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Abstract

An extremal graph for a graph H on n vertices is a graph on n
vertices with maximum number of edges that does not contain H as
a subgraph. Let Tn,r be the Turán graph, which is the complete r-
partite graph on n vertices with part sizes that differ by at most one.
The well-known Turán Theorem states that Tn,r is the only extremal
graph for complete graph Kr+1. Erdős et al. (1995) determined the
extremal graphs for intersecting triangles and Chen et al. (2003) de-
termined the maximum number of edges of the extremal graphs for
intersecting cliques. In this paper, we determine the extremal graphs
for intersecting odd cycles.
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1 Introduction

In this paper, all graphs considered are simple and finite. For a graph G and
a vertex x ∈ V (G), the neighborhood of x in G is denoted by NG(x). Let
NG[x] = {x} ∪NG(x). The degree of x, denoted by degG(x), is |NG(x)|. Let
δ(G) and ∆(G) denote the minimum and maximum degrees of G, respec-
tively. A matching M in G is a subgraph of G with δ(M) = ∆(M) = 1. The
matching number of G, denoted by ν(G), is the maximum number of edges
in a matching in G. Let e(G) be the number of edges of G. For a graph G
and S, T ⊂ V (G), let eG(S, T ) be the number of edges e = xy ∈ E(G) such
that x ∈ S and y ∈ T , if S = T , we use eG(S) instead of eG(S, S); and we use
eG(u, T ) instead of eG({u}, T ) for convenience, the index G will be omitted
if no confusion from the context. For a subset X ⊆ V (G) or X ⊆ E(G),
let G[S] be the subgraph of G induced by X, that is G[X] = (X,E(X)) if
X ⊆ V (G), or G[X] = (V (X), X) if X ⊆ E(G). A cycle of length q is called
a q-cycle.

Given two graphs G and H, we say that G is H-free if G does not contain
an H as a subgraph. The Turán function, denoted by ex(n,H), is the largest
possible number of edges of an H-free graph on n vertices. That is,

ex(n,H) = max{e(G) : |V (G)| = n, G is H-free}.

And for positive integers n ≥ r, the Turán graph, denoted by Tn,r, is the com-
plete r-partite graph on n vertices with part sizes that differ by at most one
(also called the complete balanced r-partite graph). The well-known Turán
Theorem states that ex(n,Kr+1) = e(Tn,r) and Tn,r is the only extremal
graph for complete graph Kr+1.

A k-fan, denoted by Fk, is a graph on 2k + 1 vertices consisting of k
triangles which intersect in exactly one common vertex. In 1995, Erdős et
al. [4] gave the value of ex(n, Fk) and determined the extremal graphs for Fk
as follows.

Theorem 1 ([4]). For k ≥ 1 and n ≥ 50k2,

ex(n, Fk) = e(Tn,2) + g(k),

where

g(k) =

 k2 − k if k is odd,

k2 − 3

2
k if k is even.
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Moreover, when k is odd, the extremal graph must be a Tn,2 with two vertex
disjoint copies of Kk embedding in one partite set. When k is even, the
extremal graph must be a Tn,2 with a graph having 2k − 1 vertices, k2 − 3

2
k

edges with maximum degree k − 1 embedded in one partite set.

In 2003, Chen et al. [2] proved that ex(n, Fk,r) = e(Tn,r−1) + g(k), where
Fk,r is a graph consisting of k complete graphs of order r which intersect in
exactly one common vertex and g(k) is the same as in Theorem 1. Recently,
Glebov [5] and Liu [6] gave the extremal graphs for blow-ups of paths [5],
cycles and a large class of trees [6] (A blow-up of a graph G is a graph
obtained from G by replacing each edge of G by a clique, two cliques share a
common vertex if and only if their corresponding edges have a common end).

In this paper, motivated by the results in [2, 4, 5, 6], we generalize The-
orem 1 in another way. For a positive integer k and an odd integer q with
q ≥ 5, let Ck,q be the graph consisting of k q-cycles which intersect exactly
in one common vertex, called the center of it. For n ≥ 4(k − 1)2, let Fn,k
be the family of graphs where each member is a Turán graph Tn,2 with a
complete bipartite graph Kk−1,k−1 embedded into one class. Our main result
is as follows.

Theorem 2. For an integer k ≥ 2 and an odd integer q ≥ 5, there exists
n1(k, q) ∈ N such that for all n ≥ n1(k, q), we have

ex(n,Ck,q) = e(Tn,2) + (k − 1)2,

and the only extremal graphs for Ck,q are members of Fn,k.

The remainder of the paper is arranged as follows. Section 2 gives some
lemmas. Section 3 gives the proof of Theorem 2.

2 Lemmas

The following two lemmas are useful to estimate the number of edges of a
graph with restricted degrees and matching number.

Lemma 3 ( Chavátal [1]). For any graph G with maximum degree ∆ ≥ 1 and

matching number ν ≥ 1, then e(G) ≤ f(ν,∆) = ν∆+
⌊

∆
2

⌋⌊
ν

d∆/2e

⌋
≤ ν(∆+1).
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The following stability result due to Erdős [3] and Simonovits [7] gives
the rough structure of the extremal graphs for a graph H with χ(H) = r ≥ 3
and H 6= Kr.

Lemma 4 ([3, 7]). Let H be a graph with χ(H) = r ≥ 3 and H 6= Kr.
Then, for every γ > 0, there exists δ > 0 and n0 = n0(H, γ) ∈ N such
that the following holds. If G is an H-free graph on n ≥ n0 vertices with
e(G) ≥ ex(n,H)− δn2, then there exists a partition of V (G) = V1∪̇ · · · ∪̇Vr−1

such that
∑r−1

i=1 e(Vi) < γn2.

The following is a simple observation.

Observation 5. Let G be a graph with no isolated vertex. If ∆(G) ≤ 2, then

ν(G) ≥ |V (G)| − ω(G)

2
,

where ω(G) is the number of components of G.

Proof. Since ∆(G) ≤ 2, each component of G is a path or a cycle. Hence

each component C of G has matching number at least |V (C)|−1
2

. This implies
the desired result.

Lemma 6. Let G be a graph with no isolated vertex. If for all x ∈ V (G),
deg(x) + ν(G − N [x]) ≤ r, then e(G) ≤ r2. Moreover, equality holds if and
only if G = Kr,r.

Proof. Clearly, ∆(G) ≤ r. We claim that ν(G) ≤ r. Let u1v1, · · · , u`v` be a
matching in G. Without loss of generality, assume that

{u1, v1, · · · , us, vs, us+1, · · · , us+t} ⊆ N [u1],

{vs+1, · · · , vs+t, us+t+1, vs+t+1, u`, v`} ⊆ V (G) \N [u1].

Then s ≥ 1, 2s+ t− 1 ≤ deg(u1) and `− (s+ t) ≤ ν(G−N [u1]). Thus,

` ≤ ν(G−N [u1]) + s+ t ≤ deg(u1) + ν(G−N [u1]) ≤ r,

the claim is true. Now we prove the result according to the following two
cases.

Case 1. Suppose ∆(G) < r. Then, by Lemma 3, we have e(G) ≤
f(ν,∆) ≤ r(r − 1 + 1) = r2, and the equality holds only if ν = r and
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∆ = r − 1. We claim that the equality does not hold in this case. For

r ≥ 4, e(G) ≤ f(r, r − 1) = r(r − 1) +
⌊
r−1

2

⌋⌊
r

d(r−1)/2e

⌋
< r2. For r = 3,

e(G) ≤ f(3, 2) = 32 = 9. Suppose to the contrary that e(G) = 9. Since
∆(G) ≤ 2 and G has no isolated vertex, |V (G)| ≥ e(G) = 9 (equality holds
if and only if G is 2-regular) and ω(G) ≤ ν(G) = 3. By Observation 5,

3 = ν(G) ≥ |V (G)| − ω(G)

2
≥ |V (G)| − 3

2
.

Hence |V (G)| ≥ 9. Thus |V (G)| = 9 (and so G is 2-regular) and ω(G) = 3.
Therefore, G consists of three vertex-disjoint triangles. But this contradicts
the assumption that deg(x) + ν(G−N [x]) ≤ r for all x ∈ V (G).

Case 2. Suppose ∆(G) = r. Choose x ∈ V (G) such that deg(x) = r, then
ν(G − N [x]) = 0. Hence e(G − N [x]) = 0 and so each vertex in G − N [x]
must be adjacent to vertices in N(x). Let N(x) = {x1, · · · , xr}. For each
i ∈ [1, r], let di = deg(xi) and d̃i = degG[N(x)](xi). Then

e(G) = e(G[N(x)]) + e(N(x), V (G) \N(x)) =
1

2

r∑
i=1

d̃i +
r∑
i=1

(di − d̃i)

=
r∑
i=1

di −
1

2

r∑
i=1

d̃i ≤ r2 − 1

2

r∑
i=1

d̃i ≤ r2.

Moreover, equality holds if and only if di = r and d̃i = 0 for each i ∈ [1, r],
that is, G is a bipartite graph with partite sets N(x) = {x1, · · · , xr} and
V (G)\N(x). To show that G = Kr,r, it suffices to prove that |V (G)\N(x)| =
r. If not, then |V (G)\N(x)| > r. Since deg(x1) = d1 = r, there must exist a
vertex y ∈ (V (G) \N(x)) \N(x1). Since G has no isolated vertex, y must be
adjacent to some vertex xj with j 6= 1. This implies that ν(G−N [x1]) ≥ 1,
a contradiction with deg(x1) + ν(G−N [x1]) ≤ r.

The following lemma states that the members Fn,k are Ck,q−free.

Lemma 7. Each member of Fn,k is Ck,q-free for all k ≥ 2, n ≥ 4(k − 1)2,
and odd integer q ≥ 5.

Proof. Suppose to the contrary that there is a graph G ∈ Fn,k containing a
copy of Ck,q. Let K be the copy of Kk−1,k−1 in G. Then each odd cycle of
Ck,q must contain odd number of the edges of K. Let A = E(Ck,q) ∩ E(K).
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Then |A| ≥ k. We claim that the center of Ck,q must lie in K. If not,
then G[A] contains a matching of order at least k by the structure of Ck,q,
a contradiction with ν(K) = k − 1. Let x ∈ V (K) be the center of Ck,q.
Assume that degG[A](x) = s and let EA(x) be the set of edges incident with
x in G[A]. Then at most s cycles of Ck,q intersect EA(x), that is A− EA(x)
contains a matching of K of order at least k − s. This is impossible since
ν(K −NG[A](x)) ≤ k − s− 1.

Lemma 8. Let n0 be an integer and let G be a graph on n ≥ n0+
(
n0

2

)
vertices

with e(G) = e(Tn,2)+j for some integer j > 0. Then G contains a subgraph G′

on n′ > n0 vertices such that δ(G′) ≥ δ(Tn′,2) and e(G′) ≥ e(Tn′,2)+j+n−n′.

Proof. If δ(G) ≥
⌊
n
2

⌋
, then G is the desired graph and we have nothing to

do. So assume that δ(G) <
⌊
n
2

⌋
. Choose v ∈ V (G) with degG(v) <

⌊
n
2

⌋
.

Let G1 = G − v. Then e(G1) ≥ e(G) − degG(v) ≥ e(Tn,2) + j −
⌊
n
2

⌋
+ 1 =

e(Tn−1,2) + j + 1, since e(Tn,2) − e(Tn−1,2) =
⌊
n
2

⌋
. We may continue this

procedure until we get G′ on n − i vertices with δ(G′) ≥ δ(Tn−i,2) for some
i < n − n0, or until i = n − n0. For the latter case, G′ has n0 vertices but
e(G′) ≥ e(Tn0,2) + j + i > n− n0 ≥

(
n0

2

)
, which is impossible.

3 Proof of Theorem 2

Let G be an extremal graph for Ck,q on n ≥ n1(k, q) (n1(k, q) is given below)
vertices. By Lemma 7, e(G) ≥ e(Tn,2) + (k − 1)2. We will show that e(G) =
e(Tn,2) + (k − 1)2 and G is a member of Fn,k. Let

γ =
1

1600
,

n0 = n0(Ck,q, γ) ( which is determined by Ck,q and γ by applying

Lemma 4),

n1 = n1(k, q) = n0 + 20k2q +

(
n0 + 20k2q

2

)
.

By the choice of n1 and Lemma 8, we may assume δ(G) ≥ δ(Tn,2) =
⌊
n
2

⌋
,

otherwise, we consider a subgraph G′ with the desired minimum degree in-
stead ofG. Let V0∪̇V1 be a partition of V (G) such that e(V0, V1) is maximized.
Lemma 4 implies that m = e(V0) + e(V1) < γn2. The following claim asserts
that the partition is close to being balanced. The following inequality holds:
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Claim 9.
n

2
−√γn < |Vi| <

n

2
+
√
γn for i = 0, 1.

Furthermore, m = e(V0) + e(V1) ≥ (k − 1)2 and if the equality holds then G
contains a complete balanced bipartite graph with classes V0 and V1.

Proof. Let |V0| = n
2

+ a. Then |V1| = n
2
− a. Since⌊

n2

4

⌋
+ (k − 1)2 = e(Tn,2) + (k − 1)2 ≤ e(G) ≤ |V0||V1|+m =

n2

4
− a2 +m,

we have m ≥ (k − 1)2 and m ≥ a2. Since m < γn2, a2 < γn2. Hence
|a| < √γn.

If m = (k − 1)2, then

e(Tn,2) + (k − 1)2 ≤ e(G) = e(V0, V1) + (k − 1)2.

Hence e(V0, V1) = e(Tn,2), that is, V0, V1 are balanced and so G contains a
complete balanced bipartite graph with classes V0 and V1.

In the following, let Gi = G[Vi], ∆i = ∆(Gi) and νi = ν(Gi), i = 0, 1.
For a vertex x ∈ Vi, let E1−i(x) = {e ∈ E(G1−i)| V (e) ∩NG(x) 6= ∅}.

Claim 10. For any vertex x ∈ Vi,

degGi
(x) + ν(Gi −NGi

[x]) + ν(G[E1−i(x)]) ≤ k − 1.

Proof. We prove this claim by contradiction. Without loss of generality,
assume that there is an x ∈ V0 such that degG0

(x) + ν(G0 − N0[x]) +
ν(G[E1(x)]) ≥ k. Let xx1, xx2, . . . , xxs ∈ E(G0), and let M0 = {us+1vs+1, . . .
utvt} be a matching of G[V0 \ {x, x1, . . . , xs}] and M1 = {ut+1vt+1, . . . , ukvk}
a matching of G[E1(x)] such that xut+1, . . . , xuk ∈ EG(x, V1), where s, t ∈
[0, k]. Define

ξ(j) =

{
1 if j is odd,

0 if j is even.

We say that v is bad if degG[Vi]
(v) > t1, otherwise v is said to be good, where

t1 = 6
√
γn. Then the number of bad vertices in G is at most 2m

t1
< 2γn2

t1
=

1
3

√
γn.
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For any vertex u ∈ Vi (i = 0, 1), by the maximality of e(V0, V1), we have

eG(u, V1−i) ≥ max{eG(u, Vi),
⌊n

2

⌋
− eG(u, Vi)} ≥

1

2

⌊n
2

⌋
.

Particularly, if u ∈ Vi is good, then we have

eG(u, V1−i) ≥
⌊n

2

⌋
− eG(u, Vi) ≥

⌊n
2

⌋
− t1 (≥ 1

2

⌊n
2

⌋
).

Let A = V ({xx1, xx2, . . . , xxs} ∪ Mi ∪ M1−i). We find a copy of Ck,q
passing through all the vertices of A to get a contradiction.

For each ` ∈ [1, s], we find a sequence of vertices w1
1`, w

2
0`, · · · , w

q−3
0` , wq−2

1`

with wjξ(j)` ∈ Vξ(j) \ A for 1 ≤ j ≤ q − 2, such that wq−3
0` is good and

xw1
1` · · ·w

q−3
0` wq−2

1` x`x is a q-cycle. Furthermore, we require that wjξ(j)` (` ∈
[1, s], j ∈ [1, q−2]) are pairwise different. This is possible since together with
all vertices in A, the total number of good vertices which we have found is
at most |V (Ck,q)| = k(q − 1) + 1 and each vertex u ∈ Vi has at least

eG(u, V1−i)−
1

3

√
γn ≥ 1

2

⌊n
2

⌋
− 1

3

√
γn ≥ |V (Ck,q)| (since n ≥ 20k2q)

good neighbors in V1−i and the number of common neighbors of wq−3
0` and x`

in V1 is at least (since n ≥ 20k2q)

eG(wq−3
0` , V1)+eG(x`, V1)−|V1| ≥

⌊n
2

⌋
− t1 +

1

2

⌊n
2

⌋
− (

n

2
+
√
γn) ≥ |V (Ck,q)|.

Thus we have found a copy of Cs,q centered at x and passing through the
edges of {xx1, xx2, · · · , xxs}. Particularly, since G is Ck,q−free, we have
s ≤ k − 1. Thus

∆i = ∆(Gi) ≤ k − 1 < t1, i = 0, 1.

Consequently, all the vertices of G are good, and for each vertex u ∈ Vi,

eG(u, V1−i) ≥
⌊n

2

⌋
− (k − 1) ≥ n

2
− k

and thereby
n

2
− k ≤ |Vi| ≤

n

2
+ k, i = 0, 1.
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Next we will find a copy of Ck−s,q centered at x disjoint from the copy of
Cs,q. For every u` (` ∈ [s+ 1, t]), choose a common neighbor of x and ul, say
w1

1`, in V1 such that w1
1` 6= w1

1`′ if ` 6= `′. We can do this because the number
of common neighbors of x and u` in V1 is at least

eG(x, V1)+eG(u`, V1)−|V1| ≥ 2(
n

2
−k)−(

n

2
+k) ≥ |V (Ck,q)| (since n ≥ 20k2q).

For each ` ∈ [s + 1, t], with the same reason as above, we find vertices
w3

1`, w
4
0`, · · · , w

q−3
0` one by one, then a common neighbor of wq−3

0` and v`,
say wq−2

1` , in V1 such that u`w
1
1`xw

3
1` · · ·w

q−2
1` v`u` is a q-cycle. And for ev-

ery l ∈ [t, k], begin with x, we can find vertices w2
1`, w

3
0`, · · · , w

q−3
1` one by

one, then a common neighbor, say wq−2
0` , of wq−3

1` and v` in V0 such that
u`xw

2
1`w

3
0` · · ·w

q−2
0` v`u` is a q-cycle. Also, we may require that wjξ(j)` (` ∈

[s+ 1, k], j ∈ [1, q− 2]) are pairwise different. Thus the k− s q-cycles form a
copy of Ck−s,q centered at x and passing through all of the edges of M0∪M1.
Therefore, G[{x, x1, · · · , xl} ∪ {wjξ(j),l : j ∈ [1, q − 2], ` ∈ [1, k]}] contains a
desired copy of Ck,q with center x. This completes the proof.

Claim 11. We have that ν0 + ν1 ≤ k − 1.

Proof. If not, suppose that M0 = {u1v1, · · · , usvs} and M1 = {us+1vs+1, · · · ,
ukvk} are matchings in G0 and G1, respectively. Without loss of generality,
assume that s ≥ 1. First we find a common neighbor, say x, of us+1, · · · , uk
in V0 \V (M0). This is possible since the number of such neighbors is at least

k∑
l=s+1

eG(u`, V0)− (k − s− 1)|V0| − 2s

≥ (k − s)(n
2
− k)− (k − s− 1)(

n

2
+ k)− 2k

=
n

2
− (2(k − s) + 1)k

≥ n

2
− 2k2 > 0 (since n ≥ 20k2q).

Let M ′
0 be the maximal subset of M0 such that M ′

0 is a matching of G0 −
NG0 [x]. By Claim 10, degG0

(x) + |M ′
0| + |M1| ≤ k − 1. Clearly, degG0

(x) +
|M ′

0| ≥ s. Hence degG0
(x) + |M ′

0|+ |M1| ≥ k, a contradiction.

Claim 12. We have that max{∆0,∆1} = k − 1.
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Proof. If not, then by Claim 10, max{∆0,∆1} ≤ k − 2. Thus by Lemma 3
and Claim 11,

m = e(V0) + e(V1) ≤ f(ν0, k − 2) + f(ν1, k − 2)

≤ f(ν0 + ν1, k − 2) ≤ f(k − 1, k − 2).

If k 6= 4, m ≤ f(k − 1, k − 2) = (k − 1)2 − 1, contradicts to m ≥ (k − 1)2

(by Claim 9).
If k = 4, then m ≤ f(3, 2) = (k − 1)2 = 9. By Claim 9, m = (k −

1)2 = 9 and G contains a complete balanced bipartite subgraph with classes
V0 and V1. Let H be the subgraph consisting of nonempty components of
G0 ∪ G1. Then H is a graph with e(H) = 9, ∆(H) = 2 and ν(H) = 3.
By Observation 5 and with a similar discussion as in Case 1 of the proof of
Lemma 6, H consists of three vertex-disjoint triangles. Then we can easily
find a vertex x in H with degH(x) = 2 and a matching of order 2 in H−NH [x].
That is degGi

(x) + ν(Gi −NGi
[x]) + ν(G[E1−i(x)]) ≥ 4 = k, a contradiction

Claim 10.

Claim 13. We have that e(V0) · e(V1) = 0.

Proof. At first, by Claim 12 and Claim 11, we have

m ≤ f(ν0, k − 1) + f(ν1, k − 1) ≤ f(ν0 + ν1, k − 1)

≤ f(k − 1, k − 1) ≤ k(k − 1).

Next, by Claim 12, max{∆0,∆1} = k − 1. Without loss of generality,
assume ∆0 = k − 1. Let x ∈ V0 with degG0

(x) = k − 1. We show that
e(V1) = 0. If e(V1) > 0, then ν1 ≥ 1. By Claim 11, ν0 ≤ k − 1− ν1 = k − 2.
Let A1 = {u ∈ V1 : degG1

(u) > 0}. By Claim 10, we have A1 ∩ NG(x) = ∅.
So e(V0, V1) ≤ |V0||V1| − |A1| ≤ e(Tn,2)− |A1|. Thus we have

e(Tn,2) + (k − 1)2 ≤ e(G) ≤ e(Tn,2)− |A1|+m.

Therefore, |A1| ≤ m− (k − 1)2( ≤ k − 1). Again by Lemma 3, we have

m ≤ ν0(∆0 + 1) + ν1(∆1 + 1)

≤ kν0 + (k − 1− ν0)|A1| (since ∆1 + 1 ≤ |A1|)
= ν0(k − |A1|) + (k − 1)|A1|
≤ (k − 2)(k − |A1|) + (k − 1)|A1| (since |A1| ≤ k − 1 and ν0 ≤ k − 2)

= (k − 1)2 + |A1| − 1 ≤ (k − 1)2 +m− (k − 1)2 − 1

= m− 1, a contradiction.
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By Claim 13, Without loss of generality, we may assume e(V1) = 0, so
m = e(V0). Let A0 be the set of non-isolated vertices in G0. By Claim 10 and
Lemma 6, m = e(G[A0]) ≤ (k− 1)2. By Claim 9, we must have m = (k− 1)2

and therefore G contains a complete balanced bipartite subgraph with classes
V0 and V1. Again by Claim 10 and Lemma 6, since e(G[A0]) = (k−1)2, G[A0]
must be a copy of Kk−1,k−1. This completes the proof of Theorem 2.

References
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