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Abstract

We construct and study a new near octagon of order (2, 10) which has its full
automorphism group isomorphic to the group G2(4) : 2 and which contains 416
copies of the Hall-Janko near octagon as full subgeometries. Using this near octagon
and its substructures we give geometric constructions of the G2(4)-graph and the
Suzuki graph, both of which are strongly regular graphs contained in the Suzuki
tower. As a subgeometry of this octagon we have discovered another new near
octagon, whose order is (2, 4).

Keywords: near polygon, generalized polygon, finite simple group, Suzuki tower,
strongly regular graph, commuting involutions

1 Introduction and overview

A near 2d-gon with d ∈ N is a partial linear space S that satisfies the following properties:

(NP1) The collinearity graph of S is connected and has diameter d.

(NP2) For every point x and every line L there exists a unique point πL(x) incident with
L that is nearest to x.

A near polygon is a near 2d-gon for some d ∈ N. Near polygons were introduced by
Shult and Yanushka in [21] as geometries related to certain line systems in Euclidean
spaces. The class of near 4-gons coincides with the class of possibly degenerate generalized
quadrangles. Generalized quadrangles belong to the family of generalized polygons, an
important class of point-line geometries introduced by Jacques Tits in [26]. It is well
known that every generalized 2d-gon is a near 2d-gon.

A near polygon is said to have order (s, t) if it has s+ 1 points on each line and t+ 1
lines through each point. An important class of near polygons with an order is that of the
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regular near polygons, which are related to the distance regular graphs (see Section 6.4
of [10]). A famous example of a regular near octagon (d = 4) is the near octagon HJ [11]
associated with the sporadic simple group J2 of Hall and Janko. It can be constructed by
taking the 315 central involutions of the group J2 as points and the three element subsets
{x, y, xy} of points where the involutions x and y commute as lines. Therefore, the Hall-
Janko near octagon is a commuting involution graph of the sporadic simple Hall-Janko
group J2.

Michio Suzuki (cf. [25]) constructed a sequence of five finite simple groups G0, . . . , G4

and five vertex transitive graphs Γ0, . . . ,Γ4 such that for i ∈ {1, . . . , 4} the graph Γi−1
is the local graph of Γi and the group Gi is an automorphism group of the graph Γi,
with vertex stabilizer isomorphic to Gi−1. The largest of these groups was a new sporadic
simple group, which is now called Suz. The five simple groups are L3(2) < U3(3) < J2 <
G2(4) < Suz and the full automorphism group of the graph Γi is the split extension of
Gi by the cyclic group of order 2, which is denoted as Gi : 2 in the ATLAS notation [13].
The graph Γ0 is the incidence graph of the unique 2-(7, 4, 2) design (the complementary
design of the Fano plane), that is, the quartic vertex transitive co-Heawood graph, and
the rest of them are strongly regular graphs having the following parameters (v, k, λ, µ):

• Γ1: (36, 14, 4, 6), the U3(3)-graph;

• Γ2: (100, 36, 14, 12), the Hall-Janko graph;

• Γ3: (416, 100, 36, 20), the G2(4)-graph;

• Γ4: (1782, 416, 100, 96), the Suzuki graph.

These sequences of groups and graphs form what Jacques Tits called the Suzuki tower.
In this paper, we associate near polygons S0, . . . ,S3 to the Suzuki tower, where for

every i ∈ {1, 2, 3} the near polygon Si−1 is a full subgeometry of Si, and for every i ∈
{0, 1, 2, 3} Si has the group Gi : 2 as its full automorphism group. Moreover, these near
polygons can be used to construct all the graphs in the Suzuki tower. The near polygons
S0, S1 and S2 are already known and they are respectively isomorphic to the dual of the
double of the Fano plane, the dual split Cayley hexagon H(2)D and the Hall-Janko near
octagon HJ. We construct a new near octagon G = S3 of order (2, 10) as a particular kind
of commuting involution graph of the group G2(4) : 2.

Theorem 1.1. The point-line geometry G = (P ,L) formed by taking P as the conjugacy
class of 4095 central involutions of the group G = G2(4) : 2 and lines as the three element
subsets {x, y, xy} of P formed by taking those commuting involutions x, y in P that satisfy
[G : NG(〈x, y〉)] ∈ {1365, 13650}, is a near octagon of order (2, 10) with G2(4) : 2 as its full
automorphism group. The set S∗ of lines {x, y, xy} with [G : NG(〈x, y〉)] = 1365 is a line
spread of this geometry. Moreover, this near octagon contains precisely 416 suboctagons
isomorphic to the Hall-Janko octagon as full subgeometries.

We note that some other geometries (usually of rank higher than 2) related to the Suzuki
tower have been studied in the literature as well [18, 22, 17], but to our knowledge none of

the electronic journal of combinatorics 23(2) (2016), #P2.35 2



them include our near octagon G. On the elements of the line spread S∗ of G, a generalized
hexagon can be defined as part (1) of the following result shows.

Theorem 1.2. (1) Let Q∗ denote the set of all subgeometries of G isomorphic to the
generalized quadrangle W (2) (the so-called quads of G). Then the point-line geom-
etry with point set S∗, line set Q∗ and natural incidence relation (set containment)
is isomorphic to the dual split Cayley hexagon H(4)D.

(2) Let S ⊆ S∗ and Q ⊆ Q∗ such that (S,Q) is a full subgeometry of (S∗,Q∗) ∼= H(4)D

that is a generalized hexagon of order (4, 1). Let P ′ denote the set of points incident
with a line of S and L′ the set of lines incident with a quad of Q. Then G ′ = (P ′,L′)
is a full subgeometry of G = (P ,L) that is a near octagon of order (2, 4).

The near octagon G ′ of order (2, 4) defined in Theorem 1.2(2) is in fact also a new near
octagon. From its construction it follows that G ′ has 315 points and 525 lines. In [15], De
Wispelaere and Van Maldeghem showed that the point-line dual of HJ has a full embedding
in the split Cayley hexagon H(4). By making use of the fact that (S∗,Q∗) ∼= H(4)D, we
will give another proof for this fact (see Lemma 4.16).

Our remaining results are regarding constructions of the two largest graphs contained
in the Suzuki tower using the near polygon G and its subgeometries.

Theorem 1.3. The graph defined by taking those suboctagons of the G2(4)-near octagon G
that are isomorphic to the Hall-Janko near octagon as vertices and adjacency as intersec-
tion in a subhexagon isomorphic to the dual split Cayley hexagon of order 2, is isomorphic
to the G2(4)-graph.

Theorem 1.4. Define a graph as follows:

• take the elements of {∞}, A and B as vertices, where ∞ is just a symbol, A is the
set of all Hall-Janko suboctagons of the near octagon G and B is the line spread S∗

of G;

• join ∞ to all vertices in A, join two distinct vertices of A if the corresponding
suboctagons intersect in a subhexagon isomorphic to H(2)D, join a vertex of A to
all the vertices in B that correspond to a line intersecting the suboctagon, join two
vertices in B if the corresponding lines are at distance 2 from each other in the near
octagon.

Then this graph is isomorphic to the Suzuki graph.

Remarks.

(1) The main result of the present paper is the construction of two point-transitive near
octagons, one of order (2, 10) and another one of order (2, 4) which occurs as full sub-
geometry of the former. In general, it is hard to construct new “nice near polygons”,
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for example point-transitive near polygons which are not bipartite graphs. Besides
some infinite families (the most recent one being discovered around 15 years ago [14]),
there are also some examples related to sporadic simple groups which were discovered
around 1980 [1, 9, 11, 21].

(2) We do not know whether there is a near polygon corresponding to Suz, but certainly
the involution geometry of Suz studied in [27, 2] is not a near polygon. We can directly
see from the suborbit diagram [2, Fig. 1] that there are point-line pairs (p, L) where
each point of L is at the same distance from p. However, this involution geometry is
a near 9-gon in the sense of [10, Sec. 6.4]. Similarly the involution geometry of the
Conway group Co1 [3, Fig. 1], which contains Suz, is a near 11-gon.

(3) It was pointed out to us by one of the referees of the follow up paper [6] that the new
near octagon G can be found in the second layer of the three fold cover of the Suzuki
graph discovered by Soicher [23] (see Remark 1.4 of [6]). In [7] we will show that the
near octagon G ′ can also be found in the second layer of another graph discovered by
Soicher in [23], namely a three fold cover of the unique strongly regular graph with
parameters (v, k, λ, µ) = (162, 56, 10, 24).

(4) The structure of both G and G ′ around a fixed point can be described by a diagram
(like in Figure 1, with possible different numbers around the big nodes). In [7], we also
give a common treatment for those near octagons whose local structure is described
by such a diagram.

Our paper is organized as follows. In Section 3, we prove that G is a near octagon
and discuss the local structure of G with respect to a fixed point. This structure will
be described by means of a so-called suborbit diagram. In Section 4 we prove several
geometrical properties of G. The properties related to the line spread S∗ and the quads
of G are discussed in Subsection 4.1 where we also prove Theorem 1.2. In Subsection 4.2
we classify all suboctagons of G that are isomorphic to the Hall-Janko near octagon HJ,
and in Subsection 4.3 we determine the full automorphism group of G, hereby completing
the proof of Theorem 1.1. With the help of the derived geometrical properties we then
prove Theorems 1.3 and 1.4 in Section 5.

Our initial explorations of the properties of the new near octagon happened in a
(computer) model for G which was quite different from the one given in Theorem 1.1.
We first constructed the new near octagon as a subgeometry of the so-called valuation
geometry of HJ. Examination of the properties1 of this new near octagon showed that the
full automorphism group was most likely isomorphic to G2(4) : 2. Looking for a model of
G in the same spirit as the model for HJ (using involutions) was successful and ultimately
resulted in the (more symmetric) description given in Theorem 1.1. In appendix A, we

1Among other things, we computed the full automorphism group with the aid of SAGE [24], and
checked that its derived subgroup is a simple group of order |G2(4)| that has index 2 in the full automor-
phism group, see [5].
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discuss the first model we had for this new near octagon, and show that it is indeed
isomorphic to the model presented in Theorem 1.1.

2 Preliminaries

A point-line geometry S is a triple (P ,L, I), where P is the non-empty point set, L is the
line set and I ⊆ P × L is the incidence relation. S is called a partial linear space if any
pair of distinct points is incident with at most one line. In this case we may identify each
line with the subset of points it is incident with and replace I with set inclusion. By abuse
of notation, we then denote S by (P ,L). The distance between two points x1 and x2 of
a point-line geometry S will always be measured in its collinearity graph. This distance
will be denoted by dS(x1, x1), or shortly by d(x1, x2) if no confusion could arise. If Γ is
the collinearity graph of a geometry S, x a point of S and i ∈ N, then Γi(x) denotes the
set of points of S at distance i from x. If X1 and X2 are two nonempty sets of points,
then d(X1, X2) denotes the minimal distance between a point of X1 and a point of X2. If
X is a nonempty set of points and i ∈ N, then Γi(X) denotes the set of points at distance
i from X. Two points (resp. lines) of a point-line geometry S are called opposite if they
have the maximum possible distance between them in the collinearity graph of S.

Let X be a nonempty set of points of a partial linear space S. It is called a subspace
if every line meeting X in at least two points is completely contained in X. It is called
geodetically closed or convex if every point on every shortest path between two points of
X is contained in X. A line spread of S is a set of pairwise disjoint lines such that every
point of S lies on at least one of these lines. An ovoid of S is a set of pairwise noncollinear
points of S such that every line of S contains at least one of these points.

A point-line geometry S = (P ,L, I) is a subgeometry of another point-line geometry
S ′ = (P ′,L′, I′) if P ⊆ P ′, L ⊆ L′ and I = I′ ∩ (P ×L). A subgeometry is called full if for
every line L in L the set {x ∈ P : x I L} is equal to {x ∈ P ′ : x I′ L}. If dS(x, y) = dS′(x, y)
for every two points x, y in P , then we will say that S is isometrically embedded into S ′.

A quad of a near polygon is a convex subspace Q of diameter 2 such that the full sub-
geometry determined by those points and lines that are contained in Q is a nondegenerate
generalized quadrangle. In [21, Prop. 2.5], it was shown that if a and b are two points of a
near polygon at distance 2 from each other, and if c and d are two common neighbours of
a and b such that at least one of the lines ac, ad, bc, bd contains at least three points, then
a and b are contained in a unique quad. This quad coincides with the smallest convex
subspace containing a, b and consists of all points of the near polygon which have distance
at most 2 from a, b, c and d. A point-quad pair (x,Q) in a near polygon is called classical
if there exists a unique point x′ in Q such that d(x, y) = d(x, x′) + d(x′, y) for all y in
Q, and ovoidal if the points of Q that are nearest to x form an ovoid of Q. A quad Q is
called classical if the pair (x,Q) is classical for every point x. In [21, Proposition 2.6], it
was shown that in a near polygon in which each line is incident with at least three points,
every point-quad pair is either classical or ovoidal. We will be using these basic results
on near polygons and their quads in our proofs without making an explicit reference.

A near 2d-gon S with d > 2 is called regular if it has order (s, t) and there exist
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constants ti, i ∈ {0, . . . , d}, such that for every pair of points x and y at distance i, there
are precisely ti + 1 lines through y containing a point at distance i − 1 from x. Clearly,
t0 = −1, t1 = 0 and td = t. We will say that S is regular with parameters (s, t; t2, . . . , td−1).
A generalized 2d-gon is a regular near 2d-gon with parameters (s, t; 0, . . . , 0). The Hall-
Janko near octagon is a regular near octagon with parameters (2, 4; 0, 3). In fact it is the
unique regular near octagon with those parameters, as proved by Cohen and Tits in [12].

For all the group theoretical notations we refer to the ATLAS [13]. An involution
a of a group G is called central if there exists a Sylow 2-subgroup H of G such that
a ∈ CG(H), or equivalently if the centralizer of a contains a Sylow 2-subgroup. It is well
known that the group G2(4) : 2 has J2 : 2 as a maximal subgroup of index 416 and the
group J2 : 2 has G2(2) as a maximal subgroup of index 100. The conjugacy class of central
involutions of the groups G2(4) : 2, J2 : 2, and G2(2), are all denoted by the symbol 2A
in the ATLAS. If H ∼= G2(2), K ∼= J2 : 2 and G ∼= G2(4) : 2 are such that H < K < G
and if ΣH , ΣK , ΣG denote the corresponding conjugacy classes of central involutions,
then ΣH = H ∩ ΣK = H ∩ ΣG and ΣK = K ∩ ΣG. Moreover, ΣH ⊆ H ′ ∼= U3(3) (the
derived subgroup), ΣK ⊆ K ′ ∼= J2 and ΣG ⊆ G′ ∼= G2(4). Since ΣG generates a normal
subgroup of the simple group G′, we necessarily have 〈ΣG〉 = G′. Similarly, 〈ΣH〉 = H ′

and 〈ΣK〉 = K ′.
There exists a natural bijective correspondence between the subgroups ofG = G2(4) : 2

isomorphic to J2 : 2 and the subgroups isomorphic to J2. Every subgroup isomorphic to
J2 : 2 contains a unique J2-subgroup, namely its derived subgroup. Conversely, from AT-
LAS information we see that every J2-subgroup K of G must be contained in a (maximal)
subgroup isomorphic to J2 : 2, and such a maximal is uniquely determined by K as it
necessarily coincides with the normalizer of K inside G.

3 Construction of the new near octagon

The group G = G2(4) : 2 has precisely three conjugacy classes of involutions. The class
2A consists of 4095 involutions all of which are central and contained in the derived
subgroup G′ ∼= G2(4). A computer model of the group G can be easily constructed using
the computer programming language GAP [16]. All claims of the present section have
been verified using such a computer model, see [5].

Let P denote the elements of the class 2A and ω a fixed element in P . The group G
acts transitively on P by conjugation. Let Gω be the stabilizer of ω under this action.
Then the action of Gω on P partitions P into eight orbits, which we refer to as suborbits of
the action of G on P . The suborbits are of sizes 1, 2, 20, 40, 320, 640, 1024, 2048, and we
label them as O0, O1a, O1b, O2a, O2b, O3a, O3b, O4, respectively. We put Oi := Oia ∪Oib
for i ∈ {1, 2, 3}. There are precisely 62 elements of P\{ω} that commute with ω and they
lie in the suborbits O1a, O1b and O2a. If O is one of these three suborbits and x belongs to
O then the product xω also belongs to O. These three suborbits can also be characterized
by the index of the normalizer of the subgroup generated by ω and an element x of these
suborbits. The indices for O1a, O1b and O2a are 1365, 13650 and 27300, respectively.
Therefore, if we take P and L to be the sets of points and lines as defined in Theorem 1.1
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Figure 1: The suborbit diagram

then the points collinear with ω are in O1a and O1b. In fact we get the suborbit diagram
drawn in Figure 1 which explains the choice of notation for these suborbits. Suborbits
containing central involutions at distance i from ω in the geometry have been labelled Oi∗
where ∗ is a, b or void.

In the literature, suborbit diagrams for finite simple groups where adjacency (in the
collinearity graph of the involution geometry) is defined by commutativity have been
studied [2, 3]. For drawing the suborbit diagram we have used similar conventions as in
[2]. In our case adjacency involves both commutativity and a condition on the index of
certain normalizers. Each of the eight big nodes of the diagram denotes a suborbit and an
edge between two such nodes denotes that there is a line that intersects both suborbits.
A smaller node on each edge denotes a line and the two accompanying numbers denote
the number of points of the line that lie in the suborbits it intersects. Each number on
a big node denotes the number of lines through a given point in that suborbit going to
another suborbit.

We would be using the suborbit diagram in most of our arguments where by “suborbit
diagram with respect to x” we would mean that ω = x and all the suborbits are defined
by the centralizer of the involution x of G2(4) : 2. If we wish to explicitly indicate the
involution x with respect to which the suborbits are considered, we will use the notations
O0(x),O1a(x), . . . ,O4(x).

Theorem 3.1. The point-line geometry G = (P ,L) formed by taking P as the conjugacy
class of 4095 central involutions of the group G = G2(4) : 2 and lines as the three element
subsets {x, y, xy} of those commuting involutions x, y in P that satisfy the condition
[G : NG(〈x, y〉)] ∈ {1365, 13650} is a near octagon of order (2, 10).

Proof. Let x be a fixed central involution of G, i.e., a point of P . It is clear from the
suborbit diagram that every other involution is at distance at most 4 from x. Therefore
the point-line geometry is connected and has diameter 4. Now let L be any line, then from
the suborbit diagram there exists an i ∈ {0, 1, 2, 3} such that L intersects Oi in one point
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and Oi+1 in two points. Therefore there exists a unique point on L nearest to x. Since
there are exactly 22 neighbours of x, and since the automorphism group acts transitively
on points, we get that the point-line geometry is a near octagon of order (2, 10).

Remarks.

(1) Among the conjugacy classes of involutions, the one consisting of the central involu-
tions has the smallest size, namely 4095 = 3 · 1365. So, among the conjugacy classes
of subgroups of Type C2 × C2, there exists only one of size 1365, namely the one
consisting of all subgroups of the form 〈x, y〉, where x and y are two distinct central
involutions satisfying [G : NG(〈x, y〉)] = 1365. This class consists of the 1365 long
root subgroups of G2(4).

(2) Unlike the group G2(4) : 2, the group J2 : 2 has only one orbit on the pairs (x, y) of
distinct commuting central involutions. If H is a subgroup of G2(4) : 2 isomorphic
to J2 : 2 and x, y are two distinct commuting central involutions of H, then [G :
NG(〈x, y〉)] = 13650.

4 Properties of the new near octagon

In this section, we derive several properties of the near octagon G. All of these will be
derived from the information provided in Section 3.

4.1 A line spread and the quads of the near octagon

Lemma 4.1. The set S∗ which consists of all lines of the form {x, y, xy} where x, y are
two distinct central involutions of G = G2(4) : 2 satisfying [G : NG(〈x, y〉)] = 1365 is a
line spread of G.

Proof. By the suborbit diagram, every central involution is contained in a unique element
of S∗, implying that S∗ is a line spread of G.

If x is a point of G, then we denote by Lx the unique line through x belonging to S∗.
Clearly, Lx = {x} ∪ O1a(x).

Our next aim is to determine all quads of G. We prove that all these quads are isomorphic
to the generalized quadrangle W (2), which is the unique generalized quadrangle of order
(2, 2) (cf. [20, 5.2.3]).

Lemma 4.2. Let x and y be two points of G at distance 2 from each other. Then x and
y are contained in a quad if and only if y ∈ O2a(x). If this is the case, then the unique
quad through x and y is isomorphic to W (2) and contains the line Lx.
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Proof. The points x and y are contained in a quad if and only if x and y have at least
two common neighbors. By the suborbit diagram, we know that this happens precisely
when y ∈ O2a(x). If y ∈ O2a(x), then x and y have precisely three common neighbors,
showing that the unique quad through x and y has order (2, 2), necessarily isomorphic to
W (2). Moreover, one of the three common neighbors of x and y lies in O1a(x), showing
that Lx is contained in the quad.

Corollary 4.3. A line of S∗ and a quad of G can never meet in a point. So, the lines of
S∗ contained in a given quad determine a spread of this quad.

Lemma 4.4. Let x be a point of G and M a line through x distinct from Lx. Then M is
contained in a unique quad. This quad contains the line Lx.

Proof. Note first that there is at most one quad through M . Indeed, by Corollary 4.3,
every quad through M must also contain the line Lx, and we know that there is at most
one quad through two distinct intersecting lines in a near polygon.

In the suborbit diagram (see Figure 1) let O0 be {x}. Let x′ be a point in M \x. Then
x′ lies in the suborbit O1b, and hence it has two lines through it that meet the suborbit
O2a. Let y be a point in O2a that is collinear with x′. By Lemma 4.2, there is a unique
quad containing x, y and the line Lx. As x′ is a common neighbor of x and y, the point
x′ and the line M are also contained in this quad.

Corollary 4.5. Every point x of G is contained in five quads. Each of these five quads
contains the line Lx.

Proof. As G is of order (2, 10) there are 10 lines through x distinct from Lx, and each of
these lines is contained in a unique quad (necessarily containing Lx). This gives rise to
10 quads through x, but each of them is counted twice as each of them contains two lines
through x distinct from Lx.

Corollary 4.6. Two central involutions of G are contained in a quad if and only if they
commute.

Proof. If x is a central involution, then the central involutions which commute with x
are those contained in O0(x) ∪ O1a(x) ∪ O1b(x) ∪ O2a(x). The claim then follows from
Lemmas 4.2 and 4.4.

Lemma 4.7. If Q is a quad and L a line of the spread S∗ containing a point at distance
i from Q, then i ∈ {0, 1, 2} and L is completely contained in Γi(Q).

Proof. We may suppose that i = d(L,Q). Let x ∈ L and y ∈ Q such that d(x, y) = i. By
Corollary 4.3, Ly is contained in Q.

If i = 0, then L is completely contained in Q by Corollary 4.3. So, we may suppose
that i > 1.

Suppose i = 1. Then Lx = L is disjoint from Q by Corollary 4.3. By Lemma 4.4,
there exists a unique quad through xy. Since this quad contains the lines Lx and Ly,
every point of Lx is collinear with a unique point of Ly (which belongs to Q).

the electronic journal of combinatorics 23(2) (2016), #P2.35 9



Suppose i = 2. Let z ∈ Γ1(Q) be a common neighbor of x and y. The unique quad
through Lz ⊆ Γ1(Q) and zx contains the line Lx, showing that every point of Lx is
collinear with a point of Lz ⊆ Γ1(Q), which implies that every point of Lx has distance
at most and hence precisely 2 from Q.

Suppose i > 3. Since the distance from a point to Q is at most 3, we must have that
L ⊆ Γ3(Q). Every point of L must then be ovoidal with respect to Q. By (NP2), every
point of Q lies at distance 3 from a unique point of L, showing that the three ovoids of Q
determined by the points of L form a partition of Q. This is however impossible, as the
generalized quadrangle W (2) has no partition in ovoids.

Lemma 4.8. Every point-quad pair in G is classical.

Proof. Let Q be a quad of G. By Lemma 4.7, every point has distance at most 2 from
Q. Every point at distance at most 1 from a quad of a general near polygon is classical
with respect to that quad. In particular, every point of Q ∪ Γ1(Q) is classical with
respect to Q. Every point of Γ1(Q) is collinear with a unique point of Q, implying that
|Γ1(Q)| = |Q| · (11− 3) · 2 = 240 and |Γ2(Q)| = 4095− |Γ1(Q)| − |Q| = 3840.

Let x be a point in Γ1(Q) and x′ the unique neighbour of x in Q. If L is a line through
x contained in Γ1(Q) then the points of Q collinear with a point of L form a line L′. The
lines L and L′ are contained in a quad, which necessarily coincides with the unique quad
Q′ through the line xx′. So, the line L′ = Q ∩Q′ should coincide with Lx′ .

So, through x there is a unique line meeting Q, two lines contained in Γ1(Q) and eight
lines meeting Γ2(Q) (necessarily in two points). Since |Γ1(Q)| · 8 · 2 = 3840 = |Γ2(Q)|,
we must have that every point of Γ2(Q) is collinear with a unique point of Γ1(Q) and
hence at distance 2 from a unique point in Q. All point-quad pairs must therefore be
classical.

The relation defined on pairs (x, y) ∈ P × P by the condition y ∈ O2a(x) is symmetric.
Indeed, y ∈ O2a(x) if and only if d(x, y) = 2 and x, y commute (regarded as involutions).
(The fact that the relation is symmetric also follows from Lemma 4.2.) The following
lemma shows that also the relation defined on pairs (x, y) ∈ P × P by the condition
y ∈ O3a(x) is symmetric.

Lemma 4.9. Let x and y be two points of G at distance 3 from each other. Then the
following are equivalent:

(1) y ∈ O3a(x);

(2) x ∈ O3a(y);

(3) there is a quad through x meeting a line through y;

(4) there is a quad through y meeting a line through x.
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Proof. By the suborbit diagram and Lemma 4.2, (1) and (3) are equivalent, as well as (2)
and (4). So, by symmetry it suffices to show that (3) implies (4). Suppose Q is a quad
through x and L is a line through y meeting Q in a point z. The line Lz is contained in
Q and contains a point u collinear with x. The unique quad through L = zy contains the
line Lz and meets the line xu through x.

Lemma 4.10. One of the following cases occurs for a line L ∈ S∗:

(1) L meets the suborbits O0 and O1a;

(2) L meets the suborbits O1b and O2a;

(3) L meets the suborbits O2b and O3a;

(4) L meets the suborbits O3b and O4.

Proof. If L meets O0 ∪ O1a, then necessarily L = Lω and so L meets the suborbits O0

and O1a. So, we may suppose that L is disjoint from O0 ∪ O1a.
Suppose L contains a point x ∈ O1b. Then the unique quad through the line ωx

contains L and is completely contained in O0∪O1a∪O1b∪O2a, showing that L meets O1b

and O2a. On the other hand, suppose that L contains a point y ∈ O2a. Then ω and y are
contained in a unique quad which contains the line L. Since Q ⊆ O0 ∪ O1a ∪ O1b ∪ O2a,
Lω = O0 ∪ O1a and Ly ∩ Lω = ∅, we have that L meets O1b and O2a. In the sequel, we
will therefore assume that L is disjoint from O0 ∪ O1a ∪ O1b ∪ O2a.

Suppose L contains a point x of O3a. By the suborbit diagram, we know that the point
x is contained in a unique line M that contains a point y ∈ O2a. The line Ly meets O1b

in a point u and is distinct from M , showing that M 6∈ S∗. The unique quad Q through
M contains the lines Ly and L. So, L contains a point at distance 2 from ω, namely the
point of L collinear with u ∈ Ly. This shows that L meets O3a and O2b. As |L∩O3a| = 2,

there are |O3a|
2

= 640
2

= 320 lines of S∗ meeting O3a and O2b. Since also |O2b| = 320, we
have that every line of S∗ that meets O2b should also meet O3a.

The lines of S∗ which we have not yet considered should all meet O3b and O4.

As before, we denote by Q∗ the set of quads of G.

Lemma 4.11. The geometry formed by taking the lines in S∗ as points and the quads in
Q∗ as lines is isomorphic to H(4)D.

Proof. It is well known that the collinearity graph of H(4)D is isomorphic to the graph
whose vertices are the 1365 long root subgroups of G2(4) = G′, with two distinct long root
subgroups being adjacent whenever they commute. The lines of H(4)D then correspond
to the maximal cliques (of size 5) of this collinearity graph. Since every line of (S∗,Q∗)
contains five points, it thus suffices to prove that the collinearity graphs of (S∗,Q∗) and
H(4)D are isomorphic. The elements of S∗ are the sets {x, y, xy}, where x and y are two
distinct central involutions satisfying [G : NG(〈x, y〉)] = 1365, and can be put in bijective
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correspondence with the long root subgroups of G2(4) via the correspondence {x, y, xy} ↔
{e, x, y, xy} (with e being the identity element of G2(4)). Now, two central involutions
commute if and only if they are contained in a quad (regarded as points of G). So, in
view of Corollary 4.3, two long root subgroups {e, x, y, xy} and {e, x′, y′, x′y′} commute
if and only if the corresponding lines {x, y, xy} and {x′, y′, x′y′} of S∗ are contained in a
quad. This shows that the collinearity graphs of (S∗,Q∗) and H(4)D are isomorphic.

Lemma 4.12. Let K and M be two lines of S∗ and let δ denote the distance between K
and M in the generalized hexagon (S∗,Q∗) ∼= H(4)D. Then d(K,M) = δ and every point
of K has distance δ from a unique point of M .

Proof. Put δ′ := d(K,M) and let x0, x1, . . . , xδ′ be a path of length δ′ connecting a point
x0 of K with a point xδ′ of M . Put Li := Lxi , i ∈ {0, 1, . . . , δ′}. If two consecutive lines
Li and Li+1 are distinct, then they are contained in the unique quad through xixi+1 and
so every point of Li is collinear with a unique point of Li+1. But since δ′ is the smallest
distance between a point of K and a point of M , two consecutive lines are Li and Li+1

must be distinct (otherwise we could construct a shorter path), and every point of K has
distance δ′ from a necessarily unique point of M . So, in order to prove the lemma, it
suffices to show that δ = δ′. Since there exists a path of length δ′ in (S∗,Q∗) connecting
K and M , we have δ 6 δ′. So, it suffices to show that δ > δ′.

Suppose U0, U1, . . . , Uδ is a path of length δ in (S∗,Q∗) connecting the lines U0 = K
and Uδ = M . For every two consecutive lines Ui and Ui+1, we know that every point of
Ui is collinear with a unique point of Ui+1, implying that there exists a point of M at
distance at most δ from a point of K. This implies that δ > δ′, as we needed to show.

The following is an immediate corollary of Lemma 4.12.

Corollary 4.13. Let x and y be two points of G, let y′ be the point of Ly nearest to x and
let δ denote the distance between Lx and Ly in the generalized hexagon (S∗,Q∗) ∼= H(4)D.
Then d(x, y) is equal to δ if y′ = y and equal to δ + 1 otherwise.

The dual split Cayley hexagon H(4)D is known to have copies of the unique generalized
hexagon of order (4, 1) as subgeometries. Each such subhexagon can be used to construct
a full subgeometry of G that is also a (new) near polygon. This near polygon has the
same order and the same number of points as HJ.

Lemma 4.14. Let S ⊆ S∗ and Q ⊆ Q∗ such that (S,Q) is a full subgeometry of
(S∗,Q∗) ∼= H(4)D that is a generalized hexagon of order (4, 1). Let P ′ denote the set
of points incident with a line of S and let L1 denote the set of lines incident with a quad
of Q. Then G ′ = (P ′,L′) is a full subgeometry of G = (P ,L) that is a near octagon of
order (2, 4).

Proof. Let L ∈ L′. Then L ⊆ Q for a certain quad Q ⊆ Q. The lines of S∗ contained in
Q all belong to S, implying that every point of L belongs to P ′. So, G ′ = (P ′,L′) is a full
subgeometry of G = (P ,L).
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If x and y are two points of P ′ which are collinear in G, then the lines Lx ∈ S and
Ly ∈ S are equal or collinear in (S∗,Q∗) and hence also in (S,Q). There must exist a
quad Q ∈ Q containing Lx and Ly. The lines of S contained in Q cover Q, showing
that every point of the line xy is contained in P ′. So, P ′ is a subspace of G and the full
subgeometry induced on P ′ is precisely G ′.

Note that any subhexagon of order (4, 1) of H(4)D is isometrically embedded into
H(4)D. So, if K and L are two lines of S, then the distance between K and L is the
same in the geometries (S,Q) and (S∗,Q∗). Corollary 4.13 then implies that the distance
between two points x, y ∈ P ′ is the same in the geometries G and G ′. So, Property
(NP2) in the definition of near polygon remains valid for G ′. By taking suitable points
on opposite lines belonging to S, we see that the diameter of G ′ is also 4. So, G ′ is a near
octagon.

Every point x ∈ P ′ is contained in two quads of S which intersect in the line Lx. So,
there are precisely five lines of L′ through x, showing that the near octagon G ′ has order
(2, 4).

4.2 The Hall-Janko suboctagons

In this subsection, we classify all Hall-Janko suboctagons of G. These are (full) subgeome-
tries of G that are isomorphic to HJ. We will show that there are 416 such subgeometries
and that all of them are isometrically embedded into G. In the following lemma, we al-
ready construct all these 416 subgeometries from the 416 (maximal) subgroups of G2(4) : 2
isomorphic to J2 : 2.

Lemma 4.15. (1) Let H be a (maximal) subgroup of G = G2(4) : 2 isomorphic to
J2 : 2. Then the set ΣH of central involutions contained in H is a subspace of G on
which the induced subgeometry, denoted by SH , is a Hall-Janko suboctagon.

(2) If H1 and H2 are two distinct maximal subgroups of G isomorphic to J2 : 2, then
SH1 and SH2 are distinct subgeometries.

Proof. (1) On the set ΣH ⊆ H ′ ∼= J2, a Hall-Janko near octagon S ′H can be defined by
taking as lines all the sets {x, y, xy}, where x and y are two distinct commuting elements
of ΣH . Recall that if the elements x, y ∈ ΣH commute, then [G : NG(〈x, y〉)] = 13650,
implying that {x, y, xy} is a line of G. Conversely, if x, y ∈ ΣH such that {x, y, xy} is a
line of G, then x, y commute and hence {x, y, xy} is also a line of S ′H .

(2) We need to show that H is uniquely determined by ΣH . The subgroup generated by
ΣH is a normal subgroup of H ′ ∼= J2 and hence coincides with H ′. Inside G = G2(4) : 2,
there is a unique subgroup isomorphic to J2 : 2 that contains H ′ ∼= J2, namely its
normalizer. Hence, H = NG(〈ΣH〉).

Before proceeding to prove that every Hall-Janko suboctagon is as described in Lemma
4.15, we first give an alternative proof of a result of [15], stating that the point-line dual
HJD of HJ has a full embedding into the split Cayley hexagon H(4).
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Lemma 4.16. The geometry HJD has a full embedding in H(4).

Proof. Let H be a maximal subgroup of G isomorphic to J2 : 2. Then by Lemma 4.15,
SH is a full subgeometry isomorphic to HJ. Every line L of SH is contained in a unique
quad QL (as L 6∈ S∗, see the final remarks of Section 3). As any two involutions of QL∩H
commute, QL ∩H is at most a line of H, implying that L = QL ∩H. So, if L1, L2, . . . , L5

are the five lines of SH through a given point x, then the quads QL1 , QL2 , . . . , QL5 are
mutually distinct and hence are all the five quads through Lx. This implies that the maps
x 7→ Lx, L 7→ QL define a full embedding of the dual of SH into the dual of (S∗,Q∗),
which is isomorphic to H(4).

In the sequel, H will denote an arbitrary Hall-Janko suboctagon. We will derive several
properties of H that will enable us to prove that there are at most (and hence precisely)
416 Hall-Janko suboctagons.

Lemma 4.17. If x and y are two points of H such that dH(x, y) 6 2 then dH(x, y) =
dG(x, y).

Proof. Obviously, this is true if dH(x, y) 6 1. So, suppose that dH(x, y) = 2. Then
dG(x, y) 6 2. If dG(x, y) = 1 then we would get a triangle which contradicts (NP2).
Therefore, dG(x, y) = 2.

Lemma 4.18. If x and y are two points of H such that dH(x, y) = dG(x, y) = 3 then
y ∈ O3b(x).

Proof. Since H is a regular near octagon with parameters (2, 4; 0, 3) there must be four
lines of H through y that contain a point at distance 2 from x in H (and hence also in
G by Lemma 4.17). But, by the suborbit diagram, if y lies in O3a(x) then there are are
only three lines through y containing a point at distance 2 from x in G.

Lemma 4.19. Let Q be a quad of G and x, y two points of Q such that dG(x, y) = 2. If
z is a point collinear with y and not contained in Q then z ∈ O3a(x).

Proof. As z is classical with respect to Q, dG(x, z) = 3. By Lemma 4.9, z ∈ O3a(x).

Lemma 4.20. A quad Q of G cannot contain a pair of intersecting lines of H.

Proof. Suppose L1 and L2 are two intersecting lines of H contained in Q. Let x1 ∈ L1 \L2

and x2 ∈ L2 \ L1. As there are five lines through x2 contained in H and only three
contained in Q, there exists a neighbour x3 of x2 in H \ Q. For this point x3, we have
dH(x1, x3) = dG(x1, x3) = 3. By Lemma 4.19 x3 ∈ O3a(x1). This contradicts Lemma 4.18
which would imply that x3 ∈ O3b(x1).

Lemma 4.21. None of the lines of the line spread S∗ is contained in H.

Proof. Suppose L is a line of S∗ contained in H, and let M denote any other line of H
meeting L in a point. By Lemma 4.4, there is a unique quad Q containing L and M .
This quad would contradict Lemma 4.20.
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Lemma 4.22. Every quad which contains a point x of H contains a unique line of H
through x.

Proof. By Lemma 4.21, the line Lx is not contained in H. There are five lines through x
contained in H. By Lemma 4.20, each of the five quads through Lx contains at most one
and hence precisely one of these five lines.

Lemma 4.23. H is isometrically embedded into G.

Proof. Suppose dG(x, y) 6= dH(x, y) for certain points x and y of H, and suppose x and y
have been chosen in such a way that i := dH(x, y) is as small as possible. By Lemma 4.17,
i ∈ {3, 4}. Let y′ be a point in H such that dH(x, y′) = i − 1, dH(y′, y) = 1 and let y′′

denote the third point on the line yy′. By (NP2) we know that dH(x, y′′) = dH(x, y) = i.
By the minimality of i, dG(x, y

′) = i− 1. By (NP2), {dG(x, y), dG(x, y
′′)} = {i− 1, i− 2}.

So, still under the assumption that the distance dH(x, y) is as small as possible, we could
have chosen y in such a way that dG(x, y) = dH(x, y)− 2.

Suppose i = 3. Then we can choose x, y ∈ H such that dH(x, y) = 3 and dG(x, y) = 1.
Let x, z1, z2, y be a shortest path between x and y in H. By Lemma 4.17, dG(x, z2) = 2.
Since x and z2 have at least two common neighbours in G (namely y and z1), there exists
a quad Q containing x, z2 and all their common neighbours. The quad Q would then
contain the intersecting lines xz1 and z1z2, which is in contradiction with Lemma 4.20.

Therefore i = 4. Again, we can choose points x, y ∈ H such that dH(x, y) = 4 and
dG(x, y) = 2. Let y′ be a common neighbour of x and y in G. By Lemma 4.4 there
exists a quad Q through the line xy′. By Lemma 4.22 Q must contain a line M of H
through x. Let x′ be the unique point on M satisfying dH(y, x′) = 3. Since i = 4, we
also have dG(y, x

′) = 3. So, y ∈ O3b(x
′) by Lemma 4.18. Since dG(y, x

′) = 3, the quad
Q cannot contain the point y. Lemma 4.19 (with x, y and z replaced by x′, y′ and y)
would then imply that y ∈ O3a(x

′), which is in contradiction with the earlier claim that
y ∈ O3b(x

′).

Lemma 4.24. If x and y are two points of H such that dH(x, y) = 2 then y ∈ O2b(x).

Proof. We also have dG(x, y) = 2. Let x′ ∈ H be a common neighbour of x and y. If
y ∈ O2a(x), then the unique quad through x and y would contain the intersecting lines
xx′ and x′y, which would be in violation with Lemma 4.20. Therefore, y ∈ O2b(x).

Lemma 4.25. Through every pair of opposite points of G there is at most one Hall-Janko
suboctagon.

Proof. Let x and y be two opposite points of G and suppose the Hall-Janko octagon H
contains x and y. We will show that H is uniquely determined by x and y. In this proof
all suborbits are considered with respect to the point x. By Lemma 4.23, the distance
between two points of H is the same in the geometries H and G.

There are five lines through y inside H that contain a point at distance 3 from x. By
Lemma 4.18 all of these lines must intersect O3b. By the suborbit diagram and Lemma
4.10, there are exactly six such lines through y and one of them is in S∗. By Lemma 4.21,
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the line belonging to S∗ cannot be contained in H. Therefore the five lines of H through
y, going back to x are uniquely determined by x and y.

Now let y′ ∈ O3b be a point on one of these five lines and Q the unique quad through
yy′ and Ly′ 6= yy′. By Lemma 4.10, Ly′ meets O4. By Lemma 4.22 the third line of Q
through y′, call it My′ , doesn’t lie in H. We claim that My′ intersects O2b. Indeed, as the
point x is classical with respect to Q, the unique point u in Q nearest to x lies at distance
2 from x and is collinear with y′. Therefore, u ∈ O2b and My′ = y′u. The four lines of
H through y′ that go back to x are now uniquely determined. Indeed, by Lemma 4.24,
each of the four lines of H through y′ meets O2b. But by the suborbit diagram, there are
precisely five such lines. Moreover, one of these five lines is the line My′ and we already
know that it cannot be a line of H.

Now, let y′′ ∈ O2b be a point on one of these four lines. By the suborbit diagram there
is a unique line through y′′ containing a point y′′′ in O1b, which must necessarily be in H.
Moreover, there is a unique line through y′′′ that contains x.

So far, we have proved that given any point y in H with dH(x, y) = 4, all shortest
paths between x and y in H are uniquely determined by x and y. Moreover, all points
at distance 4 from x that are collinear with y are uniquely determined. These properties
in fact imply that the whole of H is uniquely determined. Indeed, the subgraph of the
collinearity graph induced on the set Γ4(x) ∩ H is connected (see Step 1 of the proof of
Theorem 3 in [12]), and every shortest path between x and a point of H can be extended
to a shortest path between x and a point of Γ4(x) ∩H.

Lemma 4.26. There are precisely 416 Hall-Janko suboctagons of G, namely the suboc-
tagons SH for maximal subgroups H ∼= J2 : 2 of G = G2(4) : 2. Through every pair of
opposite points of G, there is precisely one Hall-Janko suboctagon.

Proof. A Hall-Janko suboctagon has 315 · 64 ordered pairs of opposite points while G has
4095·2048 such pairs. Therefore by Lemma 4.25, there are at most (4095·2048)/(315·64) =
416 Hall-Janko suboctagons in G. By Lemma 4.15 there are at least that many.

Now that we have classified all Hall-Janko sub near octagons of G, we end this section
with proving some extra properties of these Hall-Janko suboctagons.

Lemma 4.27. If H is a Hall-Janko suboctagon of G and x a point not contained in H
then there is a unique point x′ in H that is collinear with x.

Proof. Let H be a Hall-Janko suboctagon of G and x a point not contained in H. Say
x has two neighbours y, z in H. Then by Lemma 4.23 dH(y, z) = 2 and hence there is
a common neighbour of y, z inside H. This means that there is a quad through y, z
whose intersection with H contains a pair of intersecting lines, contradicting Lemma 4.20.
Therefore, if x has a neighbour in H then it is unique.

Now we can show that x has a neighbour in H by a simple counting. There are six
lines out of the eleven through each point in H that are not contained in H, giving us a
total of 12 · 315 points of G at distance 1 from H, as they all must be distinct. Adding
this to the number of points in H we get 315 · 12 + 315 = 4095 which is the total number
of points in G.
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For a Hall-Janko suboctagon H and a point x of G we define the projection of x onto H,
πH(x), to be x if x ∈ H and the unique point x′ ∈ H collinear with x if x /∈ H.

Lemma 4.28. Let H be a Hall-Janko suboctagon of G and x, y be two distinct points not
contained in H such that πH(x) = πH(y). Then H ∩ Γ4(x) 6= H ∩ Γ4(y).

Proof. We consider the following two cases:

1. The point x is collinear with y. Let x′ = πH(x) = πH(y) and z ∈ Γ4(x
′) ∩H. Since

{x, y, x′} is a line, by (NP2), either d(z, x) = 3 and d(z, y) = 4, or d(z, x) = 4 and
d(z, y) = 3. In either case z belongs to only one of H ∩ Γ4(x), H ∩ Γ4(y).

2. The point x is not collinear with y. Consider the suborbit diagram with ω equal to
the common projection of x and y.

Let z be a point in O3b ∩ H. There are five lines through z going back to O2b and
four of them are contained in H. The one line that is not contained in H gives us
a unique point z′ of O2b \ H collinear with z. This in turn gives us a unique point
u in O1b \ H collinear with ω and z′. This point has distance 2 from z and cannot
belong to H by Lemma 4.27.

Conversely, let u be a point in O1b \ H. It has sixteen neighbours in O2b none of
which is contained in H by Lemma 4.27. By the suborbit diagram and Lemma 4.18,
the projection of each of these sixteen points in H must lie in O3b. Therefore, the
ten points of O1b \ H partition the set O3b ∩ H, by the distance 2 map, into ten
disjoint sets of size sixteen.

Without loss of generality, say x ∈ O1b. Then the sixteen points of O3b ∩ H that
are at distance 2 from x are at distance 4 from y. Indeed, if z ∈ O3b ∩ H lies at
distance 2 from x, then through ω, there are precisely five lines containing a point
at distance 2 from z. Four of these lines are contained in H and the fifth line is ωx.
So, y which is still on another line through ω should lie at distance 4 from z.

4.3 The automorphism group

In this subsection, we show that the full automorphism group of G is isomorphic to
G = G2(4) : 2.

Lemma 4.29. The group G2(4) : 2 acts as a group of automorphism of G, where the
action on the point set (i.e. the central involutions of G) is given by conjugation.

Proof. Each g ∈ G determines an automorphism of G: if x is a central involution and
g ∈ G, then xg = g−1xg is again a central involution. Since the central involutions generate
the group G′ = G2(4) and CG(G′) = 1, the action of each g ∈ G \ {e} is faithful.

Lemma 4.30. Every automorphism θ of G permutes the elements of S∗ and hence deter-
mines an automorphism of (S∗,Q∗) ∼= H(4)D.
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Proof. The automorphism θ permutes the quads of G and hence the lines of G that can
be obtained as intersections of two quads.

Lemma 4.31. Suppose θ is an automorphism of G fixing each line of S∗. Then θ is the
identity.

Proof. Let x be an arbitrary point of G, L = {x, y, z} a line through x not belonging to
S∗ and Q the unique quad through L. The lines of S∗ contained in Q determine a spread
of the W (2)-quad Q. Inside Q, it is easily seen that L is the unique line of Q meeting Lx,
Ly and Lz. From Lθx = Lx, L

θ
y = Ly and Lθz = Lz, it then follows that xθ = x.

Proposition 4.32. The full automorphism group of G is isomorphic to G2(4) : 2.

Proof. By Lemmas 4.30 and 4.31, |Aut(G)| 6 |Aut(H(4)D)| = |G2(4) : 2|. Lemma 4.29
then implies that Aut(G) ∼= G2(4) : 2.

It is possible to give another proof of Proposition 4.32 based on the following lemma.

Lemma 4.33. Let H be a subgroup of G2(4) : 2 isomorphic to J2 : 2. Then every
automorphism θ of SH ∼= HJ extends to precisely one automorphism of G.

Proof. The action of θ on the point set of SH is given by conjugation by a suitable element
of H ∼= J2 : 2. This conjugation also determines an automorphism of G. To show that θ
extends to at most one automorphism of G, we must show that every automorphism ϕ of
G that fixes each point of SH must be trivial. But this is implied by Lemma 4.28.

Since there are 416 Hall-Janko suboctagons, Lemma 4.33 implies that |Aut(G)| 6 416 ·
|Aut(HJ)| = 416 · |J2 : 2| = |G2(4) : 2|. Lemma 4.29 then again implies that Aut(G) ∼=
G2(4) : 2. In fact, this reasoning also gives that the automorphism group is transitive
on the Hall-Janko suboctagons, but we already knew this in advance as all maximal
subgroups isomorphic to J2 : 2 are conjugate.

5 The Suzuki tower

Let S0, S1, S2, S3 be the near polygons and Γ0, Γ1, Γ2, Γ3, Γ4 the graphs of the Suzuki
tower as mentioned in Section 1. Then we know that S0 = H(2, 1), S1 = H(2)D, S2 = HJ
and S3 = G, where H(2, 1) is the unique generalized hexagon of order (2, 1). We define S−1
to be the partial linear space on nine points and four lines obtained from the (3× 3)-grid
by removing two disjoint lines (and keeping the points incident with these two lines). We
define S ′−2 to be a line with three points and S ′′−2 to be a coclique of size 3 (no lines).

The graphs Γi with i = 0, 1, 2, 3 can all be obtained in a similar way from the near
polygons Si and some of their subgeometries. It can easily be verified that Γ0 is isomorphic
to the graph whose vertices are the subgeometries of S0 isomorphic to S−1, where two such
subgeometries are adjacent whenever they intersect in a subgeometry isomorphic to S ′−2
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or S ′′−2. The graph Γi with i = 1, 2 is known to be isomorphic to the graph whose vertices
are the subgeometries of Si isomorphic to Si−1, where two subgeometries are adjacent
whenever they intersect in a subgeometry isomorphic to Si−2. We prove an analogous
property2 for the graph Γ3.

Lemma 5.1. The G2(4)-graph Γ3 is isomorphic to the graph Γ′ whose vertices are the
Hall-Janko suboctagons of G, where two Hall-Janko suboctagons are adjacent whenever
they intersect in a subgeometry isomorphic to H(2)D.

Proof. The G2(4)-graph is the graph whose vertices are the maximal subgroups of G2(4)
isomorphic to J2, where two such maximal subgroups are isomorphic if they intersect in
a subgroup isomorphic to G2(2)′ ∼= U3(3).

It is well-known that the Hall-Janko near octagon HJ has 100 subhexagons isomorphic
to H(2)D, and that these are in bijective correspondence with the 100 maximal sub-
groups of J2 isomorphic to G2(2)′. The points of a subhexagon are the central involutions
contained in the corresponding maximal subgroup. Moreover, these central involutions
generate the maximal subgroup.

For every subgroup H of G2(4), denote by ΣH the set of central involutions contained
in H. If H ∼= J2, then the geometry SH induced on the subspace ΣH is isomorphic to
HJ. By Lemma 4.26, the map H 7→ SH defines a bijection between the 416 maximal
subgroups of G2(4) isomorphic to J2 and the 416 Hall-Janko suboctagons of G. We show
that this map defines an isomorphism between the G2(4)-graph and the graph Γ′. Take
two mutually distinct subgroups H1 and H2 of G2(4) isomorphic to J2.

If H1 and H2 are two adjacent vertices of the G2(4)-graph, then the subgeometries
SH1 and SH2 intersect in a subgeometry whose point set is ΣH1 ∩ΣH2 = ΣH1∩H2 , i.e. in a
subgeometry isomorphic to H(2)D as H1 ∩H2

∼= G2(2)′.
Conversely, suppose that SH1 and SH2 intersect in a subgeometry isomorphic to H(2)D.

Then ΣH1 ∩ ΣH2 contains all central involutions that are contained in a certain G2(2)′-
subgroup Ki of Hi

∼= J2, i = 1, 2. Since all these central involutions generate Ki, the
groups K1 and K2 are equal, say to K. As K is a maximal subgroup of both H1 and H2,
we have K = H1 ∩H2, i.e. H1 and H2 are adjacent in the G2(4)-graph.

Lemma 5.1 is precisely Theorem 1.3. The graphs Γ0,Γ1,Γ2,Γ3 of the Suzuki tower can
all be constructed from the near polygons S0,S1,S2,S3 and some of their subgeometries.
Theorem 1.4 which we will now prove says that this is also true for the remaining graph
Γ4 in the Suzuki tower. In fact, the construction given in Theorem 1.4 is a translation (in
terms of subgeometries of S3 = G) of the original construction of the Suzuki graph [25].
We wish to note that it is also possible to give similar constructions for the other graphs
of the Suzuki tower by translating their original constructions in terms of substructures
of a suitable Si. We will omit these other constructions here.

2A similar property holds for the complements: The complement of Γi with i = 0, 1, 2, 3 is isomorphic
to the graph whose vertices are the subgeometries of Si isomorphic to Si−1, where two distinct subge-
ometries are adjacent whenever they intersect in the perp of a point (in any of these two subgeometries).
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Let us first review the original construction of the Suzuki Tower (see [25] or [19]). Let
∆ = Γi−1, Γ = Γi and H = Aut(∆) for some i ∈ {1, 2, 3, 4}. The graph Γ is constructed
from the graph ∆ as follows.

Let ∞ be an extra symbol. Let S be the conjugacy class of 2-subgroups of type 2A if
i = 1, 2 or 3. In the remaining case, i = 4, let S be the conjugacy class of 22-subgroups
of H generated by 2A-involutions x and y such that [H : NH(〈x, y〉)] = 1365 (the long
root subgroups). Define the vertex set of Γ as V (Γ) := {∞} ∪ V (∆) ∪ S. Vertex ∞ is
made adjacent to all the elements of V (∆), two vertices in V (∆) are adjacent if they
are adjacent as vertices of ∆, a vertex x ∈ S is adjacent to a vertex v ∈ V (∆) if a non
trivial element of the subgroup corresponding to x fixes v, and two vertices x, y in S are
adjacent if x, y considered as subgroups of H do not commute but there exists a z ∈ S
that commutes with both of them.

In the case i = 4, ∆ is the G2(4)-graph and H ∼= G2(4) : 2. We know that the vertices of
∆ can be put in 1-1 correspondence with the Hall-Janko suboctagons of G and that the
elements of S (the long root subgroups) can be put in 1-1 correspondence with the lines of
the spread S∗. Two long root subgroups are adjacent whenever they do not commute, but
there exists a long root subgroup that commutes with both. In terms of properties of G,
this means that the corresponding lines of S∗ must lie at distance 2 from each other in the
near polygon. By Lemma 4.33 we know that every automorphism stabilizing a Hall-Janko
suboctagon H must be a conjugation by an element of the J2 : 2-subgroup corresponding
to H. From this it follows that if x ∈ S and v ∈ V (∆), then a non-trivial element of
the subgroup corresponding to x fixes v if and only if the spread line corresponding to x
intersects the Hall-Janko suboctagon corresponding to v. This all implies that the graph
as defined in Theorem 1.4 must be isomorphic to the Suzuki graph Γ4.

Remark: There are other known strongly regular graphs that can be constructed from
substructures of these near polygons in a similar way as Theorems 1.3 and 1.4. For exam-
ple, it is known that the Hall-Janko near octagon contains 280 copies of the generalized
octagon of order (2, 1), denoted as GO(2, 1), as convex subgeometries (cf. Proposition 4.7
in [28]), with every pair of distinct GO(2, 1)’s intersecting in 5 or 15 points. Computations
showed that the graph defined on these 280 suboctagons, where adjacency is defined by
intersection in 15 points is an srg(280, 36, 8, 4) (this fact was communicated to Andries
Brouwer who has included it on his website [8]).

Computations with subgeometries of G also showed that if N1 is a Hall-Janko suboc-
tagon and N2 a G ′-suboctagon then N1 ∩ N2 is either isomorphic to H(2, 1) or GO(2, 1).
These intersections give us 56 suboctagons of G ′ isomorphic to GO(2, 1), with every pair
of distinct GO(2, 1)’s intersecting in 5 or 9 points. We can define a graph on these 56 sub-
octagons by defining adjacency as intersection in 9 points. Computations revealed that
this is an srg(56, 10, 0, 2) necessarily isomorphic to the unique strongly regular graph with
those parameters, the well known Sims-Gewirtz graph. We can also construct the graph
srg(162, 56, 10, 24), which is the second subconstituent of the McLaughlin graph [23], by
taking the elements of {∞}, A and B as vertices where A is the set of 56 sub GO(2, 1)’s
of G ′ and B the set of 105 lines of S∗ that are contained in G ′. Then join∞ to all vertices
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in A, join two distinct vertices of A if the corresponding suboctagons intersect in 9 points,
join a vertex of A to all vertices of B that correspond to a line intersecting the suboctagon,
and join two vertices of B if the lines are at distance 2.

A The original construction of the near octagon

In this appendix, we give another description of the near octagon G. This description was
the first description we had for this new near octagon and arose while the authors were
studying near polygons that contain HJ as an isometrically embedded subgeometry. We
define a valuation of HJ as a map from the point set of HJ to N satisfying:

(V1) There exists at least one point with f -value 0.

(V2) Every line L of HJ contains a unique point xL such that f(x) = f(xL) + 1 for every
point x 6= xL of L.

Two valuations f1 and f2 of HJ are called neighboring if there exists an ε ∈ Z (necessarily
belonging to {−1, 0, 1}) such that |f1(x) − f2(x) + ε| 6 1 for every point x of HJ. The
number ε is uniquely determined, except when f1 = f2, in which case there are three
possible values for ε, namely −1, 0 and 1.

Now, suppose that f1 and f2 are two neighboring valuations of HJ and let ε ∈ {−1, 0, 1}
such that |f1(x)− f2(x) + ε| 6 1 for every point x of HJ. If x is point such that f1(x) =
f2(x)−ε, then we define f ′3(x) := f1(x)−1 = f2(x)−ε−1. If x is a point such that f1(x) 6=
f2(x) − ε, then we define f ′3(x) := max(f1(x), f2(x) − ε). If we put f3(x) := f ′3(x) −m,
where m ∈ {−1, 0, 1} is the minimal value attained by f ′3, then f3 is again a valuation of
HJ, which we will also denote by f1 ∗ f2. The map f1 ∗ f2 is well-defined: if f1 = f2, then
there are three possibilities for ε, but for each of them, we would have f1 ∗ f2 = f1 = f2.
The following properties hold: (i) f2 ∗ f1 = f1 ∗ f2 = f3; (ii) f1 and f3 are neighboring
valuations and f1 ∗ f3 = f2; (iii) f2 and f3 are neighboring valuations and f2 ∗ f3 = f1.

The valuation geometry V of HJ is defined as the partial linear space whose points are
the valuations of HJ and whose lines are the triples {f1, f2, f3}, where f1, f2 and f3 are
three mutually distinct valuations of HJ such that f1 and f2 are neighboring valuations
and f3 = f1 ∗ f2. The valuation geometry V can provide useful information about near
polygons containing HJ as an isometrically embedded full subgeometry:

Lemma A.1. Let S be a near polygon with three points per line containing HJ as an
isometrically embedded subgeometry. For every point x of S, let fx be the map from the
point set of HJ to N sending each point y of HJ to d(x, y) −m, where m is the distance
between x and HJ. Then the following holds:

(1) For every point x of S, fx is a valuation of HJ.

(2) For every line {x, y, z} of S, either fx = fy = fz or {fx, fy, fz} is a line of V.

Proof. This is easily deduced from Property (NP2) in the definition of valuation, see e.g.
[4, Lemma 2.2].
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Type # Mf |Of | value distribution

A 315 4 1 [1,10,80,160,64]
B 630 3 1 [1,10,112,192,0]
C 3150 3 1 [1,26,128,160,0]
D 1008 2 5 [5,110,200,0,0]
E 2016 2 25 [25,130,160,0,0]

Table 1: The valuations of Hall-Janko near octagon

Type A B C D E

AAA 5 – – – –
ABB 1 1 – – –
ACC 5 – 1 – –
BBB – 5 – – –
BBC – 10 1 – –
CCC – – 9 – –
CDD – – 4 25 –
DDD – – – 6 –
DEE – – – 1 1
EEE – – – – 6

Table 2: The lines of the valuation geometry

For the purpose of studying near polygons containing HJ as an isometrically embedded
subgeometry, the authors determined all valuations of HJ with the aid of GAP, see [5]. It
turns out that there are 7119 valuations which fall into five isomorphism classes, see Table
1. In this table, Mf denotes the maximal value attained by a valuation f and Of denotes
the set of points with value 0. The number of points with a given value i ∈ {0, 1, 2, 3, 4}
can be found as the (i+ 1)-th entry in “value distribution”.

Subsequently, we have determined the possible line types for the lines of V , together
with information saying how many lines of each type are incident with a given point of
Type T ∈ {A,B,C,D,E}. This information can be found in Table 2.

Now, take the subgeometry V ′ of order (2, 10) of V whose points are the valuations
of Type A, B, C, and whose lines are the lines of Type AAA, ABB, ACC, BBC,
CCC. Computer computations showed that this is a near octagon (containing HJ as
a full suboctagon). Computer computations also revealed that G2(4) : 2 was the most
likely candidate for the full automorphism group (see Section 1). An attempt to construct
the near octagon directly from the group G2(4) : 2 was successful and resulted in the
description given in Theorem 1.1. We end this appendix by showing that the geometries
G and V ′ are indeed isomorphic.

Proposition A.2. The near octagon G is isomorphic to V ′.
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Proof. Regard HJ as a full subgeometry of G. Then HJ is isometrically embedded into
G by Lemma 4.23. By Lemma A.1, every point x of G will induce a valuation fx of HJ.
This valuation is of Type A if and only if x belongs to HJ. By Lemma 4.27, each induced
valuation has a unique point with value 0. So, all induced valuations have Type A, B or
C. By Lemma 4.28, all induced valuations are distinct, implying that the 4095 induced
valuations are precisely the 4095 valuations of HJ that have Type A, B or C. Now, every
point of G is incident with precisely 11 lines. By looking at the columns “A” and “C”
of Table 2, we see that all lines of V of Type AAA, ABB, ACC, BBC and CCC should
be induced (in the sense of Lemma A.1(2)). The number of such lines of V is equal to
315·5
3

+ 315 · 1 + 315 · 5 + 3150 · 1 + 3150·9
3

= 15015. Since G has 4095·11
3

= 15015 lines, we
see that the lines of V that are induced are precisely the lines of Type AAA, ABB, ACC,
BBC and CCC. We can now conclude that G and V ′ are isomorphic.

Acknowledgment

The authors wish to thank Andries Brouwer for discussions on the topics of the paper and
his helpful comments. They also thank the anonymous referees for their detailed reports
and constructive remarks.

References

[1] M. Aschbacher. Flag structures on Tits geometries. Geom. Dedicata 14 (1983), 21–32.

[2] M. K. Bardoe. The universal embedding for the involution geometry of the Suzuki
sporadic simple group. J. Algebra 186 (1996), 447–460.

[3] M. K. Bardoe. The universal embedding for the involution geometry of Co1. J. Al-
gebra 217 (1999), 555–572.

[4] A. Bishnoi and B. De Bruyn. On semi-finite hexagons of order (2, t) containing a
subhexagon. To appear in Ann. Comb. Preprint at arXiv:1503.05865.

[5] A. Bishnoi and B. De Bruyn. Computer code for “A new near octagon and the Suzuki
tower”. http://cage.ugent.be/geometry/preprints.php.

[6] A. Bishnoi and B. De Bruyn. Characterizations of the Suzuki tower near polygons.
Preprint at arXiv:1510.07919.

[7] A. Bishnoi and B. De Bruyn. The L3(4) near octagon. In preparation.

[8] A. E. Brouwer. The Cohen-Tits near octagon on 315 points. http://www.win.tue.
nl/~aeb/graphs/HJ315.html.

[9] A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink. Near polygons and
Fischer spaces. Geom. Dedicata 49 (1994), 349–368.

[10] A. E. Brouwer, A. M. Cohen and A. Neumaier. Distance-regular graphs. Springer-
Verlag, Berlin, 1989.

the electronic journal of combinatorics 23(2) (2016), #P2.35 23

http://arxiv.org/abs/1503.05865
http://cage.ugent.be/geometry/preprints.php
http://arxiv.org/abs/1510.07919
http://www.win.tue.nl/~aeb/graphs/HJ315.html
http://www.win.tue.nl/~aeb/graphs/HJ315.html


[11] A. M. Cohen. Geometries originating from certain distance-regular graphs. Finite
geometries and designs (Proc. Conf., Chelwood Gate, 1980), pp. 81–87, London Math.
Soc. Lecture Note Ser. 49, Cambridge Univ. Press, Cambridge-New York, 1981.

[12] A. M. Cohen and J. Tits. On generalized hexagons and a near octagon whose lines
have three points. European J. Combin. 6 (1985), 13–27.

[13] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. Atlas of
finite groups. Clarendon Press, Oxford, 1985.

[14] B. De Bruyn. New near polygons from Hermitian varieties. Bull. Belg. Math. Soc.
Simon Stevin 10 (2003), 561–577.

[15] A. De Wispelaere and H. Van Maldeghem. On the Hall-Janko graph with 100 vertices
and the near-octagon of order (2, 4). Contrib. Discrete Math. 4 (2009), 37–58.

[16] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.5, 2014,
http://www.gap-system.org.

[17] D. Leemans. A family of geometries related to the Suzuki tower. Comm. Algebra 33
(2005), 2201–2217.

[18] A. Neumaier. Rectagraphs, diagrams, and Suzuki’s sporadic simple group. Algebraic
and geometric combinatorics, pp. 305–318, North-Holland Math. Stud. 65, North-
Holland, Amsterdam, 1982.

[19] D. Pasechnik. Geometric characterization of graphs from the Suzuki chain. European
J. Combin 14 (1993), 491–499.

[20] S. E. Payne and J. A. Thas. Finite generalized quadrangles. European Mathematical
Society, Zürich, 2009.
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