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Abstract

Let G be a graph. Assume that l and k are two natural numbers. An l-sum flow
on a graph G is an assignment of non-zero real numbers to the edges of G such that
for every vertex v of G the sum of values of all edges incident with v equals l. An
l-sum k-flow is an l-sum flow with values from the set {±1, . . . ,±(k − 1)}. Recently,
it was proved that for every r, r > 3, r 6= 5, every r-regular graph admits a 0-sum
5-flow. In this paper we settle a conjecture by showing that every 5-regular graph
admits a 0-sum 5-flow. Moreover, we prove that every r-regular graph of even order
admits a 1-sum 5-flow.

Keywords: 0-sum flow, regular graph, 1-sum flow, factor

1. Introduction

Throughout this paper a graph means a finite undirected graph without loop or mul-
tiple edges. Let G be a multigraph with the vertex set V (G) and the edge set E(G). The
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number of vertices and the number of edges of G are called the order and the size of G,
respectively. A k-regular graph is a graph where each vertex is of degree k. The degree
of vertex v in G is denoted by dG(v) and NG(v) denotes the set of all vertices adjacent to
v. A graph G is called k-edge connected if the minimum number of edges whose removal
would disconnect the graph is at least k. A pendant edge is an edge incident with a vertex
of degree 1.

For a set {a1, . . . , ar} of non-negative integers an {a1, . . . , ar}-graph is a graph each
of whose vertices has degree from the set {a1, . . . , ar}. For integers a and b, 1 6 a 6 b,
an [a, b]-graph is defined to be a graph G such that for every v ∈ V (G), a 6 dG(v) 6 b.
An [a, b]-factor is a spanning subgraph of G in which the degree of each vertex is in the
interval [a, b]. When a = b, we call it an a-factor.

Assume that l and k are two natural numbers. An l-sum flow on a graph G is an
assignment of non-zero real numbers to each edge of G such that for every vertex v in
V (G) the sum of values of all edges incident with v equals l and call it l-sum rule. An
l-sum k-flow is an l-sum flow with values from the set {±1, . . . ,±(k − 1)}.

Let G be a graph. A k-flow of G is an assignment of integers with maximum value
at most k − 1 to each edge of G together with its orientation (or direction) such that for
each vertex of G, the sum of the labels of incoming edges is equal to that of the labels of
outgoing edges. A nowhere-zero k-flow is a k-flow with no zeros.
Tutte proposed the following interesting conjecture.

Conjecture A. (Tutte’s 5-flow Conjecture [8]) If G is 2-edge connected, then it has
a nowhere-zero 5-flow.

In [2], it was proved that Tutte’s 5-flow Conjecture is equivalent to show that every
2-edge connected bipartite graph admits a 0-sum 5-flow. In 2009, an analagous version of
Tutte’s Conjecture proposed for undirected graphs.

Conjecture B. (0-Sum Conjecture (ZSC) [2]) If a graph G admits a 0-sum flow,
then G admits a 0-sum 6-flow.

For r-regular graphs it was conjectured that 6 can be reduced to 5.

Conjecture C. [1] Every r-regular graph (r > 3) admits a 0-sum 5-flow.

Conjecture C has been settled for cubic graphs in [2] and for every positive integer r,
r 6= 5 in [3]. In [10], the authors proved that every r-regular graph (r > 3) admits a 0-sum
7-flow. Also in [9], for some r, k, l, the existence of l-sum k-flow for r-regular graphs has
been studied.

In the present manuscript using strong tools in factorization of graphs, we show that
Conjecture C holds in general. Also, we prove that every r-regular graph of even order
admits a 1-sum 5-flow.
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1 0-sum 5-flow for 5-regular graphs

The main goal of this section is showing that Conjecture C is true. We would like to
prove the next result which settles Conjecture C.

Theorem 1. Every 5-regular graph admits a 0-sum 5-flow.

Proof. First let us state five lemmas.

Lemma 2. ([5, p.91] and [6, p.203]) Let G be an n-edge connected multigraph (n > 1), θ
be a real number such that 0 < θ < 1 and f : V (G)→ {0, 1, 2, . . .}. If (i), (ii) and one of
(iiia), (iiib) hold, then G has an f -factor.

(i)
∑

x∈V (G) f(x) is even.

(ii)
∑

x∈V (G) |f(x)− θdG(x)| < 2.

(iiia) nθ > 1 and n(1− θ) > 1.

(iiib) The set {f(x)} consists of even numbers and m(1 − θ) > 1, where m ∈ {n, n + 1}
and m ≡ 1 (mod 2).

Now, we prove the following lemma.

Lemma 3. Let G be a 2-edge connected [2, 5]-multigraph. If

3|{x ∈ V (G) : dG(x) = 2}|+ 2|{x ∈ V (G) : dG(x) = 3}|+ |{x ∈ V (G) : dG(x) = 4}| 6 4,

then G has a 2-factor.

Proof. Define a function f on V (G) as f(x) = 2, for all x ∈ V (G), and let θ = 2
5
. Then∑

x∈V (G)

|f(x)− θdG(x)|

=
6

5
|{x : dG(x) = 2}|+ 4

5
|{x : dG(x) = 3}|+ 2

5
|{x : dG(x) = 4}|

6
8

5
< 2.

Hence Parts (i), (ii) and (iiib) of Lemma 2 are satisfied with m = 3, and thus G has a
2-factor. 2

In [2] the following result was proved.

Lemma 4. If G is a connected {1, 3}-graph and the subgraph of G induced by vertices of
degree 3 is 2-edge connected, then there is a function f on E(G) with f(e) ∈ {−2, 1, 4}
so that the 0-sum rule holds for each vertex of degree 3, and each pendant edge e has
f(e) ∈ {−2, 4}. Moreover, one pendant edge e may have its value pre-assigned.
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The next lemma shows that Lemma 4 can be generalized to every {1, 3}-graph.

Lemma 5. Let G be a connected {1, 3}-graph and let h be a pendant edge of G. For any
arbitrary α ∈ {−2, 4}, there exists a function f : E(G) → {−2, 1, 4} such that f(h) = α
and 0-sum rule holds in each vertex of degree 3 and the value of any pendant edge is in
the set {−2, 4}.

Proof. Consider a rooted tree T obtained from G such that every maximal 2-edge con-
nected subgraph of G is considered as a vertex of T and E(T ) consists of all cut edges
of G, where the root is the maximal 2-edge connected subgraph one of whose vertices
incident with the given pendant edge h, and a subgraph with one vertex is considered
as a 2-edge connected subgraph. Now, we start by a root of T . If the root consists of
one vertex, then we can easily assign the desired values to the three edges. So, we may
assume that the maximal 2-edge connected subgraph, say H, of G corresponding to the
root of T has order at least 2. Thus the subgraph of G obtained from H by adding all
cut edges of G incident with H is a graph that satisfies the conditions of Lemma 4. Then
apply Lemma 4 to obtain an edge assignment f for the root with values form {−2, 1, 4}
in which the pendant edges have even value and f(h) = α. Consider a maximal 2-edge
connected subgraph K of G corresponding to a child of the root of T and apply again
Lemma 4, where the edge joining K to the root corresponds the given pendant edge in
Lemma 4. By continuing this procedure we can find the desired function on the edge set
of G. 2

Lemma 6. If G is a connected {1, 5}-graph, {e1, . . . , es} ⊆ E(G) is the set of all pendant
edges of G and G− {e1, . . . , es} is 2-edge connected, then there is a function f on E(G)
with f(e) ∈ {±1,±2,±3,±4} so that 0-sum rule holds for each vertex of degree 5 and
for i = 1, . . . , s, f(ei) ∈ {−2, 2, 4}. Moreover, one pendant edge el may have value pre-
assigned.

Proof. Let s = 5p + q, where p > 0 and 0 6 q 6 4 are integers. We divide 5p pendant
edges of G into p groups each of which contains 5 edges, and identify the end points of
every group to obtain the new p vertices of degree 5, called v1, . . . , vp. Remove q remaining
pendant edges from G and call the resultant multigraph by H. Since H is obtained from
G by removing q pendant edges, H has the following property:

3|{x : dH(x) = 2}|+ 2|{x : dH(x) = 3}|+ |{x : dH(x) = 4}| 6 4.

Thus by Lemma 3, H has a 2-factor F . Now, we define a function f : E(G) →
{−2, 2, 3, 4} for G so that the 0-sum rule holds for each vertex of degree 5. Assign value
3 to all edges of F , and assign value −2 to all remaining edges of H. Also assign value
−2 to q removed pendant edges of G. Now, if a cycle C of F contains at least one vertex
in {v1, . . . , vp}, choose one vertex, say vt, and change the values of edges of this cycle
alternatively by 2 and 4 starting at an edge incident with vt and ending at the other edge
incident with vt. Note that if a cycle C contains no vertex in {v1, . . . , vp}, do not change
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the values of edges of C. Then we split 5p edges incident with {v1, . . . , vp} of H into 5p
pendant edges of G. Thus we obtain a function f with the desired property.

For the last part of lemma we consider 3 cases:
(i) f(e`) = −2. Consider the graph H as before. We know that H contains a 2-factor

F . If e` is not contained in F , then the previous assignment works. If e` is contained
in F and e` is incident with vr, assign the value −3 to each edge of F , and assign 2 to
all other edges. Then change the values of edges of the cycle C alternatively by −2 and
−4, starting at e`. Note that we do the same procedure for every cycle of F containing a
vertex in {v1, . . . , vp}.

(ii) f(e`) = 2. If e` is contained in a 2-factor F of H, then the previous assignment
works. If e` is not contained in F , then assign −3 to all edges of F and assign 2 to all
remaining edges, and do the same procedure for every cycle F containing at least one
vertex in {v1, . . . , vp}.

(iii) f(e`) = 4. Consider the first assignment of edges of H. If e` is contained in F ,
then we are done. If e` is not contained in 2-factor F of H, then by removing all edges
of F from H, we obtain a [0, 3]-graph which is not necessary connected. We have two
possibilities: e` is an edge of H − F or e` is not in H, i.e., e` is a removed pendant edge
when H is obtained. In the first case suppose that vt is a vertex of degree 3 in H − F
incident with e`. Now, for every vi ∈ {v1, . . . , vp}, we split 3 edges of H−F incident with
vi to make 3 pendant edges. Add q removed pendant edges of G to H − F . Then the
resultant graph is a {1, 3}-graph, say K, in which e` is a pendant edge.
By Lemma 5, we have a function g : E(K) → {−2, 1, 4} such that g(e`) = −2 and the
values of every pendant edge is in the set {−2, 4} and moreover the 0-sum rule holds in
each vertex of degree 3. Now, subtract 2 from all values of E(K) and then multiply −1
to the values of all edges of K. Then assign −3 to all edges of F , and change the values
of all edges of every cycle of F containing a vertex in {v1, . . . , vp} alternatively by −2
and −4. Clearly, the value of e` is 4 and 0-sum rule holds for each vertex of degree 5, as
desired.

If e` is not in H, we add q removed pendant edges of G including e` to H−F to obtain
a {1, 3}-graph, say K. Now, a similar method given above completes the proof. 2

Now, we are in a position to prove Theorem 1.
If G is 2-edge connected, then by Lemma 3, G has a 2-factor F . Then assign value

3 to all the edges of F , and assign value −2 to all remaining edges of G, which is the
desired 0-sum 5-flow. Hence we may assume that G is not 2-edge connected. Consider
a rooted tree T obtained from G such that every maximal 2-edge connected subgraph
of G is considered as a vertex of T and E(T ) consists of all cut edges of G, where a
subgraph consisting of one vertex is considered as a 2-edge connected subgraph. Now,
we start by a root of T whose induced subgraph on the vertices of degree 5 is 2-edge
connected. Let H be the maximal 2-edge connected subgraph of G corresponding to the
root of T . Apply Lemma 6 to the subgraph of G obtained from H by adding all the cut
edges of G incident with H to obtain an edge assignment for the root with values from
the set {±1,±2,±3,±4} in which every pendant edge has a value from the set {−2, 2, 4}.
Consider a maximal 2-edge connected subgraph K of G corresponding to a child of the
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root of T and apply again Lemma 6 to the subgraph of G obtained from K by adding all
cut edges of G incident with K to obtain an assignment on the root and K. By continuing
this procedure we find a 0-sum 5-flow for G and the proof is complete.

2 1-sum flows in regular graphs

As we mentioned that before every r-regular graph r > 3, admits a 0-sum 5-flow. In this
section we prove that every r-regular graph of even order r > 3, admits a 1-sum 5-flow.
Before establishing our results we need some theorems.

Remark 1. We note that if a graph G admits a 1-sum k-flow, then G has even order.
To see this assume that f is a 1-sum k-flow for G. We have

|V (G)| =
∑

v∈V (G)

∑
u∈NG(v)

f(uv) = 2
∑

e∈E(G)

f(e).

Thus |V (G)| should be even.

In the sequel we need the following result.

Theorem 7. [6 and 7, p. 184-190] Let r > 3 be an odd integer and let k be an integer
such that 1 6 k 6 2r

3
. Then every r-regular graph has a [k − 1, k]-factor each component

of which is regular.

Also, we need the following theorem due to Petersen.

Theorem 8. [7] Every 2k-regular multigraph admits a 2-factorization.

The following remark shows that there are some regular graphs with no 1-sum 3-flow.

Remark 2. It is not hard to see that following 3-regular graph does not admit a 1-sum
3-flow.

Now, we are ready to show that every r-regular graph of even order admits a 1-sum
5-flow.
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Theorem 9. Let G be an r-regular connected graph of even order. Then the following
hold:

(i) If r is an odd integer or r = 4k+ 2, for some integer k > 0, then G admits a 1-sum
4-flow.

(ii) If r = 4k, for some integer k > 1, then G admits a 1-sum 5-flow.

Proof. Assume that V (G) = {1, . . . , n}. First suppose that r is an odd integer. We
define a bipartite graph from G, called B, with two parts X = {x1, . . . , xn} and Y =
{y1, . . . , yn} and xiyj ∈ E(B) if and only if ij ∈ E(G) for every i and j, 1 6 i, j 6 n.
So, B is an r-regular graph and by Theorem [4, p.79], B has a 1-factorization F1, . . . , Fr.
Now, for every e ∈ E(Fi), 1 6 i 6 r, define a function g : E(B)→ {±1

2
,±3

2
} as follows.

For r = 4k + 1 define:

g(e) =

{ −3
2
, 1 6 i 6 k;

1
2
, k < i 6 r.

Also, for r = 4k + 3 define:

g(e) =

{
3
2
, 1 6 i 6 k + 1;
−1
2
, k + 1 < i 6 r.

Clearly, for each u ∈ V (B),
∑

v∈NB(u) g(uv) = 1
2
. Now, define a function f : E(G) →

{±1,±3} such that for every ij ∈ E(G), f(ij) = g(xiyj) + g(xjyi). Then for every
i ∈ V (G),

∑
j∈NG(i) f(ij) = 1, as desired.

Now, suppose that r is an even integer. If G is a 2-regular graph, then by assigning
the integers −1, 2 to the edges of G alternatively, we are done.

Let r = 4k. Double all edges of G to obtain an 8k-regular multigraph G′. Since
G′ contains two edge disjoint spanning subgraphs H1 and H2 isomorphic to G and H1

is decomposed into 2-factors F1, . . . , F2k, we can obtain a (4k + 2)-regular multigraph
G′′ = G′ \ E(F1) ∪ · · · ∪ E(F2k−1), which contains a 4k-regular graph H2. Since G′′ is
2-edge connected, then by Parts (i), (ii) and (iiia) of Lemma 2, if we define f(i) = 2k+1,
for all i ∈ V (G′′) and θ = 1

2
, G′′ is decomposed into two (2k+1)-factors G′′1 and G′′2. Now,

for every e ∈ E(G′), we define a function g : E(G′)→ {−2, 1, 3} as follows:

g(e) =


−2, e ∈ E(F1) ∪ · · · ∪ E(Fk−2) ∪ E(G′′1);
1, e ∈ E(Fk−1) ∪ E(Fk) ∪ E(Fk+1) ∪ E(G′′2);
3, e ∈ E(Fk+2) ∪ · · · ∪ E(F2k−1).

Clearly, for each i ∈ V (G′),
∑

j∈NG′ (i) g(ij) = 1. Now, define a function f : E(G) →
{−4,−1, 1, 2, 4} such that for every e ∈ E(G), f(e) = g(e) + g(e′), where e′ is the copy
of e in duplicating of this edge in G′. Then for every i ∈ V (G),

∑
j∈NG(i) f(ij) = 1, as

desired.
Now, assume that r = 4k+ 2 and r 6= 6, 10, 14, 22. First note that every integer of the

form 4k + 2 can be written as 12k + 2, 12k + 6 or 12k + 10, for some integer k > 0.
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Let r = 12k + 2. Since G is 2-edge connected, then by Parts (i), (ii) and (iiia) of
Lemma 2, if we define f(i) = 6k + 1, for all i ∈ V (G) and θ = 1

2
, then G has two

(6k + 1)-factors H1 and H2. On the other hand, by Theorem 7, H2 has a [4k − 1, 4k]-
factor, say T whose components are regular. Let T1 be the union of the (4k − 1)-regular
components of T and let T2 be the union of 4k-regular components of T . Note that by
Theorem 8, T2 has a 2-factorization with 2-factors F1, . . . , F2k. Now, we define a function
g : E(G) \ E(T1)→ {−3,−2,−1, 2} as follows:

g(e) =


−3, e ∈ E(H2) \ E(T );
−2, e ∈ E(Fi), 1 6 i 6 k − 1 ;
−1, e ∈ E(Fi), k 6 i 6 2k ;
2, e ∈ E(H1).

Now, we want to assign some labels to the edges of T1. With no loss of generality one
can assume that V (T1) = {1, . . . , q}. We define a bipartite graph, call L, with two parts
X = {x1, . . . , xq} and Y = {y1, . . . , yq} and xiyj ∈ E(L) if and only if ij ∈ E(T1) for
every i and j, 1 6 i, j 6 q. So, L is a (4k − 1)-regular graph and by Theorem [4, p.79],
L has a 1-factorization F ′1, . . . , F

′
4k−1. Now, for every e ∈ E(F ′i ), 1 6 i 6 4k − 1, define a

function g′ : E(L)→ {−1
2
,−3

2
} as follows:

g′(e) =

{
−3

2
, 1 6 i 6 k − 2;

−1
2
, k − 1 6 i 6 4k − 1.

Clearly, for each i ∈ V (L),
∑

j∈NL(i)
g′(ij) = −6k+5

2
. Now, define a function f :

E(G)→ {−3,−2,−1, 2} such that for every e ∈ E(G) \E(T1), f(e) = g(e) and for every
e = ij ∈ E(T1), f(e) = g′(xiyj) + g′(xjyi). Then for every i ∈ V (G),

∑
j∈NG(i) f(ij) = 1,

as desired.
Now, suppose that r = 12k + 6. Since G is 2-edge connected, then by Parts (i), (ii)

and (iiia) of Lemma 2, if we define f(i) = 6k + 3, for all i ∈ V (G) and θ = 1
2
, then

G has two (6k + 3)-factors H1 and H2. On the other hand, by Theorem 7, H2 has a
[4k + 1, 4k + 2]-factor, say T whose components are regular. Let T1 be the union of the
(4k+ 1)-regular components of T and let T2 be the union of (4k+ 2)-regular components
of T . Note that by Theorem 8, T2 has a 2-factorization with 2-factors F1, . . . , F2k+1. Now,
we define a function g : E(G) \ E(T1)→ {−3,−2,−1, 2} as follows:

g(e) =


−3, e ∈ E(H2) \ E(T );
−2, e ∈ E(Fi), 1 6 i 6 k ;
−1, e ∈ E(Fi), k + 1 6 i 6 2k + 1 ;
2, e ∈ E(H1).

Now, we want to assign some labels to the edges of T1. With no loss of generality one
can assume that V (T1) = {1, . . . , q}. We define a bipartite graph, call L, with two parts
X = {x1, . . . , xq} and Y = {y1, . . . , yq} and xiyj ∈ E(L) if and only if ij ∈ E(T1) for
every i and j, 1 6 i, j 6 q. So, L is a (4k + 1)-regular graph and by Theorem [4, p.79],
L has a 1-factorization F ′1, . . . , F

′
4k+1. Now, for every e ∈ E(F ′i ), 1 6 i 6 4k + 1, define a

function g′ : E(L)→ {−1
2
,−3

2
} as follows:
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g′(e) =

{
−3

2
, 1 6 i 6 k − 1;

−1
2
, k 6 i 6 4k + 1.

Clearly, for each v ∈ V (L),
∑

v∈NL(u)
g′(uv) = −6k+1

2
. Now, define a function f :

E(G)→ {−3,−2,−1, 2} such that for every e ∈ E(G) \E(T1), f(e) = g(e) and for every
e = ij ∈ E(T1), f(e) = g′(xiyj) + g′(xjyi). Then for every i ∈ V (G),

∑
j∈NG(i) f(ij) = 1,

as desired.
Next, assume that r = 12k + 10. Since G is 2-edge connected, then by Parts (i), (ii)

and (iiia) of Lemma 2, if we define f(i) = 6k + 5, for all i ∈ V (G) and θ = 1
2
, then

G has two (6k + 5)-factors H1 and H2. On the other hand, by Theorem 7, H2 has a
[4k + 1, 4k + 2]-factor, say T whose components are regular. Let T1 be the union of the
(4k+ 1)-regular components of T and let T2 be the union of (4k+ 2)-regular components
of T . Note that by Theorem 8, T2 has a 2-factorization with 2-factors F1, . . . , F2k+1. Now,
we define a function g : E(G) \ E(T1)→ {−3,−2,−1, 2} as follows:

g(e) =


−3, e ∈ E(H2) \ E(T );
−2, e ∈ E(Fi), 1 6 i 6 k − 1 ;
−1, e ∈ E(Fi), k 6 i 6 2k + 1 ;
2, e ∈ E(H1).

Now, we want to assign some labels to the edges of T1. With no loss of generality one
can assume that V (T1) = {1, . . . , q}. We define a bipartite graph, call L, with two parts
X = {x1, . . . , xq} and Y = {y1, . . . , yq} and xiyj ∈ E(L) if and only if ij ∈ E(T1) for
every i and j, 1 6 i, j 6 q. So, L is a (4k + 1)-regular graph and by Theorem [4, p.79],
L has a 1-factorization F ′1, . . . , F

′
4k+1. Now, for every e ∈ E(F ′i ), 1 6 i 6 4k + 1, define a

function g′ : E(L)→ {−1
2
,−3

2
} as follows:

g′(e) =

{
−3

2
, 1 6 i 6 k − 2;

−1
2
, k − 1 6 i 6 4k + 1.

Clearly, for each v ∈ V (L),
∑

v∈NL(u)
g′(uv) = −6k+3

2
. Now, define a function f :

E(G)→ {−3,−2,−1, 2} such that for every e ∈ E(G) \E(T1), f(e) = g(e) and for every
e = ij ∈ E(T1), f(e) = g′(xiyj) + g′(xjyi). Then for every i ∈ V (G),

∑
j∈NG(i) f(ij) = 1,

as desired.
Now, suppose that G is an r-regular graph such that r ∈ {6, 10, 14, 22} and r = 4k+2.

Since G is 2-edge connected then by Parts (i),(ii) and (iiia) of Lemma 2, if we define
f(i) = 2k + 1, for all i ∈ V (G) and θ = 1

2
, then G has two (2k + 1)-factors G1 and G2.

Then by Theorem 7, G2 has a [t−1, t]-factor T , for every t, 1 6 t 6 2r
3

, whose components
are regular. Let T1 be the union of the (t− 1)-regular components of T and let T2 be the
union of t-regular components of T .

If r = 6, then G2 has a [1, 2]-factor. Define a function f : E(G)→ {−2, 1, 2, 3}, where
f(e) = −2 for e ∈ E(G1), f(e) = 3 for e ∈ E(G2) \ E(T ), f(e) = 1 for e ∈ E(T1) and
f(e) = 2 for e ∈ E(T2).
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If r = 10, then G2 has a [1, 2]-factor. Define a function f : E(G) → {−2,−1, 1, 3},
where f(e) = −2 for e ∈ E(G1), f(e) = 3 for e ∈ E(G2) \E(T ), f(e) = −1 for e ∈ E(T1)
and f(e) = 1 for e ∈ E(T2).

If r = 14, then G2 has a [3, 4]-factor. Note that by Theorem 8, T2 has two 2-factors,
say T ′1 and T ′2. Now, define a function f : E(G) → {−3,−1,−2, 2}, where f(e) = 2 for
e ∈ E(G1), f(e) = −1 for e ∈ E(G2) \ E(T ), f(e) = −3 for e ∈ E(T1), f(e) = −2 for
e ∈ E(T ′1) and f(e) = −3 for e ∈ E(T ′2).

If r = 22, then G2 has a [2, 3]-factor. Define a function f : E(G) → {−3, 1, 2, 3},
where f(e) = 2 for e ∈ E(G1), f(e) = −3 for e ∈ E(G2) \ E(T ), f(e) = 3 for e ∈ E(T1)
and f(e) = 1 for e ∈ E(T2).

Then for every i ∈ V (G),
∑

j∈NG(i) f(ij) = 1, as desired. 2

We close the paper with the following conjecture.

Conjecture 10. Every connected 4k-regular graph of even order admits a 1-sum 4-flow.
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