresponding G-flag graph $\Gamma = \Gamma(\mathcal{D}, \Omega, \Psi)$, $(\mathbf{0}, L_i)$ is adjacent to $(\mathbf{x}, L_i + \mathbf{x}), i = 2, 3, 4$, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 3 \cdot K_2$.

Case 3: p = 11. There are two conjugacy classes of subgroups of GL(2, 11), denoted by C_1 and C_2 , such that every $K \in C_i$ $(1 \le i \le 2)$ is almost satisfactory.

When i=1, we have |K|=240 and $|G_{\mathbf{0},\mathbf{e}_1}|=2$. By Lemmas 4.9 and 2.10(b), it suffices to consider subgroups of $G_{\mathbf{0}}$ of index v=3. Choose K to be the group in C_1 generated by $\begin{bmatrix} 8 & 0 \\ 6 & 3 \end{bmatrix}$, $\begin{bmatrix} 2 & 6 \\ 9 & 2 \end{bmatrix}$, $\begin{bmatrix} 4 & 3 \\ 10 & 7 \end{bmatrix}$, $\begin{bmatrix} 5 & 5 \\ 3 & 6 \end{bmatrix}$ and $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. The subgroups of $G_{\mathbf{0}}$ of index 3 form a conjugacy class of length 3. Let H be a subgroup of $G_{\mathbf{0}}$ of index 3. Then there exists $\mathbf{x} \in V^{\sharp}$ such that $H_{\mathbf{x}} = G_{\mathbf{0},\mathbf{x}}$, and thus $R := \mathbf{x}^H$ is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp} . Computing by Magma shows that H has two orbits on V^{\sharp} . Hence $\Omega := (\mathbf{0}, L)^G$ is a feasible G-orbit on the flags of the 2-(121, 41, λ) design $\mathcal{D} := (V, L^G)$ by Lemma 2.9, where $L := R \cup \{\mathbf{0}\}$. Similar to case 1 above, we have $\lambda = |R| + 1 = 41$ and each G-orbit on $F(\mathcal{D}, \Omega)$ is self-paired. Let Ψ be such a G-orbit, and let $\Sigma := R^{G_{\mathbf{0}}} = \{R = R_1, R_2, R_3\}$ and $L_{\ell} := R_{\ell} \cup \{\mathbf{0}\}$, $\ell = 1, 2, 3$. Then in $\Gamma = \Gamma(\mathcal{D}, \Omega, \Psi)$, $(\mathbf{0}, L_2)$ is adjacent to $(\mathbf{x}, L_j + \mathbf{x})$ and $(\mathbf{0}, L_3)$ is adjacent to $(\mathbf{x}, L_n + \mathbf{x})$, where $\{j, n\} = \{2, 3\}$, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 2 \cdot K_2$.

When i=2, we have |K|=600 and $|G_{\mathbf{0},\mathbf{e}_1}|=5$. By Lemmas 4.9 and 2.10(b), it suffices to consider subgroups of $G_{\mathbf{0}}$ of index v=6. Choose K to be the group in C_2 generated by $\begin{bmatrix} 6 & 1 \\ 4 & 5 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 2 & 8 \end{bmatrix}$ and $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. The subgroups of $G_{\mathbf{0}}$ of index 6 form a conjugacy class of length 6 (thus these groups are self-normalizing in $G_{\mathbf{0}}$). Let H be a subgroup of $G_{\mathbf{0}}$ of index 6. Then H is not semiregular on V^{\sharp} and there exists $\mathbf{x} \in V^{\sharp}$ such that $H_{\mathbf{x}} = G_{\mathbf{0},\mathbf{x}}$. Hence $R := \mathbf{x}^H$ is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp} . Computing by MAGMA shows that H has two orbits on V^{\sharp} . Thus $\Omega := (\mathbf{0}, L)^G$ is a feasible G-orbit on the flags of the 2- $(121, 21, \lambda)$ design $\mathcal{D} := (V, L^G)$, where $L := R \cup \{\mathbf{0}\}$. Similar to case 2 above, we have $\lambda = |R| + 1 = 21$.

Let $\Sigma := R^{G_0} = \{R = R_1, R_2, R_3, R_4, R_5, R_6\}$ and denote $L_i := R_i \cup \{\mathbf{0}\}, i = 1, 2, ..., 6$. Let $\Psi = ((\mathbf{0}, M), (\mathbf{x}, N))^G$ be a G-orbit on $F(\mathcal{D}, \Omega)$, where $M \setminus \{\mathbf{0}\} = R_2$ and $N \setminus \{\mathbf{x}\} = R_j + \mathbf{x}$ for some j > 1. Similar to case 1 above, Ψ is self-paired if and only if there is an element of $G_{\mathbf{0},\mathbf{x}}$ that has a cycle (R_2, R_j) on $\Sigma \setminus \{R\}$. Since the cycle decomposition of each nonidentity element of $G_{\mathbf{0},\mathbf{x}}$ on $\Sigma \setminus \{R\}$ is a 5-cycle, Ψ is self-paired if and only if $R_2 = R_j$. In this case, $(\mathbf{0}, L_i)$ is adjacent to $(\mathbf{x}, L_i + \mathbf{x})$ in the corresponding G-flag graph $\Gamma = \Gamma(\mathcal{D}, \Omega, \Psi)$, i = 2, 3, 4, 5, 6, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 5 \cdot K_2$.

Case 4: p=19. There is only one conjugacy class $\mathcal C$ of subgroups of $\mathrm{GL}(2,19)$, such that every $K\in\mathcal C$ is almost satisfactory. We have |K|=1080 and $|G_{\mathbf 0,\mathbf e_1}|=3$. By Lemmas 4.9 and 2.10(b), it suffices to consider subgroups of $G_{\mathbf 0}$ of index v=4. Choose K to be the group in $\mathcal C$ generated by $\begin{bmatrix} 5 & 2 \\ 14 & 14 \end{bmatrix}$, $\begin{bmatrix} 9 & 11 \\ 3 & 0 \end{bmatrix}$ and $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. Then K has no subgroup of index 4, and thus there is no 2-design as in Lemma 2.10(b) admitting $G \leqslant \mathrm{AGL}(2,19)$ as a group of automorphisms with $G_{\mathbf 0} \in \mathcal C$.

Case 5: p=23. There is no subgroup K of $\mathrm{GL}(2,23)$ that is almost satisfactory. Hence this case cannot occur.

Case 6: p = 29. There is only one conjugacy class \mathcal{C} of subgroups of $\mathrm{GL}(2,29)$, such that every $K \in \mathcal{C}$ is almost satisfactory. We have |K| = 1680 and $|G_{\mathbf{0},\mathbf{e}_1}| = 2$. By Lemmas

4.9 and 2.10(b), it suffices to consider subgroups of $G_{\mathbf{0}}$ of index v = 3. Choose K to be the group in \mathcal{C} generated by $\begin{bmatrix} 27 & 15 \\ 10 & 2 \end{bmatrix}$, $\begin{bmatrix} 3 & 12 \\ 8 & 5 \end{bmatrix}$, $\begin{bmatrix} 17 & 0 \\ 0 & 17 \end{bmatrix}$ and $\begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix}$. Then $G_{\mathbf{0}}$ has no subgroup of index 3, and so this case cannot occur.

Case 7: p = 59. There is no subgroup of GL(2, 59) that is almost satisfactory. Hence this case cannot occur.

4.10 d = 4, p = 3, and $G_0 \supseteq SL(2,5)$ or $G_0 \supseteq E$, where E is an extraspecial group of order 32

In this case $V = \mathbb{F}_3^4$ and we set $V^{\sharp} := V \setminus \{\mathbf{0}\}.$

Case 1: $G_0 \supseteq SL(2,5)$. Suppose that P is an imprimitive block of G_0 on V^{\sharp} with $|P| \geqslant 2$ and $v := |V^{\sharp}|/|P| \geqslant 3$, such that $G_{0,\mathbf{x}}$ is transitive on $P^{G_0} \setminus \{P\}$ for some $\mathbf{x} \in P$. Then $v \mid (3^4 - 1) = 80$ and v - 1 is a divisor of $|G_{0,\mathbf{x}}|$.

Using MAGMA we find that there are four conjugacy classes of subgroups of GL(4,3), denoted by C_1 , C_2 , C_3 and C_4 , such that if $K \in C_i$ then K is transitive but not regular on V^{\sharp} and K contains a normal subgroup isomorphic to SL(2,5). Let $K \in C_i$ and G := TK. Then G is 2-transitive on V and $G_0 = K$. Similar to Section 4.9, it suffices to consider one representative group K in C_i .

When i = 1, we have |K| = 240 and $|G_{0,x}| = 3$. By Lemma 2.10(b), we need to consider subgroups of G_0 of index v = 4. Since G_0 has no subgroup of index 4, this case cannot occur.

When i=2 or 3, we have |K|=480 and $|G_{\mathbf{0},\mathbf{x}}|=6$. By Lemma 2.10(b), we need to consider subgroups of $G_{\mathbf{0}}$ of index v=4. Since $G_{\mathbf{0}}$ has only one subgroup H of index 4, we have $H \subseteq G_{\mathbf{0}}$ and thus there is no 2-design as in Lemma 2.10(b) admitting $G \subseteq AGL(4,3)$ as a group of automorphisms with $G_{\mathbf{0}} \in \mathcal{C}_2$ or $G_{\mathbf{0}} \in \mathcal{C}_3$.

When i=4, we have |K|=960 and $|G_{\mathbf{0},\mathbf{x}}|=12$. By Lemma 2.10(b), we need to consider subgroups of $G_{\mathbf{0}}$ of index v=4 or 5. Magma shows that there are three conjugacy classes of subgroups of $G_{\mathbf{0}}$, each consisting of subgroups of $G_{\mathbf{0}}$ of order 240 and none of such subgroups is self-normalizing in $G_{\mathbf{0}}$. The subgroups of $G_{\mathbf{0}}$ of index 5 form a conjugacy class of length 5. Let H be such a subgroup of $G_{\mathbf{0}}$. By Magma H has two orbits on V^{\sharp} , which have lengths 32 and 48, respectively. Hence there is no 2-design as in Lemma 2.10(b) admitting $G \leq \mathrm{AGL}(4,3)$ as a group of automorphisms with $G_{\mathbf{0}} \in \mathcal{C}_4$.

Case 2: $G_0 \trianglerighteq E$, where E is an extraspecial group of order 32. In this case G_0 has a normal subgroup $J = \langle \gamma \rangle$ of order 2 which is the center of E. Thus γ is central in G_0 . Since G_0 acts irreducibly on V, we have $\gamma = -\mathrm{id}_V$. Hence G_0 contains $-\mathrm{id}_V$.

Since $G_{\mathbf{0}}$ is transitive on V^{\sharp} , E is 1/2-transitive on V^{\sharp} and is not semiregular. By the proof of Theorem 19.6 in [22, p.237], if $E \leq D \leq G_{\mathbf{0}}$ and D is a 2-group, then D is not semiregular on V^{\sharp} and D must be in category (iv) there. Thus |D| = 32 and D = E. It follows that E is the maximal normal 2-subgroup of $G_{\mathbf{0}}$. Moreover, by the proof of Theorem 19.6 in [22, p.237], $V = U \oplus W$, where U and W are subspaces of dimension 2 over \mathbb{F}_3 , and $\mathbf{x}^E = \mathbf{y}^E = (U \cup W) \setminus \{\mathbf{0}\}$ for any $\mathbf{x} \in U^{\sharp}$ and $\mathbf{y} \in W^{\sharp}$, where we set $Y^{\sharp} := Y \setminus \{\mathbf{0}\}$ for every subspace Y of V.

Fix an element \mathbf{x} of U^{\sharp} from now on. Then $P := \mathbf{x}^{E}$ is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp} . Denote $\Lambda := P^{G_{\mathbf{0}}} = \{P_{1} = P, P_{2}, P_{3}, P_{4}, P_{5}\}.$

Lemma 4.10. The kernel of the action of G_0 on Λ is equal to E.

Proof. Let K be the kernel of the action of G_0 on Λ . Then $E \leq K \leq G_0$. We aim to prove K = E.

By Frattini's argument, we have $G_{\mathbf{0},P} = G_{\mathbf{0},\mathbf{x}}E$, and thus $K = K \cap G_{\mathbf{0},P} = K \cap (G_{\mathbf{0},\mathbf{x}}E) = E(K \cap G_{\mathbf{0},\mathbf{x}}) = EK_{\mathbf{x}}$. Since E is a maximal normal 2-subgroup of $G_{\mathbf{0}}$, it suffices to show that K is a 2-group. Suppose otherwise. Then there exists some $\varphi \in K_{\mathbf{x}} \setminus E$ of odd order. Let ψ_i be a fixed element of $G_{\mathbf{0}}$ such that $P_i = P^{\psi_i} = (U^{\psi_i} \cup W^{\psi_i}) \setminus \{\mathbf{0}\}$, $i = 1, 2, \ldots, 5$. We choose ψ_1 to be id_V , and denote $U_i := U^{\psi_i}$ and $W_i := W^{\psi_i}$. Then, for any $\psi \in K$, since $U^{\psi} = U^{\psi} \cap (U \cup W) = (U^{\psi} \cap U) \cup (U^{\psi} \cap W)$, we have $U^{\psi} \cap U \subseteq U^{\psi} \cap W$ or $U^{\psi} \cap W \subseteq U^{\psi} \cap U$, and thus $U^{\psi} = U$ or W. Similarly, we have $U_i^{\psi} = U_i$ or W_i , i = 2, 3, 4, 5.

Suppose that φ stabilises U_i , i=1,2,3,4,5. For each i=2,3,4,5, let $\mathbf{x}=\mathbf{a}_i+\mathbf{b}_i$, where $\mathbf{a}_i \in U_i^{\sharp}$, $\mathbf{b}_i \in W_i^{\sharp}$ (see Figure 2). Then $\mathbf{a}_i^{\varphi}=\mathbf{a}_i$ and $\mathbf{b}_i^{\varphi}=\mathbf{b}_i$, since $\mathbf{a}_i+\mathbf{b}_i=\mathbf{x}=\mathbf{x}^{\varphi}=\mathbf{a}_i^{\varphi}+\mathbf{b}_i^{\varphi}$ and U_i and W_i direct sum. If $i,\ell\in\{2,3,4,5\}$ with $i\neq\ell$, then $\mathbf{a}_{\ell}\notin\langle\mathbf{a}_i,\mathbf{b}_i\rangle$ (for otherwise $\mathbf{a}_{\ell}=\mathbf{a}_i-\mathbf{b}_i$ or $\mathbf{a}_{\ell}=-\mathbf{a}_i+\mathbf{b}_i$ as $P_{\ell}\cap P_1=P_{\ell}\cap P_i=\emptyset$, implying $\mathbf{b}_{\ell}(=\mathbf{x}-\mathbf{a}_{\ell})=-\mathbf{b}_i$ or $-\mathbf{a}_i$, a contradiction). Hence $\mathbf{b}_3,\mathbf{a}_4,\mathbf{b}_4\in\langle\mathbf{a}_2,\mathbf{b}_2,\mathbf{a}_3\rangle$ as $\varphi\neq\mathrm{id}_V$. For each $j\in\{3,4\}$, let $\mathbf{a}_2=\mathbf{t}_j+\mathbf{w}_j$, where $\mathbf{t}_j\in U_j^{\sharp}$ and $\mathbf{w}_j\in W_j^{\sharp}$. If $\mathbf{t}_j\notin\langle\mathbf{a}_j\rangle$ and $\mathbf{w}_j\notin\langle\mathbf{b}_j\rangle$, then $U_j=\langle\mathbf{a}_j,\mathbf{t}_j\rangle$ and $W_j=\langle\mathbf{b}_j,\mathbf{w}_j\rangle$. As φ fixes \mathbf{a}_2 , it fixes \mathbf{t}_j and \mathbf{w}_j , and thus $\varphi=\mathrm{id}_V$, a contradiction. Hence $\mathbf{t}_j\in\langle\mathbf{a}_j\rangle$ or $\mathbf{w}_j\in\langle\mathbf{b}_j\rangle$, and $U_j\subseteq\langle\mathbf{a}_2,\mathbf{b}_2,\mathbf{a}_3\rangle$ or $W_j\subseteq\langle\mathbf{a}_2,\mathbf{b}_2,\mathbf{a}_3\rangle$. Since U_j and W_j are of dimension 2, $P_3\cap P_4\neq\emptyset$, a contradiction.

Therefore, φ interchanges U_i and W_i for some i with $2 \leqslant i \leqslant 5$ and $|\varphi|$ can not be odd, a contradiction.

Figure 2

Figure 3

By Lemma 4.10, G_0/E can be embedded into S_5 , and G_0 is transitive on V^{\sharp} if and only if G_0 contains an element of order 5. Hence $G_0/E \cong C_5$, D_{10} , AGL(1,5), A_5 or S_5 , and $|G_0| = 160, 320, 640, 1920$ or 3840.

In what follows suppose that Q is an imprimitive block of G_0 on V^{\sharp} containing \mathbf{x} with $|Q| \geq 2$ and $v := |V^{\sharp}|/|Q| \geq 3$ such that $G_{\mathbf{0},\mathbf{x}}$ is transitive on $\Sigma \setminus \{Q\}$, where

 $\Sigma := Q^{G_0} = \{Q_1 = Q, Q_2, \dots, Q_v\}$. Let $L_i := Q_i \cup \{\mathbf{0}\}, i = 1, 2, \dots, v$. Set $\mathcal{D} := (V, L^G), \Omega := (\mathbf{0}, L)^G$ and $H := G_{\mathbf{0}, Q}$, where $L = L_1$. Then \mathcal{D} is a 2-(81, $|L|, \lambda$) design.

Since $v \mid (3^4 - 1) = 80$, we have v = 4, 5, 8, 10, 16, 20 or 40. Since we want $\lambda > 1$, by Lemma 2.12 we have $|Q| = 80/v \geqslant v$ and thus v = 4, 5 or 8.

- (i) If v = 8, then since $G_{\mathbf{0},\mathbf{x}}$ is transitive on $\Sigma \setminus \{Q\}$, v 1 = 7 divides $|G_{\mathbf{0},\mathbf{x}}|$ and so divides $|GL(4,3)| = 80 \cdot 78 \cdot 72 \cdot 54$, a contradiction.
- (ii) If v=4, then since v-1=3 divides $|G_{\mathbf{0},\mathbf{x}}|$, we have $G_{\mathbf{0}}/E\cong A_5$ or S_5 . Consider the induced (faithful) action of $G_{\mathbf{0}}/E$ on Λ . $G_{\mathbf{0}}/E$ is 2-transitive on Λ , and since A_5 and S_5 have no subgroup of index 4, $E\nleq H$ and HE/E is normal in $G_{\mathbf{0}}/E$. Thus HE/E is transitive on Λ . Moreover, since $G_{\mathbf{0},P}=G_{\mathbf{0},\mathbf{x}}E\leqslant HE$, we have $HE=G_{\mathbf{0}}$. Let J be the core of H in $G_{\mathbf{0}}$. Then J is exactly the kernel of the action of $G_{\mathbf{0}}$ on Σ and $G_{\mathbf{0}}/J$ is 2-transitive on Σ . Thus $G_{\mathbf{0}}/J\cong A_4$ or S_4 and 12 divides $|G_{\mathbf{0}}|/|J|$. On the other hand, since JE/E is normal in $G_{\mathbf{0}}/E$, $JE \ne E$ and JE/E is nonsolvable (otherwise $G_{\mathbf{0}}/E$ is solvable), JE/E is transitive on Λ and hence by [28, Theorem 11.7] JE/E is 2-transitive on Λ , which implies that $JE/E\cong A_5$ or S_5 . Now we have 60 divides |J| and 12 divides $|G_{\mathbf{0}}|/|J|$, which is a contradiction. Hence there is no 2-design as in Lemma 2.10(b) if v=4.
- (iii) If v = 5, then $|G_{\mathbf{0}}| : H| = v = 5$. Since $\gcd(|E|, 5) = 1$, we have $E \leqslant H$, $Q = P = \mathbf{x}^E$ and $\Sigma = \Lambda$. Moreover, since $G_{\mathbf{0},P} = G_{\mathbf{0},\mathbf{x}}E$, $G_{\mathbf{0},\mathbf{x}}$ is transitive on $\Sigma \setminus \{P\}$ if and only if $G_{\mathbf{0},P}$ is transitive on $\Sigma \setminus \{P\}$, that is, if and only if $G_{\mathbf{0}}$ is 2-transitive on Σ . Therefore, Ω is feasible if and only if $G_{\mathbf{0}}/E \cong \mathrm{AGL}(1,5)$, A_5 or S_5 .

If $\lambda = 1$, then G_L is 2-transitive on L and $|G_L| = |L| \cdot |G_{\mathbf{0},L}| = 17 \cdot |H|$. But $|G_L|$ is a divisor of $|G| = |V| \cdot |G_{\mathbf{0}}| = 81 \cdot |G_{\mathbf{0}}|$, a contradiction. Hence $\lambda > 1$ and so $\lambda = |L| = 17$ by Lemma 2.8.

Let $\Psi = ((\mathbf{0}, M), (\mathbf{x}, N))^G$ be a G-orbit on $F(\mathcal{D}, \Omega)$, where $M \setminus \{\mathbf{0}\} = P_2$, $N \setminus \{\mathbf{x}\} = P_j + \mathbf{x}$ for some j > 1. Similar to the discussion in case 1 (when i = 3) in Section 4.9, Ψ is self-paired if and only if there exists an element of $G_{\mathbf{0},\mathbf{x}}$ that has a cycle $(P_2 P_j)$ on $\Sigma \setminus \{P\}$. We have

$$G_{\mathbf{0},P_1} = G_{\mathbf{0},\mathbf{x}}E$$
, and $G_{\mathbf{0},P_1,P_j} = (G_{\mathbf{0},\mathbf{x}}E) \cap G_{\mathbf{0},P_j} = G_{\mathbf{0},\mathbf{x},P_j}E$ for $j > 1$. (17)

First assume that $G_0/E \cong \operatorname{AGL}(1,5)$. Then by (17) $G_{0,\mathbf{x}}$ induces a regular permutation group which is cyclic of order 4 on $\Sigma \setminus \{P\}$. Let $\varphi \in G_{0,\mathbf{x}}$ have a cycle decomposition $(P_2 \ P_i \ P_\ell \ P_n)$ on $\Sigma \setminus \{P\}$, where $\{i,\ell,n\} = \{3,4,5\}$. Then $\Psi = ((\mathbf{0},M),(\mathbf{x},N))^G$ is self-paired if and only if j=2 or $j=\ell$. Since $(\mathbf{x},N)^{G_{0,\mathbf{x},P_2}} = \{(\mathbf{x},N)\}$, we have $\Gamma[\Omega(\mathbf{0}),\Omega(\mathbf{x})] \cong 4 \cdot K_2$ for $\Gamma = \Gamma(\mathcal{D},\Omega,\Psi)$.

Next assume that $G_0/E \cong A_5$ or S_5 . Then by (17), for any $n \in \{2, 3, 4, 5\}$ there is an element of $G_{0,\mathbf{x}}$ whose cycle decomposition on $\Sigma \setminus \{P\}$ is $(P_2 \ P_n)(P_i \ P_\ell)$, where $i, \ell \neq 1, 2, n$. Thus each G-orbit on $F(\mathcal{D}, \Omega)$ is self-paired.

If $P_j = P_2$, then in $\Gamma = \Gamma(\mathcal{D}, \Omega, \Psi)$, $(\mathbf{0}, L_i)$ is adjacent to $(\mathbf{x}, L_i + \mathbf{x})$, i = 2, 3, 4, 5, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 4 \cdot K_2$ since $(\mathbf{x}, N)^{G_{\mathbf{0}, \mathbf{x}, P_2}} = \{(\mathbf{x}, N)\}.$

If $P_j \neq P_2$, then by (17) we have $(\mathbf{x}, N)^{G_{\mathbf{0}, \mathbf{x}, P_2}} = \{(\mathbf{x}, L_e + \mathbf{x}) : e = 3, 4, 5\}$ and the edges of $\Gamma(\mathcal{D}, \Omega, \Psi)$ between $\Omega(\mathbf{0})$ and $\Omega(\mathbf{x})$ are as shown in Figure 3.

We have completed the proof of Theorem B.

Acknowledgements

The authors would like to thank the anonymous referees for their comments that lead to improvements of presentation.

References

- [1] T. Beth, D. Jungnickel and H. Lenz, *Design Theory*, Vol.1-2, 2nd ed., Cambridge University Press, Cambridge, 1999.
- [2] N. L. Biggs, Algebraic Graph Theory (2nd edition), Cambridge University Press, Cambridge, 1993.
- [3] W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Comput., 24(3–4):235–265, 1997.
- [4] P. J. Cameron, Finite permutation groups and finite simple groups, *Bull. London Math. Soc.*, 13:1–22, 1981.
- [5] P. J. Cameron, *Permutation Groups*, Cambridge University Press, Cambridge, 1999.
- [6] Y.-Q. Chen and S. Zhou, Affine flag graphs and classification of a family of symmetric graphs with complete quotients, in preparation.
- [7] B. N. Cooperstein, The geometry of root subgroups in exceptional groups. I, *Geom. Dedicata*, 8:317–381, 1979.
- [8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *An Atlas of Finite Simple Groups*, Clarendon Press, Oxford, 1985.
- [9] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968.
- [10] J. D. Dixon and B. Mortimer, *Permutation Groups*, Springer, New York, 1996.
- [11] J. D. Dixon http://people.math.carleton.ca/~jdixon/, Errata to the book "Permutation Groups".
- [12] X. G. Fang and C. E. Praeger, Finite two-arc transitive graphs admitting a Ree simple group, *Comm. Algebra*, 27(8):3755–3769, 1999.
- [13] T. Fang, X. G. Fang, B. Xia and S. Zhou, Symmetric spreads of complete graphs, submitted, arXiv:1605.03530
- [14] A. Gardiner and C. E. Praeger, A geometrical approach to imprimitive graphs, *Proc. London Math. Soc.*, 71(3):524–546, 1995.
- [15] A. Gardiner and C. E. Praeger, Symmetric graphs with complete quotients, preprint, arXiv:1403.4387.
- [16] M. Giudici and C. H. Li, On finite edge-primitive and edge-quasiprimitive graphs, *J. Combin. Theory Ser. B*, 100:275–298, 2010.

- [17] M. Giulietti, S. Marcugini, F. Pambianco and S. Zhou, Unitary graphs and classification of a family of symmetric graphs with complete quotients, *J. Alg. Combin.*, 38:745–765, 2013.
- [18] B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, 1982
- [19] W. M. Kantor, Homogeneous designs and geometric lattices, *J. Combin. Theory Ser. A*, 38:66–74, 1985.
- [20] P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups ${}^2G_2(q)$, and their automorphism groups, J. Algebra, 117:30–71, 1988.
- [21] C. H. Li, C. E. Praeger and S. Zhou, A class of finite symmetric graphs with 2-arc transitive quotient, *Math. Proc. Cambridge Philos. Soc.*, 129(1):19–34, 2000.
- [22] D. S. Passman, Permutation Groups, New York, 1968.
- [23] C. E. Praeger, Doubly transitive automorphism groups of block designs, *J. Combin. Theory Ser. A*, 25:258–266, 1978.
- [24] C. E. Praeger, Finite transitive permutation groups and finite vertex transitive graphs, in: G. Hahn and G. Sabidussi eds., *Graph Symmetry* (Montreal, 1996, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 497) Kluwer Academic Publishing, Dordrecht, pp.277-318, 1997.
- [25] C. E. Praeger, Finite symmetric graphs, in: L. W. Beineke and R. J. Wilson eds., Topics in Algebraic Graph Theory, Encyclopedia of Mathematics and Its Applications 102, Cambridge University Press, Cambridge, pp.179-202, 2004.
- [26] M. Suzuki, On a class of doubly transitive groups, *Annals of Mathematics*, 75:105–145, 1962.
- [27] Z-X. Wan, Geometry of Classical Groups over Finite Fields, Chartwell-Bratt Ltd., Bromley, 1993.
- [28] H. Wielandt, Finite Permutation Groups, Academic Press, New York/London, 1964.
- [29] R. A. Wilson, The Finite Simple Groups, Springer-Verlag, London, 2009.
- [30] W. T. Tutte, A family of cubical graphs, *Proc. Cambridge Philos. Soc.*, 43:459–474, 1947.
- [31] S. Zhou, Almost covers of 2-arc transitive graphs, *Combinatorica*, 24:731–745, 2004. [Erratum: *Combinatorica*, 27:745–746, 2007.]
- [32] S. Zhou, Symmetric graphs and flag graphs, Monatshefte für Mathematik, 139:69–81, 2003.
- [33] S. Zhou, Constructing a class of symmetric graphs, European J. Combinatorics, 23:741–760, 2002.

Appendix: Sample Magma codes

The following MAGMA codes are for Case 1 in Section 4.9. For other values of p and d in Sections 4.9 and 4.10, the MAGMA codes are similar.

```
d:=2; p:=5; G:=GL(d,p);
V:=VectorSpace(G); V; u:=V![1,0]; u;
L:=Subgroups(G:OrderMultipleOf:=p^d-1);
L:=[a'subgroup:a in L|#Orbits(a'subgroup) eq 2];
L:=[a:a in L|#a ne p^d-1];
L1:=[a:a in L|#[b:b in NormalSubgroups(a:OrderEqual:=120)|IsIsomorphic
    (b'subgroup, SL(2,5)) eq true]+#[b:b in NormalSubgroups
    (a:OrderEqual:=24)|IsIsomorphic(b'subgroup,SL(2,3)) eq true] gt 0];
L2:=[a:a in L1|IsCyclic(stabilizer(a,u)) eq true];
n:=\#L2;
for i in [1..n] do #L2[i];
end for;
GO:=L2[1];
H:=Subgroups(G0:OrderEqual:=16); #H;
H[1] 'length;
G0:=L2[3];
H:=Subgroups(G0:OrderEqual:=32); #H;
H[1] 'length;
#Orbits(H[1]'subgroup);
```