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Abstract

Mixed almost Moore graphs appear in the context of the Degree/Diameter prob-
lem as a class of extremal mixed graphs, in the sense that their order is one less than
the Moore bound for mixed graphs. The problem of their existence has been con-
sidered before for directed graphs and undirected ones, but not for the mixed case,
which is a kind of generalization. In this paper we give some necessary conditions
for the existence of mixed almost Moore graphs of diameter two derived from the
factorization in Q[x] of their characteristic polynomial. In this context, we deal with
the irreducibility of Φi

(
x2 + x − (r − 1)

)
, where Φi(x) denotes the i-th cyclotomic

polynomial.

Keywords: Degree/Diameter problem, mixed almost Moore graph, characteristic
polynomial, cyclotomic polynomial, permutation cycle structure.

1 Introduction

The relationship between vertices or nodes in interconnection networks can be undirected
or directed depending on whether the communication between nodes is two-way or only
one-way. Mixed graphs arise in this case and in many other practical situations where
different kinds of connections are needed. Urban street networks being perhaps the most
popular one. A mixed graph G may contain (undirected) edges as well as directed edges
(also known as arcs). Mixed graphs whose vertices represent the processing elements
and whose edges represent their links have been studied before ([6, 13]). It is there-
fore natural to consider network topologies based on mixed graphs, and investigate the
Degree/Diameter problem in that kind of graphs.
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• Degree/Diameter problem for mixed graphs: given three natural numbers r, z and k,
find the largest possible number of vertices n(r, z, k) in a mixed graph with maximum
undirected degree r, maximum directed out-degree z and diameter k.

In the pure directed case r = 0 (the mixed graph is a directed graph) it has been proved
that

n(0, z, k) < 1 + z + · · ·+ zk = M(0, z, k),

unless z = 1 or k = 1 (see [14, 4]). Then, the question of finding for which values of z > 1
and k > 1 we have n(0, z, k) = M(0, z, k)− 1, where M(0, z, k) is known as the (directed)
Moore bound , becomes an interesting problem. In this case, any extremal digraph turns
out to be z-regular (see [11]). Regular digraphs of degree z > 1, diameter k > 1 and order
n = z + · · · + zk are called almost Moore (z, k)-digraphs (or (z, k)-digraphs for short).
Besides, when z = 0, that is, the mixed graph becomes an undirected graph, it is known
that

n(r, 0, k) < M(r, 0, k) = 1 + r+ r(r− 1) + · · ·+ r(r− 1)k−1 =

{
1 + r (r−1)k−1

r−2 if r > 2

2k + 1 if r = 2

unless r = 2 and any k > 3 (cycle graphs C2k+1) or k = 2 and r = 2, 3, 7 (and possibly
r = 57). Hoffman and Singleton [9] proved that unique Moore graphs exist for k = 2 and
r = 2, 3, 7, whereas the case r = 57 remains as the most important open problem in this
area.

These latter bounds are easily derived just counting the number of vertices of a par-
ticular distance of any given vertex v in a [di]graph with given maximum [out-]degree and
diameter. Nevertheless, the problem of finding a general formula for M(r, z, k) has been
more difficult (see [5]). Here, we focus on the case of diameter two, where the Moore
bound for mixed graphs is easily derived as

M(r, z, 2) = 1 + z + (r + z)2.

In this context, we deal with mixed graphs containing at least one edge and one arc.
Mixed graphs of diameter two, maximum undirected degree r > 1, maximum out-degree
z > 1 and order this bound are called mixed Moore graphs. Such extremal mixed graphs
are totally regular of degree d = r+z and they have the property that for any ordered pair
(u, v) of vertices there is a unique trail of length at most 2 between them. Although some
mixed Moore graphs of diameter two are known to exist and they are unique [12], the
general problem remains unsettled. Bosak [3] gives a necessary condition for the existence
of a mixed Moore graph of diameter two, but recently it has been proved that there is
no mixed Moore graph for the (r, z) pairs (3, 3), (3, 4), (7, 2) satisfying such necessary
condition (see [10]) and in general there are infinitely many pairs (r, z) satisfying Bosak
necessary condition for which the existence of a mixed Moore graph is not yet known.
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2 Mixed almost Moore graphs of diameter two

Here we deal with the problem of the existence of mixed graphs of diameter two with
maximum undirected degree r, maximum directed out-degree z and order just one less
than the Moore bound. We call these mixed graphs mixed almost Moore graphs of diameter
two. For the case of undirected graphs, Erdős, Fajtlowitcz and Hoffman [7] proved that,
apart from the cycle graph of length 4, almost Moore graphs of diameter two do not exist.
In the other way around, for the case of directed graphs, Gimbert [8] enumerated all
almost Moore digraphs of diameter two. As far as we know, the problem of the existence
of mixed almost Moore graphs has not been treated before. An example of a mixed
almost Moore graph of diameter two is given in Figure 1. This graph is totally regular
with undirected degree r = 2 and directed degree z = 1. Next we see that a mixed almost
Moore graph of diameter two must have undirected even degree.

Proposition 1. There is no mixed almost Moore graph of diameter two with undirected
odd degree r.

Proof. The number of vertices of a mixed almost Moore graph is n = M(r, z, 2) − 1 =
z+(r+z)2 = r2 +z2 +2rz+z. No matter what the parity of z is, if r is odd we have that
n is always odd too. If there was a mixed graph G of order n and with every vertex of
undirected degree r, we could take the undirected subgraph derived from G by removing
all its arcs. This undirected graph would be regular of odd degree r and it would have
odd order n. But it is well known that regular graphs of odd degree must have even order.
Hence, such undirected graph does not exist and neither its corresponding mixed almost
Moore graph.

Notice that in the previous proposition we are assuming that every vertex in a mixed
almost Moore graph of diameter two has undirected degree r (instead of maximum undi-
rected degree). In fact, if there exists a vertex v with undirected degree r′ 6 r− 1 and/or
directed out-degree z′ 6 z − 1, then the total number of vertices reached by v in length
6 2 would be 1+z′+(r′+z′)2. A simple observation gives 1+z′+(r′+z′)2 < z+(r+z)2 =
M(r, z, 2)− 1 when r′ 6 r− 1 or z′ 6 z− 1. Hence, such mixed graph containing v would
have order less than M(r, z, 2) − 1. As a consequence, every mixed almost Moore graph
of diameter two must have undirected degree r and directed out-degree z. It remains
to determine if every vertex has directed in-degree z. If so, this mixed graph is called
totally regular. Figure 1 shows an example of a mixed almost Moore graph with r = 2
and z = 1 which is totally regular. Nevertheless, we do not know if there exist mixed
almost Moore graphs which are not totally regular. It is known that this question has
an affirmative answer for both undirected and directed graphs, but it is not proved for
mixed graphs. We post a problem regarding this question in the last section of the paper.
Despite the example given in Figure 1, it seems difficult to find more examples of these
extremal mixed graphs.

Next, we study some properties related to the spectrum of a mixed almost Moore
graph that help us to derive more conditions for the existence of these mixed graphs.
Every mixed almost Moore graph G of diameter two has the property that for each vertex

the electronic journal of combinatorics 23(2) (2016), #P2.3 3



v ∈ V (G) there exists only one vertex, denoted by σ(v) and called the repeat of v, such
that there are exactly two walks of length at most 2 from v to σ(v). If σ(v) = v, then v
is called a selfrepeat vertex. As a consequence, the adjacency matrix A of G satisfies the
following matrix equation depending on a (0, 1)-matrix P :

I + A+ A2 = J + rI + P (1)

where I and J denote the identity and the all-ones matrix, respectively. Indeed, each
entry I + A + A2 is 1 due to the uniqueness of the walks, except in the main diagonal
(which corresponds to closed walks of length 6 2), where the fact that each vertex is
incident to r edges gives exactly r closed walks (performed by edges) of length 2 at any
vertex. Now every extra walk of length at most 2 from v to σ(v) is codified into matrix P
(pij = 1 iff σ(i) = j assuming V (G) = {1, . . . , n}), for every vertex v of G. Under these
conditions, it is easy to see that G is a totally regular graph (AJ = JA = (r + z)J) if
and only if P is a permutation matrix (PJ = JP = J) preserving the adjacencies of G
(AP = PA), that is, the map σ, which assigns to each vertex v ∈ V (G) its repeat σ(v),
is an automorphism of G (see [1]).

From here on, we will focus on mixed almost Moore graphs that are totally regular.
Seeing σ as a permutation, it has a cycle structure which corresponds to its unique de-
composition in disjoint cycles. Such cycles will be called permutation cycles of G. The
number of permutation cycles of G of each length i 6 n will be denoted by mi and the
vector (m1, . . . ,mn) will be referred to as the permutation cycle structure of G. In partic-
ular, m1 is the number of selfrepeats vertices and it is also the number of 1’s in the main
diagonal of P , that is, Tr (P ) = m1, where Tr (P ) denotes the trace of the matrix P .

Moore graphs as mixed almost Moore graphs with z = 1

We point out that M(r+1, 0, 2) = M(r, 1, 2)−1, that is, the Moore bound for undirected
graphs of diameter two coincides with the order that a mixed almost Moore graph, with
z = 1 and one edge less, should have. Hence, Moore graphs of degree r + 1 and diameter
two can be viewed as mixed almost Moore graphs with z = 1 and undirected degree
r. In this case, every vertex is selfrepeat, so m1 = n. From the matrix point of view,
the adjacency matrix A of a Moore graph of degree r + 1 and diameter two satisfies the
equation I + A + A2 = J + (r + 1)I, which is a particular solution of Equation 1 when
the permutation matrix P is the identity matrix I, that is, when Tr (P ) = m1 = n.
Since Moore graphs are well studied, we are interested in other solutions than the ones
provided by Moore graphs. For instance, Petersen graph is a mixed almost Moore graph
of diameter two with parameters r = 2 and z = 1, by replacing five vertex-disjoint edges
by digons (one arc and its reverse). Next, we provide another example with the same set
of parameters but where no vertex is selfrepeat.

Example

The mixed graph G depicted in Figure 1 has 10 vertices and is totally regular with
undirected degree r = 2 and directed degree z = 1, moreover, it is easy to check that
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G has diameter two. Since M(2, 1, 2) − 1 = 10, we have that G is a mixed almost
Moore graph. Taking indexes modulus 5, we observe that the repeat of vertex ai is ai−2
since there are two different paths of length 6 2 joining them (aiai−1ai−2 and aici−1ai−2).
Besides, σ(ci) = ci−2 since cici−2 and ciai−1ci−2 are again two differents paths of length
6 2. Hence, the permutation σ decomposes in two disjoint cycles of length five, that is,
σ = (a0a3a1a4a2)(c0c3c1c4c2). So, the permutation cycle structure (m1, . . . ,m10) of this
graph is m5 = 2 and mi = 0, for all i 6= 5.

a0

a1

a2 a3

a4

c0

c1

c2 c3

c4

Figure 1: A mixed almost Moore graph with undirected degree 2 and directed degree 1.

3 Characteristic polynomial of mixed almost Moore graphs of
diameter two

Let G be a mixed almost Moore graph with permutation cycle structure (m1, . . . ,mn)
and let A be its adjacency matrix. From Equation 1, the spectrum of A and J + rI + P
are closely related. In [2] it is computed the characteristic polynomial of J + P as

det
(
xI − (J + P )

)
=
(
x− (n+ 1)

)
(x− 1)

∑n
i=1mi−1

n∏
i=2

(xi − 1)mi .

Since xl− 1 =
∏

i|l Φi(x), where Φi(x) denotes the i-th cyclotomic polynomial, the factor-

ization of det
(
xI − (J + P )

)
in Q[x] is

det
(
xI − (J + P )

)
=
(
x− (n+ 1)

)
(x− 1)m(1)−1

n∏
i=2

Φi(x)m(i),
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where m(i) =
∑

i|lml represents the total number of permutation cycles of order multiple
of i. Now, the mapping x→ x− r gives,

det
(
(x− r)I − (J + P )

)
=
(
x− (n+ r + 1)

)(
x− (r + 1)

)m(1)−1
n∏
i=2

Φi(x− r)m(i).

We just need to add another mapping x→ 1+x+x2 to have information about the factors
of the characteristic polynomial of G. Since n = d+d2−r, we have that (x−d) is the first
factor of φG(x) (corresponding to

(
1+x+x2−(n+r+1)

)
in det

(
(1+x+x2−r)I−(J+P )

)
).

The other factors of φG(x) are the irreducible factors of (x2+x−r) and Φi

(
x2+x−(r−1)

)
.

Note that Φ1

(
x2 +x− (r−1)

)
= (x2 +x−r), hence we can collect all of them in a simpler

expression,

Proposition 2. The irreducible factors of the characteristic polynomial φG(x) of a mixed
almost Moore graph G are (x−d) and some of the irreducible factors of Φi

(
x2+x−(r−1)

)
,

for all 1 6 i 6 n.

For instance, the mixed almost Moore graph G depicted in Figure 1 has characteristic
polynomial φG(x) = (x−3)(x−1)Φ5(x

2+x−1), where (x−1) is a factor of Φ1(x
2+x−1).

In order to give more information about the existence of mixed almost Moore graphs, we
should deal with the problem of the irreducibility of the polynomials Φi

(
x2 +x− (r−1)

)
,

for all i = 1, . . . , n. This problem was first solved in [8] for the particular case r = 0, where
the study of the irreducibility of Φi(x

2 +x+1) was crucial to complete the enumeration of
almost Moore digraphs of diameter two. Our case is a little bit difficult, since we have in
addition parameter r > 1. Let us observe that Φ1

(
x2+x−(r−1)

)
= x2+x−r is irreducible

in Q[x] iff 4r+ 1 is not a square in Z. Besides, Φ2

(
x2 + x− (r− 1)

)
= x2 + x− (r− 2) is

irreducible in Q[x] iff 4r− 7 is not a square in Z. For the remaining cases, we next prove
that Φi

(
x2 + x− (r − 1)

)
is always irreducible.

Theorem 1. The polynomials Φi

(
x2 + x − (r − 1)

)
are irreducible in Q[x] for all i > 3

and r > 1.

Proof. Suppose that Φi

(
x2 + x − (r − 1)

)
, i > 3 is reducible in Q[x], in other words,

Φi

(
x2 + x − (r − 1)

)
= fi(x)gi(x) with fi(x), gi(x) non-constant polynomials in Q[x].

Then, if ε is a root of fi(x) there exists a primitive i-th root of unity ζi such that

ε2 + ε+ 1− r = ζi. (2)

We consider the following algebraic extensions Q ⊆ Q(ζi) ⊆ Q(ε), whose degrees satisfy

[Q(ζi) : Q] = ϕ(i) and [Q(ε) : Q(ζi)] · [Q(ζi) : Q] = [Q(ε) : Q],

where ϕ(i) stands for the Euler’s function. Since we have assumed Φi

(
x2 + x − (r − 1)

)
is reducible, [Q(ε) : Q] < 2ϕ(i). Hence Q(ε) = Q(ζi) and deg(fi) = deg(gi) = ϕ(i). From
Equation 2 it follows that ε belongs to the ring of algebraic integers of Q(ζi), which is
Z[ζi] (see [15, Theorem 2.6]).
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Taking into account that ε2 + ε − r = ζi − 1 and denoting τ = ε2 + ε − r, we get
τ(τ + 1) = ζi(ζi − 1). If i has at least two different prime factors, we know that ζi − 1 is
a unit in Z[ζi] (see [15, Proposition 2.8]). If i is a prime or a power of a prime, ζi − 1 is
a prime element in Z[ζi] (see [15, Lemma 1.4]). Therefore, ζi(ζi − 1) is either a unit or a
prime element in Z[ζi]. Hence, either τ or τ + 1 is a unit in Z[ζi].

If τ is a unit then its conjugate can be expressed as τ = α · τ , where α is a root of
unity (see [15, Lemma 1.6]). If τ + 1 is a unit then τ = βζi(ζi − 1), where β = (τ + 1)−1.
Since β = γ · β, with γ a root of unity, it turns out τ = γβ(1− ζi)/ζ3i , that is, τ = α · τ
being α a root of unity as well. Furthermore, since the only roots of unity in Q(ζi) are of
the form ±ζ`i , it follows that α is a 2i-th root of unity. So, in any case τ = α · τ , where
α2i = 1.

Now, in order to find a polynomial relation between α and ζi, we use the following
identities:

τ 2 + τ = ζi(ζi − 1) and τ = α · τ.

Considering the complex conjugate of τ , from the first relation we have

α2τ 2 + ατ = (1− ζi)/ζ2i .

Then, multiplying the relation with τ 2 by α2 and subtracting the former relation we get

τ =
(ζi − 1)(α2ζ3i + 1)

α(α− 1)ζ2i
.

Equating this expression of τ with ζi − 1 we obtain the following relation between α and
ζi:

(α2ζ3i + 1)− α(α− 1)ζ2i = 0.

Now, we can take in this expression α = ζ`2i, 1 6 ` < 2i, and ζi = ζ22i. Replacing ζ2i with
x we get the polynomial

p`(x) = x2`+6 − x2`+4 + x`+4 + 1,

which factorizes as follows:

p`(x) = (x`+4 − x`+2 + 1)(x`+2 + 1).

Since p`(ζ2i) = 0, one of the two factors must vanish at ζ2i. Consider first the case
ζ`+2
2i = −1. Since ζ2i is a primitive root of unity of order 2i, we have ` + 2 = ki, k ∈ N.

Besides, ` < 2n, hence either k = 1 or k = 2. If k = 1, then α = ζ i−22i = (−1)/ζ22i. By
substituting α in the relation τ = α · τ , being τ = ζ2i − 1, we obtain ζ2i = 1, which is
not possible. If k = 2, then α = ζ2i−22i = 1/ζ22i. By substituting α in the same relation
ζ2i = α(ζ2i − 1), we get ζ2i = −1, which is also not possible.

Consider now the case ζ`+4
2i − ζ`+2

2i + 1 = 0. Dividing by ζ`+4
2i we have the relation

1 = ζ−22i − ζ−`−42i . (3)
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Then, it is clear that ζ22i ∈ Q(ζ`+4
2i ). Therefore

Q(ζ22i) ⊆ Q(ζ`+4
2i ) ⊆ Q(ζ2i).

Since [Q(ζ2i) : Q(ζ22i)] 6 2, it turns out that [Q(ζ2i) : Q(ζ`+4
2i )] 6 2. More precisely, if i is

odd both degrees are 1. Now, taking traces TrQ(ζ2i)/Q in the Equation 3 we obtain

TrQ(ζ2i)/Q(1) = TrQ(ζ2i)/Q(ζ−22i )− TrQ(ζ2i)/Q(ζ−`−42i ).

From the properties of TrQ(ζi)/Q we have

TrQ(ζi)/Q(1) = [Q(ζi) : Q] and TrQ(ζi)/Q(ζi) = µ(i),

where µ is the Möbius function. In particular, | TrQ(ζi)/Q(ζi) |6 1. Taking into account
this and

TrQ(ζk2i)/Q(ζ2i)
◦TrQ(ζ2i)/Q(ζk2i)

,

it turns out that

ϕ(2i) 6 [Q(ζ2i) : Q(ζ−22i )] + [Q(ζ2i) : Q(ζ−`−42i )] 6 4.

In particular, if i is odd ϕ(i) = ϕ(2i) 6 2. Hence, i 6 3 if i is odd and 2i 6 12 if i is even,
that is, i 6 6 if i is even. Therefore, Φi

(
x2 +x− (r−1)

)
is irreducible for i > 6 and i 6= 5.

The polynomials Φ3

(
x2+x−(r−1)

)
and Φ6

(
x2+x−(r−1)

)
considered in F2[x] coincide

with the same polynomial x4 + x+ 1, which is irreducible. Then, Φi

(
x2 + x− (r − 1)

)
is

also irreducible in Q[x] for the cases i = 3 and i = 6. Unlike them, Φ4

(
x2 + x− (r − 1)

)
factorizes in F2[x] and this argument does not work. In this case, Φ4

(
x2 + x− (r− 1)

)
=(

x2 + x − (r − 1)
)2

+ 1 does not have real roots and hence does not have linear factors.
Thus, the only possible decomposition of

Φ4

(
x2 + x− (r − 1)

)
= x4 + 2x3 +

(
2(1− r) + 1

)
x2 + 2(1− r)x+ (1− r)2 + 1

is as a product of two quadratic factors of the form(
x2 − 2ax+ a2 +

1

(2a+ 1)2

)(
x2 + 2(a+ 1)x+ (a+ 1)2 +

1

(2a+ 1)2

)
,

with r = a2 + a + 1 − 1

(2a+ 1)2
∈ Z. Nevertheless, a = 0 is the unique value of a for

which r is integer. In this case, r = 0 and Φ4(x
2 + x+ 1) = (x2 + 1)(x2 + 2x+ 2). Hence,

for r > 1 the polynomial Φ4

(
x2 + x− (r − 1)

)
is also irreducible.

4 Necessary conditions for the existence of mixed almost Moore
graphs of diameter two

Next, we are ready to give a necessary condition for the existence of a mixed almost Moore
graph. We recall that if a(x) = anx

n+an−1x
n−1 + · · ·+a0 is a polynomial of degree n > 1,

with rational coefficients, then its trace, denoted by Tr a(x), is defined as the sum of all
its complex roots, that is, Tr a(x) = −an−1

an
. In particular, the traces of the cyclotomic

polynomials are Tr Φi

(
x2 + x− (r − 1)

)
= −ϕ(i).
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Theorem 2. Let G be a (totally regular) mixed almost Moore graph of diameter two,
undirected (even) degree r > 2 and directed degree z > 1. Then, one of the following
conditions must hold,

(a) There exists an odd integer c1 ∈ Z such that c21 = 4r + 1 and c1 | (4z + 1)(4z − 7).

(b) There exists an odd integer c2 ∈ Z such that c22 = 4r− 7 and c2 | (16z2 + 40z− 23).

Proof. Let (m1, . . . ,mn) be the permutation cycle structure of a mixed almost Moore
graph G of diameter two, where n = d + d2 − r. Due to Theorem 1, we compute the
characteristic polynomial φG(x) depending on the irreductibility of Φ1

(
x2 + x− (r − 1)

)
and Φ2

(
x2 + x − (r − 1)

)
. We recall that Φ1

(
x2 + x − (r − 1)

)
= x2 + x − r and

Φ2

(
x2 +x− (r− 1)

)
= x2 +x− (r− 2) and they are reducible in Q[x] iff 4r+ 1 and 4r− 7

are squares in Z, respectively.

• First case: Φ1

(
x2 + x − (r − 1)

)
and Φ2

(
x2 + x − (r − 1)

)
are irreducible, that is,

4r + 1 and 4r − 7 are not squares in Z, then

φG(x) = (x− d)(x2 + x− r)
m(1)−1

2

n∏
i=2

Φi

(
x2 + x− (r − 1)

)m(i)
2 .

Now, we express the trace of the adjacency matrix A of G in terms of the traces of
the factors of φG(x).

TrA = TrφG(x) = d+ (−1)

(
m(1)− 1

2

)
− 1

2

n∑
i=2

m(i)ϕ(i).

Then, taking into account the identity
∑n

i=1m(i)ϕ(i) = n (see [8]), we have that,

TrA = d+ (−1)

(
m(1)− 1

2

)
− n

2
+
m(1)

2
= d+

1

2
− n

2
.

Therefore, the condition TrA = 0 (G has no loops) implies that n = 2d + 1. Now,
taking into account that n = d+ d2− r, we have d(d− 1) = 1 + r. Since r < d, this
equality holds only in the case r = 1 and d = 2. But, by Proposition 1 mixed almost
Moore graph do not exist for odd r, so there is no mixed almost Moore graph in
this case.

• Second case: Φ1

(
x2 +x− (r−1)

)
is reducible and Φ2

(
x2 +x− (r−1)

)
is irreducible,

that is, there exists c1 ∈ Z such that c21 = 4r + 1. Let us write (x2 + x − r) =
(x− α1)(x− β1), then the characteristic polynomial of G is

φG(x) = (x− d)(x− α1)
a1(x− β1)b1

n∏
i=2

Φi

(
x2 + x− (r − 1)

)m(i)
2 ,
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where a1+b1 = m(1)−1. Now, we proceed as in the previous case, where we express
the trace of the adjacency matrix A of G in terms of the traces of the factors of
φG(x):

TrA = TrφG(x) = d+ a1α1 + b1β1 −
1

2

n∑
i=2

m(i)ϕ(i).

With the help of
∑n

i=1m(i)ϕ(i) = n and taking into account that α1 = −1+c1
2

and
β1 = −1−c1

2
, we derive

TrA = d− n

2
+

1

2

(
c1(a1 − b1) + 1

)
.

The condition TrA = 0 implies,

n = 2d+ c1(a1 − b1) + 1. (4)

We can express this last identity in terms of c1 and z by the equivalences n =

d+ d2 − r, d = r + z and r =
c21−1
4

. Looking at it as a polynomial with variable c1,
we get

c41 + (8z − 10)c21 − 16(a1 − b1)c1 + 16z2 − 24z − 7 = 0.

Now c1 is an integer solution of this polynomial equation, so c1 must divide 16z2 −
24z − 7, that is c1|(4z + 1)(4z − 7).

• Third case: Φ1

(
x2 +x− (r− 1)

)
is irreducible and Φ2

(
x2 +x− (r− 1)

)
is reducible,

that is, there exists c2 ∈ Z such that c22 = 4r − 7. Let us write x2 + x − (r − 2) =
(x− α2)(x− β2), then the characteristic polynomial of G is

φG(x) = (x− d)(x2 + x− r)
m(1)−1

2 (x− α2)
a2(x− β2)b2

n∏
i=3

Φi

(
x2 + x− (r − 1)

)m(i)
2 ,

where a2 + b2 = m(2), α2 = −1+c2
2

and β2 = −1−c2
2

. As in the previous case, the
condition TrA = 0 implies n = 2d+ c2(a2− b2)+1. Collecting this identity in terms
of c2 and z, we derive a polynomial equation in c2 where a rational solution needs
c2 | (16z2 + 40z − 23).

Note that the case when Φ1

(
x2+x−(r−1)

)
and Φ2

(
x2+x−(r−1)

)
are both reducible only

happens when 4r+1 = c21 and 4r−7 = c22. But then c21−c22 = 8, that is (c1−c2)(c1+c2) = 8.
All the integer solutions of this equation give r = 2, which is excluded in this theorem
and it will be treated before.

The first even values for the undirected degree r that do not satisfy the conditions
given above are r = 8, 10, 14, 16, 18, 22, 24, 26, 28. Hence, for this range of values (and
beyond) we can guarantee that a mixed almost Moore graph with undirected degree r
does not exist. Notice that r = 14 satisfies the first part of (b) in Theorem 2 since
4 · 14− 7 = 72, but then 7 should divide 16z2 + 40z − 23 for at least one z > 1 and this
last divisibility condition never happens. More in general,
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Proposition 3. For any odd integer c ∈ Z there exist at most one r > 1 satisfying either
(a) or (b) in Theorem 2.

Proof. Suppose there exist r1 and r2, r1 6= r2, such that c2 = 4r1 + 1 and c2 = 4r2 − 7.
Then r2−r1 = 2 and c must divide both polynomials (4z+1)(4z−7) and 16z2 +40z−23.
Using the elementary properties of the great common divisor, we have that gcd

(
(4z +

1)(4z − 7), 16z2 + 40z − 23
)

= gcd
(
(4z + 1)(4z − 7), 16(4z − 1)

)
= gcd(4z − 1, 2) = 1, for

all z. Therefore c = 1, which gives r1 = 0.

Conditions related to the permutation cycle structure

Next, we provide another existence condition for a mixed almost Moore graph of diameter
two concerning its structure of vertices adjacent to their corresponding repeats. To this
end, we will compute the trace of A3 in two different ways. First of all, from Equation 1
and using the linearity of the trace, we get Tr (A2). Indeed, Tr (I) + Tr (A) + Tr (A2) =
Tr (J) + rTr (I) + Tr (P ) and since Tr (A) = 0 and Tr (P ) = m1 we get

Tr (A2) = rn+m1.

This is something that can be deduced using geometric reasoning too: Every vertex in
a (totally regular) mixed almost Moore graph of diameter two contains exactly r closed
walks of length 2 (those provided by the undirected edges), and (maybe) some others
provided by digons (one arc and its reverse). In this last case, we would have selfrepeat
vertices and we know that there are m1 of them. Consequently, Tr (A2) = rn + m1. We
point out that the combination of Tr (A2) = rn+m1 together with Tr (A2) = Tr (φ2

G(x))
provides the same necessary conditions given in Theorem 2 for the existence of a mixed
almost Moore graph of diameter two. One step beyond is the combined calculation of
Tr (A3): multiplying A from the left side in Equation 1, we obtain A + A2 + A3 =
AJ + rA+ AP . Taking into account that AJ = JA = (r + z)J we deduce

Tr (A3) = zn−m1 + Tr (AP ). (5)

From the geometric point of view, Tr (AP ) is the number of vertices v ofG adjacent to their
corresponding repeat vertices σ(v), since (AP )ii =

∑n
j=1AijPji = Aσ(i)i. By expressing

Equation 5 in terms of the eigenvalues of G, we give another necessary condition for the
existence of a mixed almost Moore graph.

Proposition 4. Let G be a (totally regular) mixed almost Moore graph of diameter two,
undirected (even) degree r > 2 and directed degree z > 1. Then, m1 (the number of selfre-
peats vertices of G) is even and the total number of vertices adjacent to their corresponding
repeat vertices is n

2
− m1

2
, where n = d2 + d− r.

Proof. We compute Tr (A3) using the roots of the characteristic polynomial φG(x). As
we saw in Theorem 2, the characteristic polynomial φG(x) depends on the factorization
of Φ1

(
x2 + x− (r− 1)

)
and Φ2

(
x2 + x− (r− 1)

)
. We are going to depict the second case,
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that is, when Φ1

(
x2 + x − (r − 1)

)
is reducible and Φ2

(
x2 + x − (r − 1)

)
is not. In this

case, we have,

φG(x) = (x− d)(x− α1)
a1(x− β1)b1

n∏
i=2

Φi

(
x2 + x− (r − 1)

)m(i)
2 ,

where a1 + b1 = m(1)− 1. Hence,

Tr (A3) = Trφ3
G(x) = d3 + a1α

3
1 + b1β

3
1 −

1

2

n∑
i=2

m(i)
∑
ζ

(γ3ζ + δ3ζ ),

where γζ and δζ are the two roots of x2 + x − (r − 1) = ζ for every primitive root of
the unity ζ. From γ3ζ + γ2ζ − (r − 1)γζ = ζγζ and δ3ζ + δ2ζ − (r − 1)δζ = ζδζ we get
γ3ζ + δ3ζ = −3ζ − 3r + 2. Hence,

Tr (A3) = d3 + a1α
3
1 + b1β

3
1 −

1

2

n∑
i=2

m(i)
(

(−3)
∑
ζ

ζ + (2− 3r)
∑
ζ

1
)
.

Using the identities
∑

ζ 1 = ϕ(i) and
∑

ζ ζ = µ(i) (see [8]) we have,

Tr (A3) = d3 + a1α
3
1 + b1β

3
1 −

3

2

n∑
i=2

m(i)µ(i) +
2− 3r

2

n∑
i=2

m(i)ϕ(i).

Now, from
∑n

i=1m(i)ϕ(i) = n and
∑n

i=1m(i)µ(i) = m1, we get,

Tr (A3) = d3 + a1α
3
1 + b1β

3
1 −

3

2

(
m1 −m(1)

)
+

2− 3r

2

(
n−m(1)

)
.

Combining this equation with Equation 5 and taking into account that m(1) = a1+b1+1,
α1 = −1+c1

2
and β1 = −1−c1

2
we derive

rd2 − (r + 2)d− (r2 + r + 1) = c1(1 + r)(a1 − b1)− 2Tr (AP )−m1. (6)

Using Equation 4 together with Equation 6 yields the desired result Tr (AP ) = n
2
− m1

2
.

The case when Φ1

(
x2 +x− (r−1)

)
is irreducibe and Φ2

(
x2 +x− (r−1)

)
is reducible can

be done with the same ideas and it results on the same identity Tr (AP ) = n
2
− m1

2
.

The case r = 2

In Theorem 2 we have excluded the case r = 2. This is the case when Φ1

(
x2 +x− (r−1)

)
and Φ2

(
x2 + x − (r − 1)

)
are both reducible in Q[x]. More precisely, Φ1(x

2 + x − 1) =
x2 + x− 2 = (x+ 2)(x− 1) and Φ2(x

2 + x− 1) = x2 + x = x(x+ 1). Hence,

φG(x) = (x− d)(x+ 2)a1(x− 1)b1xa2(x+ 1)b2
n∏
i=3

Φi(x
2 + x− 1)

m(i)
2 .
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Now, Tr (A) = 0 gives
n = 2d− 3(a1 − b1) + (a2 − b2) + 1. (7)

With the help of Tr (A3) = zn + m1 + Tr (AP ) we derive a similiar condition to the one
given in Proposition 4, but now it depends on the multiplicities a2 and b2:

Tr (AP ) =
n

2
− m1

2
− (a2 − b2). (8)

For instance, vertices {c0, c3, c1, c4, c2} in the mixed almost Moore graph G depicted in
Figure 1 are all adjacent to their corresponding repeat vertices (and the remaining vertices
are not), hence Tr (AP ) = 5. Now, using equations 7 and 8 together with 2 = m(1) =
a1 + b1 + 1 and 0 = m(2) = a2 + b2, one can obtain φG(x) = (x− 3)(x− 1)Φ5(x

2 +x− 1).

5 Open problems

This last section is devoted to several open problems, most of them related with the
existence of this extremal class of mixed graphs. First of all, as we mention in section 2,
almost Moore graphs are totally regular either in the directed or undirected case. We do
not know if this is longer true for mixed graphs.

Question 1. Are mixed almost Moore graphs of diameter two totally regular?

Figure 1 is an example of a mixed almost Moore graph of diameter two, with r = 2
and z = 1, but we do not know if there are mixed almost Moore graphs with r = 2 and
z > 2. For the values of the undirected degree r satisfying Theorem 2 we do not know if a
mixed almost Moore graph do exist. Moreover, in Table 1 we provide a range of values for
the directed degree z satisfying Theorem 2 when r is fixed, and the corresponding order
n that a mixed almost Moore graph should have.

Question 2. Are there mixed almost Moore graphs of diameter two, undirected degree
r = 2 and directed degree z > 2?

Question 3. Does there exist a mixed almost Moore graph of diameter two with parame-
ters (r, z) satisfying necessary conditions given in Theorem 2?

r c1 c2 z n Existence
4 - 3 1, 4, 7, 10, . . . 26, 68, 128, 206, . . . Unknown
6 5 - 1, 3, 6, 8, . . . 50, 84, 150, 204, . . . Unknown
8 - 5 - - non-existent
10 - - - - non-existent
12 7 - 5, 7, 12, 14, . . . 294, 368, 588, 690, . . . Unknown
14 - 7 - - non-existent
16 - - - - non-existent
18 - - - - non-existent
20 9 - 2, 4, 11, 13, . . . 486, 580, 972, 1102, . . . Unknown
22 - 9 - - non-existent

Table 1: The first even values for the undirected degree r and their corresponding values
for parameters c1,c2 and z as in Theorem 2.
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