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Abstract

An extremal graph for a graph H on n vertices is a graph on n
vertices with maximum number of edges that does not contain H as
a subgraph. Let T, , be the Turdn graph, which is the complete 7-
partite graph on n vertices with part sizes that differ by at most one.
The well-known Turdn Theorem states that T, , is the only extremal
graph for complete graph K,.1. Erdés et al. (1995) determined the
extremal graphs for intersecting triangles and Chen et al. (2003) de-
termined the maximum number of edges of the extremal graphs for
intersecting cliques. In this paper, we determine the extremal graphs
for intersecting odd cycles.
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1 Introduction

In this paper, all graphs considered are simple and finite. For a graph G and
a vertex x € V(G), the neighborhood of x in G is denoted by Ng(x). Let
Nglz] = {z} U Ng(x). The degree of x, denoted by degq (), is |[Ng(x)|. Let
d(G) and A(G) denote the minimum and maximum degrees of G, respec-
tively. A matching M in G is a subgraph of G with §(M) = A(M) = 1. The
matching number of G, denoted by v(G), is the maximum number of edges
in a matching in G. Let e(G) be the number of edges of G. For a graph G
and S, T C V(G), let eq(S,T) be the number of edges e = 2y € E(G) such
that z € Sand y € T, if S = T, we use eg(S) instead of eg(.9,.5); and we use
ec(u, T) instead of eg({u},T) for convenience, the index G' will be omitted
if no confusion from the context. For a subset X C V(G) or X C E(G),
let G[S] be the subgraph of G induced by X, that is G[X] = (X, E(X)) if
X CV(GQ),or GIX] = (V(X),X)if X C E(G). A cycle of length ¢ is called
a q-cycle.

Given two graphs GG and H, we say that G is H-free if G does not contain
an H as a subgraph. The Turdn function, denoted by ex(n, H), is the largest
possible number of edges of an H-free graph on n vertices. That is,

ex(n, H) = max{e(G) : |V(G)| =n, G is H-free}.

And for positive integers n > r, the Turan graph, denoted by 7, ,, is the com-
plete r-partite graph on n vertices with part sizes that differ by at most one
(also called the complete balanced r-partite graph). The well-known Turén
Theorem states that ex(n, K,11) = e(T,,) and T, , is the only extremal
graph for complete graph K, ;.

A k-fan, denoted by Fj, is a graph on 2k + 1 vertices consisting of &
triangles which intersect in exactly one common vertex. In 1995, Erdos et
al. [4] gave the value of ex(n, F}) and determined the extremal graphs for Fj
as follows.

Theorem 1 ([4]). For k> 1 and n > 50k?,
ex(n, Fy) = e(T),2) + g(k),

where
k2 —k if k is odd,

k pu—
9(k) k% — gk: if k is even.
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Moreover, when k is odd, the extremal graph must be a T, o with two vertex
disjoint copies of K embedding in one partite set. When k is even, the
extremal graph must be a T, o with a graph having 2k — 1 vertices, k?* — %k
edges with mazimum degree k — 1 embedded in one partite set.

In 2003, Chen et al. [2] proved that ex(n, Fy,) = e(T},—1) + g(k), where
F}., is a graph consisting of k complete graphs of order » which intersect in
exactly one common vertex and g(k) is the same as in Theorem 1. Recently,
Glebov [5] and Liu [6] gave the extremal graphs for blow-ups of paths [5],
cycles and a large class of trees [6] (A blow-up of a graph G is a graph
obtained from G by replacing each edge of G by a clique, two cliques share a
common vertex if and only if their corresponding edges have a common end).

In this paper, motivated by the results in [2, 4, 5, 6], we generalize The-
orem 1 in another way. For a positive integer k£ and an odd integer ¢ with
q > 5, let C} 4 be the graph consisting of k g-cycles which intersect exactly
in one common vertex, called the center of it. For n > 4(k — 1)%, let Fok
be the family of graphs where each member is a Turdn graph 7,,» with a
complete bipartite graph Kj_; ;_1 embedded into one class. Our main result
is as follows.

Theorem 2. For an integer k > 2 and an odd integer ¢ > 5, there exists
ni(k,q) € N such that for all n > nq(k,q), we have

ex(n, Cq) = e(Th2) + (k —1)%
and the only extremal graphs for Cy 4 are members of F, .

The remainder of the paper is arranged as follows. Section 2 gives some
lemmas. Section 3 gives the proof of Theorem 2.

2 Lemmas

The following two lemmas are useful to estimate the number of edges of a
graph with restricted degrees and matching number.

Lemma 3 ( Chavatal [1]). For any graph G with mazimum degree A > 1 and

matching number v > 1, then e(G) < f(v,A) = vA+ L%J LM—"MJ < v(A+1).



The following stability result due to Erdés [3] and Simonovits [7] gives
the rough structure of the extremal graphs for a graph H with x(H) =r > 3
and H # K,.

Lemma 4 ([3, 7]). Let H be a graph with x(H) = r > 3 and H # K,.
Then, for every v > 0, there exists 6 > 0 and ng = no(H,v) € N such
that the following holds. If G is an H-free graph on n > ng vertices with
e(G) > ex(n, H) — 0n?, then there exists a partition of V(G) = V,U---UV,_4
such that 311 e(V;) < yn?.

The following is a simple observation.

Observation 5. Let G be a graph with no isolated vertex. If A(G) < 2, then

V(G)| = w(G)
(@) =

where w(G) is the number of components of G.

Proof. Since A(G) < 2, each component of G is a path or a cycle. Hence

each component C' of G has matching number at least W(O% This implies
the desired result. O

Lemma 6. Let G be a graph with no isolated vertex. If for all v € V(G),
deg(z) + v(G — Nlz]) < r, then e(G) < r?. Moreover, equality holds if and
only if G = K,,.

Proof. Clearly, A(G) < r. We claim that v(G) < r. Let ujvy,--- ,upvp be a
matching in G. Without loss of generality, assume that

{ulavla te 7uS7US7uS+17' o 7u8+t} g N[u1]7

{0st15 5 Vst Ustog 1, Vstort, Ue, Vo) © V(G) \ Nlug).
Then s > 1,25+t — 1 < deg(u;) and £ — (s +t) < v(G — N[uy]). Thus,
( <v(G— Nw))+s+t<deg(u) + v(G— Nlu]) <,

the claim is true. Now we prove the result according to the following two
cases.

Case 1. Suppose A(G) < r. Then, by Lemma 3, we have ¢(G) <
f(v,A) < r(r —1+1) = r? and the equality holds only if v = r and
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A = r — 1. We claim that the equality does not hold in this case. For

r>4,eG) < f(ryr—1) =r(r—1)+ |5 L(T—TTﬂJ < r?. For r = 3,
e(G) < f(3,2) = 32 = 9. Suppose to the contrary that e(G) = 9. Since
A(G) < 2 and G has no isolated vertex, |V (G)| > e(G) =9 (equality holds

if and only if G is 2-regular) and w(G) < v(G) = 3. By Observation 5,

s i) > VO =w(@) | [V(©)] -3
2 2

Hence |V(G)| > 9. Thus |[V(G)| = 9 (and so G is 2-regular) and w(G) = 3.

Therefore, G' consists of three vertex-disjoint triangles. But this contradicts

the assumption that deg(z) + v(G — N[z]) < r for all z € V(G).

Case 2. Suppose A(G) = r. Choose z € V(G) such that deg(x) = r, then
v(G — N[z]) = 0. Hence ¢(G — N[z]) = 0 and so each vertex in G — N|z]
must be adjacent to vertices in N(z). Let N(z) = {xy,---,z,}. For each
ie[l,r], let d; = deg(z;) and d; = deggn(zy(2i). Then

e(G) = e(GIN(@)])+e(N(x),V(G)\ N(z)) = %Z di+ ) (di = di)

r

= Zdz_%i(izéTQ—%idngz
=1 =1

i=1

Moreover, equality holds if and only if d; = r and d; = 0 for each i € [1,r],
that is, G is a bipartite graph with partite sets N(z) = {x1,---,2,} and
V(G)\N(x). To show that G = K, ., it suffices to prove that |V (G)\N(z)| =
r. If not, then |V(G)\ N(z)| > r. Since deg(z;) = d; = r, there must exist a
vertex y € (V(G)\ N(z))\ N(x1). Since G has no isolated vertex, y must be
adjacent to some vertex z; with j # 1. This implies that v(G — N[z4]) > 1,
a contradiction with deg(zy) + v(G — N[zq]) <. O

The following lemma states that the members F,, ;, are Cj, ,—free.

Lemma 7. Each member of F,y. is Cyq-free for all k > 2, n > 4(k — 1),
and odd integer q > 5.

Proof. Suppose to the contrary that there is a graph G' € F,, ; containing a
copy of Cj4. Let K be the copy of Kj_1 ;1 in G. Then each odd cycle of
Ch,q must contain odd number of the edges of K. Let A = E(Cy,) N E(K).
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Then |A| > k. We claim that the center of Cj, must lie in K. If not,
then G[A] contains a matching of order at least k by the structure of Cj 4,
a contradiction with v(K) = k — 1. Let z € V(K) be the center of Cj,.
Assume that degg(z) = s and let E4(x) be the set of edges incident with
z in G[A]. Then at most s cycles of Cy, intersect E4(x), that is A — E4(z)
contains a matching of K of order at least £ — s. This is impossible since
V(K — Ng(z)) <k —s—1. O

Lemma 8. Let ng be an integer and let G' be a graph onn > ny+ ("20) vertices
with e(G) = e(T,,2)+] for some integer j > 0. Then G contains a subgraph G’
onn' > ng vertices such that §(G") > (T, 2) and e(G") > e(Ty2)+j+n—n'.

Proof. 1f §(G) > LgJ, then G is the desired graph and we have nothing to
do. So assume that 6(G) < [%]. Choose v € V(G) with degq(v) < |%].
Let G1 = G —v. Then ¢(G1) > e(G) — degg(v) > e(Tho) +j — |2] +1 =
e(Th-12) +j + 1, since e(T,,2) — e(Th-12) = EJ We may continue this
procedure until we get G’ on n — i vertices with §(G") > §(7},—;2) for some
1 < mn — ng, or until 7 = n — ng. For the latter case, G’ has ny vertices but

e(G") > e(Thy2) +j+i>n—mng> ("20), which is impossible. O]

3 Proof of Theorem 2

Let G be an extremal graph for Cy , on n > ny(k,q) (n1(k, ¢) is given below)
vertices. By Lemma 7, e(G) > e(T,,2) + (k — 1)*. We will show that e(G) =
e(Th2) + (k—1)? and G is a member of F, ;. Let

1
77 1600°
no = no(Crq,7y) ( which is determined by Cj, and v by applying
Lemma 4),
no + 20k?
nlznl(k,q):ng+20k2q+ ( 0 9 q)

By the choice of n; and Lemma 8, we may assume 6(G) > §(T,,2) = | 2],
otherwise, we consider a subgraph G’ with the desired minimum degree in-
stead of G. Let VUV; be a partition of V(G) such that e(Vj, V1) is maximized.
Lemma 4 implies that m = e(Vy) + e(V;) < yn?. The following claim asserts

that the partition is close to being balanced. The following inequality holds:
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Claim 9. " n
5—ﬁn<\‘/}]<§+\/§n fori=0,1.

Furthermore, m = e(Vy) + e(V1) > (k — 1)* and if the equality holds then G
contains a complete balanced bipartite graph with classes Vo and V.

Proof. Let |Vo| = § 4+ a. Then |V1| = § — a. Since

2

2
HJ (k=17 = elTuz) + (k=17 < e(G) < [VollVil +m = - — a4 m,

2

we have m > (k — 1)*> and m > a?®. Since m < yn?, a* < yn®. Hence

la] < \/n.
If m = (k—1)?, then

e(Tho) + (k=12 <e(G) = e(Vo, Vi) + (k — 1)

Hence e(Vy, Vi) = e(T,2), that is, Vj, Vi are balanced and so G contains a
complete balanced bipartite graph with classes Vy and V;. O

In the following, let G; = G[V;], A; = A(G;) and v; = v(G;)

i=0,1
For a vertex x € V;, let Ey_;(z) = {e € E(G1_;)| V(e) N Ng(z) # 0}.

Claim 10. For any vertex x € V;,
degg, (z) + v(G; — Ng,|z]) + v(G[E1—i(z)]) <k — 1.

Proof. We prove this claim by contradiction. Without loss of generality,
assume that there is an x € Vj such that degg (z) + v(Go — No[z]) +
V(G[Ey(2)]) > k. Let zay, x29, ..., 205 € E(Gy), and let My = {usi1vs41, . -
wvr} be a matching of G[Vo \ {x, x1, ..., 25} and My = {up1vi41, - . ., ugvr }
a matching of G[F;(x)] such that zusyq,...,2u € Eg(x, V1), where s,t €
0, k]. Define

() =

1 if j is odd,
0 if j is even.

We say that v is bad if degGM(v) > t1, otherwise v is said to be good, where

t; = 6,/yn. Then the number of bad vertices in G is at most 2t—’1” < ot

t1
sV




For any vertex u € V; (i = 0, 1), by the maximality of e(V, V1), we have

1 n

eq(u, Vi—;) > max{eq(u,V;), {SJ —eg(u,Vi)} > 5 ng :

Particularly, if u € V; is good, then we have

o102 3] otz 2] -1 3 2]

Let A = V({zxy,229,...,02,} UM; UM,;_;). We find a copy of Cy,
passing through all the vertices of A to get a contradiction.

For each ( € [1, 5], we find a sequence of vertices wy,, wg,, - - - L wd? wd,?
with wg(j)é € Vi) \A for 1 < j < ¢ — 2, such that wl? is good and

Twi, - wgzgw‘fzzwﬂ is a g-cycle. Furthermore, we require that wg(j)é (¢ e

[1,s], j € [1,q—2]) are pairwise different. This is possible since together with
all vertices in A, the total number of good vertices which we have found is
at most |V (Ci,)| = k(g — 1) + 1 and each vertex u € V; has at least
1 1in| 1 _ ,
ec(u, Vi—;) — gﬁn > 5 LEJ - gﬁn > |V(Cryq)| (since n > 20k%q)

good neighbors in V;_; and the number of common neighbors of w8;3 and x,
in V; is at least (since n > 20k?q)

_ n 1 n n
e’ Vi) +ealan W)= Vil > | 5] —ti+35 5| = G +vAm) = V(G

Thus we have found a copy of C, centered at x and passing through the
edges of {zzy,zx9, - ,xx}. Particularly, since G is Cy,—free, we have
s <k —1. Thus

Consequently, all the vertices of G are good, and for each vertex u € V;,
n
cau, Vi) 2 | 5] = (k=1) 2

and thereby
n n



Next we will find a copy of Cj_;, centered at x disjoint from the copy of
Cs,q- For every uy (¢ € [s+ 1,1]), choose a common neighbor of x and v, say
w},, in V4 such that wi, # wi, if £ # . We can do this because the number
of common neighbors of x and wu, in V] is at least

ea(w, Vi)+ea(ue, Vi) =|Vi] = 2(5—k)=(5+k) > [V(Cr,)| (since n > 208%).

For each ¢ € [s + 1,t¢], with the same reason as above, we find vertices

3 4 q—3 : q-3
ww,woe,2- - ,wy, - one by one, then a Comgnon neighbor of wy,” and vy,
say wi, %, in V; such that wew,azw}, - wi, “vu, is a g-cycle. And for ev-

. . . -3
ery | € [t, k], begin with z, we can find vertices w?,, wg,, -+ ,wi,” one by

one, then a common neighbor, say wl,?, of w?® and v, in V; such that
wgrwiwd, - - - wl *vauy is a g-cycle. Also, we may require that wg(j)e (¢ e
s+ 1,k],j € [1,q—2]) are pairwise different. Thus the k — s g-cycles form a
copy of Cj_s, centered at  and passing through all of the edges of MyU M.
Therefore, G[{x,xy, -+ ,2;} U {wg(jﬂ : j€[l,q—2], ¢ €[1,k|}] contains a
desired copy of Cj, with center x. This completes the proof. O

Claim 11. We have that vy + 11 < k — 1.

Proof. 1f not, suppose that My = {ujvy,--- ,usvs} and My = {us 10541,
upvg } are matchings in Gy and G, respectively. Without loss of generality,
assume that s > 1. First we find a common neighbor, say x, of w1, -, ug

in Vo \ V(Mp). This is possible since the number of such neighbors is at least

k
> ea(un, Vo) = (k— s —1)[Vg| — 25

l=s+1
> (k= s)(G = k)= (k= s = 1)(5 +k) = 2k
= 5 —@k=—s)+Dk
> g —2k? > 0 (since n > 20k%q).

Let M{ be the maximal subset of M, such that M is a matching of Gy —
Ng,[z]. By Claim 10, degg, (x) + [Mj| + | M| < k — 1. Clearly, degg, (z) +
|Mj| > s. Hence degq () + |[Mj| + |M;| > k, a contradiction. O

Claim 12. We have that max{Ay, A1} =k — 1.



Proof. If not, then by Claim 10, max{Ay, A;} < k — 2. Thus by Lemma 3
and Claim 11,

m o= e(Vo)+e(Vi) < flvo,k —2) + [,k —2)
< F+vk—2) < f(k—1,k—2).

Ifk#4,m< f(k—1,k—2)=(k—1)?—1, contradicts to m > (k — 1)?
(by Claim 9).

If £ =4, then m < f(3,2) = (k—1)2 = 9. By Claim 9, m = (k —
1)> =9 and G contains a complete balanced bipartite subgraph with classes
Vo and Vi. Let H be the subgraph consisting of nonempty components of
Go U G;y. Then H is a graph with e(H) = 9, A(H) = 2 and v(H) = 3.
By Observation 5 and with a similar discussion as in Case 1 of the proof of
Lemma 6, H consists of three vertex-disjoint triangles. Then we can easily
find a vertex x in H with degy (z) = 2 and a matching of order 2 in H—Ng|[z].
That is degg, () + v(G; — Ng,[z]) + v(G[E1—i(x)]) > 4 = k, a contradiction
Claim 10. O

Claim 13. We have that e(Vp) - e(V1) = 0.
Proof. At first, by Claim 12 and Claim 11, we have

m < f(vo,k—1)+ flri,k—1) < f(ro+v1,k—1)
< flk—1k—1) <k(k—1).

Next, by Claim 12, max{Ag, A1} = k — 1. Without loss of generality,
assume Ag = k — 1. Let x € Vj with degg, (r) = k — 1. We show that
e(Vi) =0. If e(V4) > 0, then 4 > 1. By Claim 11, vy <k —1—1v; =k — 2.
Let Ay = {u € V; : degg, (u) > 0}. By Claim 10, we have A; N Ng(z) = 0.
So e(Vo, V1) < [Vol|VA| — JA1| < e(Th2) — |A1|. Thus we have

e(Tho) + (k—1)? < e(GQ) < e(Tho) — |A1] +m.
Therefore, |A;| <m — (k—1)?( <k —1). Again by Lemma 3, we have

m < (Ao +1) +vi(Ar+1)
< kg4 (k—1—1p)|Aq] (since A;+1 < |A])
= vo(k — |A1]) + (k — 1) A4
S (k? — 2)([€ — |A1|) + (]C — 1)|A1| (SiHCG |A1| S k—1 and 10} S k — 2)

k=172 + A —1<k-1P2+m—(k—1)*—-1

m — 1, a contradiction.
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O

By Claim 13, Without loss of generality, we may assume e(V;) = 0, so

m = e(Vp). Let Ay be the set of non-isolated vertices in Gy. By Claim 10 and
Lemma 6, m = e(G[Ao]) < (k—1)2. By Claim 9, we must have m = (k —1)?
and therefore G' contains a complete balanced bipartite subgraph with classes
Vo and V. Again by Claim 10 and Lemma 6, since e(G[Ao]) = (k—1)%, G[Ay]
must be a copy of Kj_4 ;1. This completes the proof of Theorem 2. O
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