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Abstract

Using the combinatorial formula for the transformed Macdonald polynomials of
Haglund, Haiman, and Loehr, we investigate the combinatorics of the symmetry
relation H̃µ(x; q, t) = H̃µ∗(x; t, q). We provide a purely combinatorial proof of the
relation in the case of Hall-Littlewood polynomials (q = 0) when µ is a partition
with at most three rows, and for the coefficients of the square-free monomials in x
for all shapes µ. We also provide a proof for the full relation in the case when µ
is a hook shape, and for all shapes at the specialization t = 1. Our work in the
Hall-Littlewood case reveals a new recursive structure for the cocharge statistic on
words.

Keywords: Macdonald polynomials, Hall-Littlewood polynomials, Young tableaux,
Garsia-Procesi modules, cocharge, Mahonian statistics

1 Introduction

Let Λq,t(x) denote the ring of symmetric polynomials in the countably many indetermi-
nates x1, x2, . . . , with coefficients in the field Q(q, t) of rational functions in two vari-

ables. The (transformed) Macdonald polynomials H̃µ(x; q, t) ∈ Λq,t(x), indexed by
the set of all partitions µ, form an orthogonal basis of Λq,t(x), and have specializations

H̃µ(x; 0, 1) = hµ and H̃µ(x; 1, 1) = en1 , where hλ and eλ are the homogeneous and elemen-

tary symmetric functions, respectively. The polynomials H̃µ are a transformation of the
functions Pλ originally defined by Macdonald in [14], and have been the subject of much
recent attention in combinatorics and algebraic geometry. For more complete reference
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on much of what follows in this introduction, see [7], [9], or [10], whose notation we use
below as well.

The symmetric functions H̃µ may be defined as the unique collection of polynomials
that satisfy certain triangularity conditions. To state them, recall that the Schur functions
sλ form a basis for Λ. Define the dominance order to be the partial order 6 on
partitions given by λ > µ if and only if λ1 + · · · + λk > µ1 + · · · + µk for all k > 0.
Also define µ∗ to be the conjugate of a given partition µ, formed by reflecting its Young
diagram about the diagonal.

Definition 1.1. The symmetric functions H̃λ(x; q, t) are the unique elements of Λq,t(x)
satisfying:

• H̃µ[(1− q)X; q, t] ∈ Q(q, t){sλ : λ > µ},

• H̃µ[(1− t)X; q, t] ∈ Q(q, t){sλ : λ > µ∗},

• H̃µ[1; q, t] = 1.

The bracket notation above denotes plethystic substitution , defined as follows. Let
A = A(a1, a2, . . .) ∈ Z[[a1, a2, . . .]] be a formal sum of monomials with integer coefficients
in the variables ai. For a power sum symmetric function pk = xk1 +xk2 +xk3 + · · · , we define
pk[A] = A(ak1, a

k
2, . . .). For a general symmetric function f , express f = f(p1, p2, . . .) as a

polynomial in the power sum symmetric functions pk. Then the plethystic substitution
of A into f is

f [A] = f(p1[A], p2[A], p3[A], . . .).

Certain plethystic substitutions, in particular the substitutions f [(1 − t)X] and f [ X
1−t ]

where X = x1 + x2 + x3 + · · · , have meaningful representation theoretic interpretations
(see [10], Proposition 3.3.1).

The Macdonald polynomials H̃µ are orthogonal with respect to the inner product on
Λq,t defined by

〈f, g〉q,t =

〈
f(x), g

[
1− q
1− tX

]〉
,

where the inner product on the right is the classical Hall inner product. That is,

〈H̃µ, H̃λ〉q,t = 0

whenever µ 6= λ. (See [10] for details.)
Recall the well-known Schur expansion

hµ =
∑

Kλµsλ

where the coefficients Kλµ are the Kostka numbers , defined combinatorially as the

number of semistandard Young tableaux with shape λ and content µ. Since H̃µ(x; 0, 1) =
hµ, it is natural to define a q, t-analog of the Kostka numbers by expanding the transformed

Macdonald polynomials H̃µ(x; q, t) in terms of the Schur basis.
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Definition 1.2. The q, t-Kostka polynomials are the coefficients in the expansion

H̃µ(x; q, t) =
∑
λ

K̃λµ(q, t)sλ.

It was conjectured by Macdonald [14], and later proven by Haiman [11], that the

q, t-Kostka polynomials K̃λµ(q, t) are polynomials in q and t with nonnegative integer
coefficients. This fact is known as the Macdonald positivity conjecture . Haiman’s
proof involves showing that the polynomial K̃λµ(q, t) is the Hilbert series of a certain bi-
graded module arising from the geometry of the Hilbert scheme of n points in the plane,
and relies heavily on geometric methods. The problem of finding a purely combinatorial
explanation of their positivity is still open, in the sense that there is no known formula for
the coefficients of the form K̃λµ(q, t) =

∑
T q

s(T )tr(T ), where T ranges over an appropriate
set of Young tableaux and r and s are some combinatorial statistics.

However, a different combinatorial formula for the transformed Macdonald polynomi-
als H̃µ has been found, and appeared in the literature in [9] in 2004. The authors prove
that

H̃µ(x; q, t) =
∑
σ

qinv(σ)tmaj(σ)xσ, (1)

where the sum ranges over all fillings σ of the diagram of µ with positive integers, and
xσ is the monomial xm1

1 xm2
2 · · · where mi is the number of times the letter i occurs in σ.

The statistics inv and maj are generalizations of the Mahonian statistics inv and maj for
permutations. Their precise definitions can be stated as follows.

Definition 1.3. Given a word w = w1 · · ·wn where the letters wi are taken from some
totally ordered alphabet A, a descent of w is an index i for which wi > wi+1. The major
index of w, denoted maj(w), is the sum of the descents of w.

Definition 1.4. Given a filling σ of a Young diagram of shape µ drawn in French notation,
let w(1), . . . , w(µ1) be the words formed by the successive columns of σ, read from top to
bottom. Then

maj(σ) =
∑
s

maj(w(s)).

Example 1.5. The major index of the filling in Figure 1 is 7, since the first column has
major index 6, the second has major index 0, and the third column, 1.

Remark 1.6. The major index restricts to the usual major index on words in the case that
the partition is a single column.

For the statistic inv, we start with the definition provided in [9]. We use the notion
of the arm of an entry, which is defined to be the number of squares strictly to the right
of the entry. A descent is an entry which is strictly greater than the entry just below it.

Definition 1.7. An attacking pair in a filling σ of a Young diagram is a pair of entries
u and v with u > v satisfying one of the following conditions:
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Figure 1: A filling of a Young diagram. Descents are shown in boldface, and attacking
pairs are connected with gray lines.

1. u and v are in the same row, with u to the left of v, or

2. u is in the row above v and strictly to its right.

Definition 1.8. The quantity inv(σ) is defined to be the number of attacking pairs in σ
minus the sum of the arms of the descents.

Example 1.9. In Figure 1, there are 4 attacking pairs, and the arms of the descents have
lengths 0, 2, and 0. Thus inv(σ) = 4− 2 = 2 in this case.

For our purposes, we will also need the following cleaner definition of the inv statistic.
This more closely resembles the inv statistic on a permutation π, defined to be the number
of pairs i < j for which π(i) > π(j).

Definition 1.10. Let σ be any filling of a Young diagram with letters from a totally
ordered alphabet A, allowing repeated letters. A relative inversion of a filling σ of a
Young diagram is a pair of entries u and v in the same row, with u to the left of v, such
that if b is the entry directly below u, one of the following conditions is satisfied:

• u < v and b is between u and v in size, in particular u 6 b < v.

• u > v and b is not between u and v in size, in particular either b < v < u or
v < u 6 b,

If u and v are on the bottom row, we treat b as any value less than min(u, v), usually 0
in the case A = Z+.

Remark 1.11. The conditions above for the triple (u, v, b) to form an inversion can also
be thought of as saying that the ordering of the sizes of u, b, v orients the triple counter-
clockwise: either b < v < u, v < u 6 b, or u 6 b < v.

Example 1.12. In Figure 1, there are 2 relative inversions: (5, 3) in the bottom row, and
(3, 6) in the second row.
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In fact, the number of relative inversions in a filling σ is always equal to inv(σ). In
[9], the authors introduce the related notion of an inversion triple . Relative inversions
are simply the inversion triples that contribute 1 to inv(σ). The description in terms of
relative inversions allows us to think of the inv as being computed row by row (just as
maj is computed column by column).

For completeness, we include here a proof that inv(σ) is equal to the number of relative
inversions of σ.

Proposition 1.13. The quantity inv(σ) is equal to the number of relative inversions of
σ.

Proof. Recall that inv(σ) is defined as the total number of attacking pairs minus the arms
of the descents. Each descent of the form u > b where b is the entry directly below u
contributes −1 towards inv(σ) for each v to the right of u in the same row. Call such
pairs (u, v) descent-arm pairs. Each attacking pair contributes +1 towards inv(σ).

Define a good triple to be a triple of entries (u, v, b) where u is directly above and
adjacent to b and v is to the right of u in its row, where we also allow b to be directly
below the entire tableau with a value of 0. Then each descent-arm pair or attacking pair
is a member of a unique good triple, and contributes −1 or +1, respectively, to inv(σ).
Therefore, inv(σ) is the sum of the contributions of all such pairs in each such triple.

A simple case analysis shows that each good triple contributes a total of 1 if it is a
relative inversion and 0 otherwise. Thus inv(σ) is the total number of relative inversions.

Since this combinatorial formula for H̃µ(x; q, t) is an expansion in terms of monomials
rather than Schur functions, it does not give an immediate answer to the Macdonald
positivity conjecture. Indeed, it perhaps raises more questions than it answers. For one,
there is a well-known q, t-symmetry relation for the transformed Macdonald polynomials
H̃µ(x; q, t), namely

H̃µ(x; q, t) = H̃µ∗(x; t, q).

This is obvious from the triangularity conditions that define H̃µ, and is also clear from
Haiman’s geometric interpretation [11]. When combined with the combinatorial formula,
however, we obtain a remarkable generating function identity:∑

σ:µ→Z+

qinv(σ)tmaj(σ)xσ =
∑

ρ:µ∗→Z+

qmaj(ρ)tinv(ρ)xρ. (2)

Setting t = 1 and µ = (n) and taking the coefficient of x1 · · ·xn on both sides, this
reduces to the well-known equation∑

w∈Sn

qinv(w) =
∑
w∈Sn

qmaj(w),

which demonstrates the equidistribution of the Mahonian statistics inv and maj on per-
mutations. There are several known bijective proofs of this identity (see [2], [5], [16]).

In light of this, it is natural to ask if there is an elementary combinatorial proof of (2),
in the sense of Problem 1.15 below.
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Definition 1.14. The content of a filling σ, denoted |σ|, is the sequence α = (α1, . . . , αk)
where αi is the number of i’s used in the filling. We also define the symbols:

• F - set of all fillings of Young diagrams with positive integers.

• Fαµ - set of fillings of shape µ and content α.

• Fαµ |inv=a,maj=b - set of fillings σ ∈ Fαµ for which inv(σ) = a and maj(σ) = b.

We also define a weighted set to be a set S equipped with a number of statistics
stat1, stat2, . . ., and a morphism of weighted sets to be a map that preserves their
statistics. We write

(S; stat1, stat2, . . .)

to denote the weighted set, or we simply write S if the statistics are implicitly understood.

Problem 1.15. Describe a natural isomorphism of weighted sets

ϕ : (F ; inv,maj)→ (F ; maj, inv)

which interchanges inv and maj and sends a partition shape to its conjugate. That is, for
any a, b, µ, α, the map ϕ restricts to a bijection

ϕ : Fαµ |inv=a,maj=b → Fαµ∗|inv=b,maj=a.

Remark 1.16. In [9], a combinatorial proof is given of the fact that the polynomials H̃µ are
symmetric in the variables xi. We will make use of this fact repeatedly, rearranging the
entries of α as needed. In other words, to answer Problem 1.15, it suffices to find a map
ϕ that restricts to bijections Fαµ |inv=a,maj=b → F r(α)µ∗ |inv=b,maj=a where r is some bijective
map that rearranges the entries of α.

In this paper, we provide explicit bijections ϕ for several infinite families of fillings.
Our bijections naturally extend Carlitz’s bijection on permutations, which is defined in
Section 2. This bijection is a composite map majcode ◦ invcode−1 where majcode and
invcode are bijective maps Sn → Cn for a certain set Cn of “Carlitz codes”.

In Section 3 we proceed to give a combinatorial proof of the symmetry relation for the
specialization t = 1, and in Section 4, we give an explicit bijection ϕ in the case that µ is
a hook shape.

The bulk of our investigation concerns the Hall-Littlewood specialization in which
inv(σ) = maj(ϕ(σ)) = 0, which corresponds to setting q = 0 in the Macdonald polynomi-
als. In Section 5, we define an appropriate generalization of the set Cn of Carlitz codes,
and use these generalized codes to extend the map invcode to fillings of shape µ∗ having
maj(ρ) = 0.

In Section 6, we define a map majcode that completes the bijection for all shapes µ
having at most three rows, and also for all shapes µ when the content α is fixed to be
(1, 1, . . . , 1). We also conjecture a strategy for the general problem that draws on the

the electronic journal of combinatorics 23(2) (2016), #P2.38 6



work of Garsia and Procesi on the Sn-modules Rµ, which arise as the cohomology rings
of the Springer fibers in type A [6].

In Section 7, we state some applications of the results on the Hall-Littlewood case
to understanding the rings Rµ, in particular regarding the cocharge statistic defined
by Lascoux and Schützenberger in [13]. In particular, we demonstrate a new recursive
structure exhibited by the cocharge statistic on words.

The following theorem summarizes our results.

Theorem 1.17. The bijective maps invcode and majcode that comprise the classical
Carlitz bijection majcode ◦ invcode−1 : Sn → Sn can be extended to give bijections on
fillings that interchange inv and maj and transpose the partition µ in the following cases:

1. In the specialization t = 1, i.e. when one of the statistics is ignored.

2. When µ is a hook shape.

3. In the Hall-Littlewood specialization q = 0, i.e. when one of the statistics is
zero, for all partitions µ = (µ1, µ2, µ3) having at most three parts, and when µ =
(a, b, 1, 1, . . . , 1) is the union of a column and a two-row shape.

4. In the Hall-Littlewood specialization q = 0 (for all shapes) when we restrict to the
fillings having distinct entries.

Remark 1.18. The first item in the list above gives the first combinatorial results towards
understanding the q, t-Kostka polynomials for these shapes. Currently, the only shapes
µ for which K̃λµ(q, t) is currently understood via tableaux statistics are two-row shapes
[1, 4] and generalized hooks [15].

2 The Carlitz Bijection

Our approach to the symmetry problem is motivated by Carlitz’s bijection (Sn; inv) →
(Sn; maj), an alternative to the better-known Foata bijection that demonstrates the
equidistribution of inv and maj on permutations. A full proof of this bijection can be
found in Carlitz’s original paper [2], or in a somewhat cleaner form in [16]. For the reader’s
convenience we will define it here.

The bijection makes use of certain “codes”:

Definition 2.1. A Carlitz code of length n is a word w = w1 · · ·wn consisting of
nonnegative integers such that wn−i < i for all i. Let Cn denote the set of all Carlitz
codes of length n, equipped with the combinatorial statistic Σ taking a word to the sum
of its entries.

Notice that the number of Carlitz codes of length n is equal to n!. This allows us to
make use of the combinatorial object (Cn; Σ) of Carlitz codes as an intermediate object
connecting (Sn; inv) to (Sn; maj). In particular, the Carlitz bijection is the composite

(Sn; inv)
invcode

- (Cn; Σ)
majcode−1

- (Sn; maj)
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of two simple isomorphisms of weighted sets, defined as follows.

Definition 2.2. The inversion code of a permutation π, denoted invcode(π), is the
sequence c1, c2, . . . , cn where ci is the number of inversions of the form (j, i) in π, i.e.
where i < j and i is to the right of j.

Example 2.3. We have invcode(4132) = 1210, because the 1 is the smaller entry of one
inversion (4, 1), the 2 is the smaller entry of the two inversions (3, 2) and (4, 2), the 3 is
the smaller entry of the inversion (4, 3), and the 4 is not the smaller entry of any inversion.

Clearly invcode is a map Sn → Cn, and it is not hard to see that it is bijective: given
a Carlitz code c1 · · · cn, we can reconstruct the permutation π it came from as follows.
First write down the number n, corresponding to cn = 0. Then, cn−1 is either 0 or 1, and
respectively determines whether to write down n − 1 to the left or to the right of the n.
The entry cn−2 then determines where to insert n − 2 in the sequence, and so on until
we have reconstructed π. It is also clear that invcode is an isomorphism of weighted sets,
sending inv(π) to Σ({ci}).

Definition 2.4. The map majcode : Sn → Cn is defined as follows. Given π ∈ Sn written
as a permutation in word form, remove the n from π and set c1 to be the amount the
major index decreases as a result. Then remove the n−1 and set c2 to be the amount the
major index decreases by, and so on until we have formed a sequence c1, c2, . . . , cn. Then
we define majcode(π) = c1c2 · · · cn.

Example 2.5. Let π = 3241. Its major index is 1 + 3 = 4. Removing the 4 results in
the permutation 321, which has major index 3, so the major index has decreased by 1
and we set c1 = 1. Removing the 3 results in 21, which decreased the major index by 2.
Hence c2 = 2. Removing the 2 decreases the major index by c3 = 1, and removing the 1
decreases it by c4 = 0, so majcode(π) = 1210.

As in the case of invcode above, it is not hard to construct an inverse for majcode,
making it an isomorphism of weighted sets (Sn; maj)→ (Cn,Σ).

Definition 2.6. The Carlitz bijection is the isomorphism

majcode−1 ◦ invcode : (Sn; inv)→ (Sn; maj).

Example 2.7. We have majcode−1 ◦ invcode(4132) = majcode−1(1210) = 3241 by the
examples above.

2.1 Carlitz Bijection on Words

Notice that the Carlitz bijection gives rise to a bijection φ satisfying the conditions of
Problem 1.15 for one-column shapes µ = (1, 1, . . . , 1) having content α = (1, 1, . . . , 1).
Indeed, inv(σ) = 0 for any filling σ of a one-column shape µ, and maj(ρ) = 0 for any
filling ρ of its one-row conjugate µ∗. Since maj(σ) and inv(ρ) in this case are the same
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as maj and inv of their reading words, this determines a bijection for distinct entries
(α = (1, 1, . . . , 1)).

We now generalize the Carlitz bijection to words, i.e. fillings with any content α for
one-column shapes µ.

Definition 2.8. Let A = (aα1
1 , a

α2
2 , . . . , a

αk
k ) be any finite multiset of size n, with an

ordering “<” such that a1 < a2 < · · · < ak, and let µ be a partition of n. We say that a
word c of length n is A-weakly increasing if every subword of the form

cα1+···+αicα1+···αi+1 · · · cα1+···+αi+αi+1−1

is weakly increasing.

For instance, ifA = {1, 1, 2, 3, 3, 3, 4, 4}, ordered by magnitude, then the word 23711213
is A-weakly increasing, since the subwords 23, 7, 112, and 13, corresponding to each letter
of A, are weakly increasing.

We also will make use of Macdonald symmetry in the variables xi by defining a weight-
preserving bijection on alphabets.

Definition 2.9. The reverse of the content α = (α1, . . . , αM) is the tuple

r(α) = (αM , αM−1, . . . , α1).

In terms of alphabets, let A be a finite multiset of positive integers with maximum element
M . The content of A is α if αi is the multiplicity of i in A. The complement of A,
denoted A, is the multiset consisting of the elements a = M + 1− a for all a ∈ A. Notice
that the content of A is r(α).

If A is an ordered alphabet, then its complement inherits this ordering: if a < b in A
then a < b in A.

For instance, the complement of the multiset

{1, 2, 2, 2, 2, 3, 4, 4}

is {4, 3, 3, 3, 3, 2, 1, 1}, and correspondingly, r(1, 4, 1, 2) = (2, 1, 4, 1).
We generalize Carlitz’s codes as follows.

Definition 2.10. Let C(1n),A denote the subset of Cn consisting of all Carlitz codes of
length n which are A-weakly increasing. This subset inherits the Σ statistic from Cn.

We now can define bijections

invcode : (Fα(1n); inv)→ (C(1n),A; Σ)

and
majcode : (F r(α)(n) ; maj)→ (C(1n),A; Σ).
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Definition 2.11. Let w be a word (corresponding to a filling of a horizontal shape)
whose entries comprise the ordered alphabet A = a1 6 · · · 6 an, where ties among the
letters are broken in the order they appear in w. The inversion code of w is the code
invcode(w) = c1 · · · cn where ci is the number of inversions in w having ai as the smaller
entry of the inversion.

For example, the inversion code of the filling

3 2 4 1 3 2

is 313010, since the 1 is the smaller entry of 3 inversions, the first 2 is the smaller entry
of 1 inversion, the second 2 is the smaller entry of 3 inversions, and so on.

Proposition 2.12. The map invcode is an isomorphism of weighted sets

invcode : Fα(1n) → C(1n),A.

The above proposition will be implied by Proposition 5.14, and so we omit the proof.
To define the map majcode, we first require a standardization rule for fillings of

columns.

Definition 2.13. Let σ be any filling of a column of height n with positive integers. We
define the standardization labeling on repeated entries as follows.

1. Let i be a letter that occurs k times in σ. Remove any entries larger than i to form
a smaller column σ′.

2. Find the bottommost i that is either on the very bottom of σ′ or has entries a and
b above and below it with a > b. Assign this i a label of k and remove it. Repeat
this process, labeling the next i by k − 1 and so on, until there are no i’s left that
satisfy this condition.

3. Finally, remove and label any remaining i’s in order from top to bottom, decreasing
the label by one each time.

We define Standardize(σ) as the unique column filling using labels 1, 2, . . . , n that
respects the ordering of the entries of σ and breaks ties according to the standardization
labeling.

Proposition 2.14. For any column filling σ with alphabet A, let ρ = Standardize(σ).
Then ρ and σ have the same major index, and majcode(ρ) is A-weakly increasing.

To prove this, we first prove the following technical lemma, which is illustrated in
Example 2.17 below. Define a consecutive block of n’s in a filling to be a maximal
consecutive run of entries in a column which are all filled with the letter n.

Lemma 2.15. Given a filling of a one-column shape µ = (1r) having largest entry n,
there is a unique way of ordering the n’s in the filling, say n1, . . . , nαn, such that the
following two conditions are satisfied.
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1. Any consecutive block of n’s in the column appears in the sequence in order from
bottom to top, and

2. If we remove n1, . . . , nαn in that order, and let di be the amount that the major index
of the column decreases at the i-th step, then the sequence d1, d2, . . . , dαn is weakly
increasing.

Proof. We first show (1) that there is a unique choice of entry labeled n at each step
which minimizes d and is at the bottom of a consecutive block, and then that (2) the
resulting sequence di is weakly increasing. For any entry x, we define ψx(σ) to be the
column formed by removing the entry x from σ.

To prove (1), consider the bottommost entries of each consecutive block of n’s. We
wish to show that no two of these n’s have the same value of d = maj(σ) −maj(ψn(σ))
upon removal. So, suppose there is an n in the i-th square from the top and an n in the
j-th square from the top, each at the bottom of their blocks, and call them ni and nj to
distinguish them. Assume for contradiction that removing either of the n’s results in a
decrease by d of the major index.

Suppose an entry n has an entry a above it and b below. In ψn(σ), a and b are adjacent,
and they can either form a descent or not. If they do, then d = maj(σ) − maj(ψ(σ)) is
equal to the number of descents below and including that n, and if they do not, then d is
equal to the sum of the number of descents strictly below the n plus the position of the n
from the top. We consider several cases based on the two possibilities for each of ni and
nj.

If either ni or nj is at the very bottom of the filling, then removing that entry results
in d = 0, and the other does not, so we may assume neither of ni or nj is in the bottom
row.

Case 1: Each of ni and nj forms a new descent upon removal, in ψni(σ) and ψnj(σ).
Assume without loss of generality that i < j, and let t be the number of descents weakly
below position j (meaning its position from the top is greater than or equal to j) and s
the number of descents weakly below position i. Then since the ni is at the bottom of its
block, it is a descent, so s > t. Since s and t are the values of d for the removal of the
two n’s, we have a contradiction.

Case 2: Neither ni nor nj, upon removal, forms a new descent. In this case, assume
without loss of generality that i < j and let t be the number of descents strictly below
position j. Let r be the number of descents strictly between rows i and j. Since the n’s
are at the bottom of their blocks, the two n’s are descents as well, so the values of d upon
removing the n’s are i+ r + t+ 1 and j + t. By our assumption, these are equal, and so
we have

i+ r + 1 + t = j + t

j − i− 1 = r

But j−i−1 counts the number of squares strictly between positions i and j. Since r is the
number of squares in this set which are descents, this means that every square between i
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and j must be a descent. But the square in position j has the highest possible label n, so
the square just before it (above it) cannot be a descent. Hence we have a contradiction.

Case 3: One of the two n’s, say the one in position i, forms a new descent upon
removal, and the other does not. Then in this case defining t as the number of descents
strictly below position j and s the number of descents weakly below position i, the two
values of d are j + t and s. So j + t = s by our assumption, and so j = s − t, which
implies s− t > 0, or s > t. Thus, necessarily i < j.

Now, s− t is the number of descents between positions i and j, inclusive. Since i > 1
there are at most j such squares, and the one preceding j cannot be a descent since there
is an n in the j-th position. Thus this quantity s− t is strictly less than j, but we showed
before that j = s− t, a contradiction. This completes the proof of claim (1).

For claim (2), consider any two consecutive d values in this process, say d1 and d2 for
simplicity, that correspond to the largest value n. Let n1 and n2 be the corresponding
copies of n. We wish to show that d1 6 d2.

First, notice that if n1 and n2 were in the same consecutive block before removal, we
have d1 = d2 unless n2 is a block of length 1 in ψ(σ), in which case d2 > d1.

So we may assume that n1 and n2 were in different consecutive blocks before removal.
In this case the removal of n1 may only change the value of d on removing n2 by at most
one, namely by either shifting it back by one position if n1 is above n2 in the column,
or by removing one descent from below n2, if n1 is below n2. Thus d2 = maj(ψn1(σ)) −
maj(ψn2(ψn1(σ))) is at most one less than maj(σ) − maj(ψn2(σ)). Since n1 was chosen
so as to minimize d1, and we showed in our proof of (1) that the choice is unique, this
implies that d2 + 1 > d1. Thus d2 > d1, as desired.

This completes the proof of (2).

Proposition 2.14 follows immediately from the proof of the Lemma 2.15.
We now can define the map majcode on words, that is, for one-column fillings.

Definition 2.16. Let σ be any filling of a column shape µ = (1r). We define majcode(σ) =
majcode(Standardize(σ)), where majcode of a standard filling is defined to be the majcode
of its reading word (which is a permutation).

Example 2.17. Let σ be the one-column filling whose reading word is 6434666251664,
the standardization labeling on the 6’s is shown by the subscripts:

62 4 3 4 63 64 65 2 5 1 61 66 4

Since this one-column shape has size 13, the filling Standardize(σ) will have the 6’s
relabeled as the numbers from 8 to 13 according to the subscripts above:

9 4 3 4 10 11 12 2 5 1 8 13 4

We then remove the 13, 12, . . . , 8 in order. This results in a sequence of difference
values

d1, . . . , d6 = 1, 3, 3, 3, 5, 7,
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which is weakly increasing.
We are left with a column with reading word 4342514, in which there is only one 5, so

Standardize changes that to a 7. We remove this to obtain a difference of 1 in the major
index. We are left with 434214, in which the 4’s are standardized as follows:

413422143 → 435216.

Removing these in order from 6 down to 1 decreases the major index by 0, 2, 3, 2, 1, 0,
respectively. Therefore,

majcode(σ) = 1, 3, 3, 3, 5, 7, 1, 0, 2, 3, 2, 1, 0.

Note that this sequence is {6, 6, 6, 6, 6, 6, 5, 4, 4, 4, 3, 2, 1}-weakly increasing.

Proposition 2.18. The map majcode is a weighted set isomorphism F r(α)(1n) → C(1n),A for

any alphabet A with content α, and any one-column partition shape (1n).

Proof. Carlitz’s work shows that majcode is an isomorphism in the case that α is equal to
(1, 1, . . . , 1), i.e. A has one of each letter from 1 to n. In the case of repeated entries, we
note that majcode is still injective. Indeed, given a code corresponding to a filling, there
is a unique place to insert the next number at each step - by applying the Standardize
map, using Carlitz’s bijection, and then un-standardizing in the unique way so that the
order of entries is preserved and the resulting alphabet is A.

Now, notice that by our definition of majcode and Lemma 2.15, the codes we get are
A-weakly increasing. We claim that they are also Carlitz codes: at the i-th step, there
are n − i + 1 letters remaining, and the difference di is either the position of the letter
we’re removing plus the number of descents strictly below it, or the number of descents
weakly below it. Therefore, the maximum value of di is n− i + 1, and so d1d2 · · · dn is a
Carlitz code and is A-weakly increasing. It follows that majcode is an injective morphism
of weighted sets F r(α)(1n) |inv=0 → C(1n),A.

Finally, notice that the two sets have the same cardinality: each has cardinality
(
n
α

)
where α is the content of the alphabet A. It follows that majcode is bijective, as desired.

3 Specialization at t = 1

In this section, we give a combinatorial proof of the specialization of Problem 1.15 at
t = 1, namely H̃µ(x; q, 1) = H̃µ∗(x; 1, q).

By the combinatorial formula in [9], it suffices to prove that, for any content α,∑
σ:µ→Z+

|σ|=α

qmaj(σ) =
∑

ρ:µ∗→Z+

|ρ|=α

qinv(ρ). (3)

To prove this, we build on the Carlitz bijection, defined in Section 2. Let

f = invcode−1 ◦majcode
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be the Carlitz bijection on permutations of a given ordered alphabet with n distinct
entries. We first prove Equation 3 in the case that α = (1, 1, . . . , 1).

Definition 3.1. We say that a sequence of numbers a1, . . . , an is in cyclic order if there
exists an index i ∈ [n] for which

ai+1 6 ai+2 6 · · · 6 an 6 a1 6 a2 6 · · · 6 ai.

Proposition 3.2. For any fixed partition λ, we have
∑

σ q
maj(σ) =

∑
ρ q

inv(ρ) where the
first sum ranges over all fillings σ : λ → Z+ of λ with distinct entries, and the second
ranges over all fillings ρ : λ∗ → Z+ of the conjugate partition λ∗ with distinct entries.

Proof. We extend the bijection f as follows.
Given a filling σ of λ, let v(1), v(2), . . . , v(k) be the words formed by reading each of

the columns of λ from top to bottom. Let w(i) = f(v(i)) for each i, so that maj(v(i)) =
inv(w(i)). Notice that maj(λ) =

∑k
i=1 maj(v(i)). We aim to construct a filling ρ of λ∗ such

that inv(ρ) =
∑k

i=1 inv(w(i)).

Let the bottom row of ρ be w(1). To construct the second row, let t1 = w
(1)
1 be the

corner letter. Let x1, x2, . . . , xr be the unique ordering of the letters of w(2) for which the
sequence t1, x1, x2, . . . , xr is in cyclic order. Notice that if xi is placed in the square above
t1, it would be part of exactly i relative inversions to the right of it, since x1, . . . , xi−1
would form inversions with it and the others would not.

Now, in w(2), let ik be the number of inversions whose left element is the k-th letter of
w(2). Then write xi1 in the square above t1 in order to preserve the number of inversions

the first letter is a part of. Then for the square above t2 = w
(1)
2 , similarly order the

remaining x’s besides xi1 in cyclic order after t2, and write down in this square the unique
such xi2 for which it is the left element of exactly i2 inversions in its row. Continue this
process for each k 6 r to form the second row of the tableau.

Continue this process on each subsequent row, using the words w(3), w(4), . . ., to form
a tableau ρ. We define f(σ) = ρ, and it is easy to see that this construction process is
reversible (strip off the top row and rearrange according to inversion numbers, then strip
off the second, and so on). Thus we have extended the Carlitz bijection to tableaux of
content α = (1, 1, . . . , 1), proving the result in this case.

Remark 3.3. This proof did not depend on any aspect of the bijection other than the fact
that it preserves the statistics. Thus f can be replaced by, say, the Foata bijection [5]
and the entire proof is still valid.

Using this proposition, we prove two technical lemmata about the q-series involved.
We first simplify our notation in the following two definitions.

Definition 3.4. Define invw(R) to be the number of relative inversions in a row R given
a filling w of the row directly beneath it.

Definition 3.5. For any positive integer n, we use the notation (n)q! for the q-factorial

(n)q! = (1)(1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1).
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Lemma 3.6. Let R be the (i + 1)st row in a partition diagram λ for some i > 1. Let
w = w1, . . . , wλi be a fixed filling of the i-th row, underneath R. Let a1, . . . , aλi+1

be any
λi+1 distinct positive integers. Then∑

qinvw(R) = (λi)q!

where the sum ranges over all fillings of the row R with the integers a1, . . . , aλi+1
in some

order.

Proof. Since the ai’s are distinct, we know that∑
r∈Sλi+1

(a1,...,aλi+1
)

qinv(r) = (n)q!

where Sλi+1
(a1, . . . , aλi+1

) is the set of permutations of the sequence a1, . . . , aλi+1
. We use

a similar process to that in Proposition 3.2 to construct a bijection φ from the set of
permutations r of a1, . . . , aλi+1

to itself such that invw(φ(r)) = inv(r).
Namely, let r = r1, . . . , rλi+1

be a permutation of a1, . . . , aλi+1
and let ik be the number

of inversions that rk is a part of in r for each k. Let x0, . . . , xλi+1
be the ordering of the

letters of r for which w1, x0, . . . , xλi+1
is in cyclic order. Let the first letter of φ(r) be xi1 ,

remove xi1 from the sequence, and repeat the process to form the entire row from the
letters of r. Let φ(r) be this row.

The map φ can be reversed by using the all-0’s word for w and using the same process
as above to recover r from φ(r). Thus φ is bijective. Moreover invw(φ(r)) = inv(r) by
construction. This completes the proof.

Lemma 3.7. Let r be the (i + 1)st row in a partition diagram λ for some i > 1. Let
w = w1, . . . , wλi be a fixed filling of the row directly underneath r. Let a1, . . . , aλi+1

be
positive integers, with multiplicities m1, . . . ,mk. Then∑

qinvw(r) =

(
λi+1

m1, . . . ,mk

)
q

=
(λi+1)q!

(m1)q! · · · (mk)q!

where the sum ranges over all distinct fillings of the row r with the integers a1, . . . , aλi+1

in some order.

Proof. Multiplying both sides of the relation by (m1)q! · · · (mk)q!, we wish to show that

(m1)q! · · · (mk)q!
∑

qinvw(r) = (λi+1)q!.

This follows immediately by interpreting (λi+1)q! and each (mi)q! as in Lemma 3.6, and
assigning all possible orderings to the repeated elements and counting the total number
of relative inversions in each case.

We are now ready to prove Equation 3.
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Theorem 3.8. We have ∑
σ:µ→Z+

|σ|=α

qmaj(σ) =
∑

ρ:µ∗→Z+

|ρ|=α

qinv(ρ).

Proof. We break down each sum according to the contents of the columns of µ and the
rows of µ∗, respectively. For a given multiset of contents of the columns, where the entries
in the i-th column have multiplicities m

(i)
1 , . . . ,m

(i)
ki

, we have that

∑
σ

qmaj(σ) =
∏
i

(
µ′i

m
(i)
1 , . . . ,m

(i)
ki

)
q

,

where the sum ranges over all fillings σ with the given column entries. By Lemma 3.7,
we have that the corresponding sum over fillings ρ with the given contents in the rows of
µ∗ is the same: ∑

ρ

qinv(ρ) =
∏
i

(
µ′i

m
(i)
1 , . . . ,m

(i)
ki

)
q

.

Summing over all possible choices of the entries from α for each column of µ, the result
follows.

4 Hook Shapes

We now demonstrate a bijective proof of Problem 1.15 in the case that µ is a hook shape ,
that is, µ = (m, 1, 1, 1, . . . , 1) for some m. There is a known combinatorial formula for
the q, t-Kostka poloynomials in the case of hook shapes µ given by Stembridge [17], but
it does not involve the inv and maj statistics.

The symmetry of inv and maj was demonstrated for fillings of hook shapes having
distinct entries in [3], and makes use of the Foata bijection. In this section, we instead
use the Carlitz bijection to prove the result, which will hold for arbitrary fillings by the
results in Section 2.1.

Lemma 4.1. We have the following two facts about one-column and one-row shapes
respectively.

• Given a filling σ of a one-column shape, suppose A = a1 > · · · > an is the alphabet of
its entries written in the standardization order as in Proposition 2.14, from greatest
to least. Then if ai is the bottommost entry in σ, then the first 0 in majcode(σ) is
in position i from the left.

• Given a filling ρ of a one-row shape, suppose A = a1 6 · · · 6 an is the alphabet
of its entries written in order with ties broken in reading order. Then if ai is the
leftmost entry in σ, then the first 0 in invcode(σ) is in position i from the left.
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Proof. For the filling σ of a one-column shape, recall that we define majcode by removing
the entries one at a time from greatest to least in standardization order. The only time
the difference in major index is 0 is when the entry is on the bottom, and so the first time
this occurs is when we remove the bottommost entry ai from the filling (i.e. at the i-th
step).

For the filling ρ of a one-row shape, note that the leftmost entry ai always has an
inversion code number of 0. Moreover, if any entry b to its right also has an inversion
code number of 0, then b > ai for otherwise it would be the smaller entry of an inversion
(with ai itself). It follows that ai is the smallest entry whose inversion code number is
0.

We now define a map from fillings of hook shapes to pairs of partial codes that we
call hook codes.

Definition 4.2. Let σ be a filling of a hook shape µ. We define the hook codes of σ to
be the pair of codes consisting of the invcode of its bottom row and the majcode of its
leftmost column, along with the data of which entries occur in the row and which occur
in the column.

Notice that, by the standardization orderings on the row and column of µ as defined
in Section 2.1, if the corner square in µ is one of the repeated letters a of the filling, then
it is considered the largest a in its column and the smallest a in its row.

Thus we can define a standardization ordering on fillings of hook shapes: we order the
letters from smallest to largest, with the following tie-breaking rules.

• If two copies of the letter a appear in the left column, the tie is broken as in Section
2.1.

• If they appear in the bottom row, then the leftmost a comes first.

• If one appears in the column and the other in the row, the one in the column comes
first.

This enables us to represent hook codes visually, as shown in the following example.

Example 4.3. Consider the filling σ of a hook shape shown below. The 2 in the corner is
considered to be greater than the 2 above it and less than the 2 to its right. To represent
the hook code of σ, we write the entries of the filling in the standardization ordering,
and write the invcode and (the reverse of) majcode of the bottom row and left column
respectively underneath the corresponding letters.

2 5 3 2 5
1
2
4 1 2 2 2 3 4 5 5

invcode 0 2 1 0 0
majcode 0 1 0 2

the electronic journal of combinatorics 23(2) (2016), #P2.38 17



Notice that the majcode is written backwards, because the entries are in increasing
order.

We now characterize the pairs of codes that correspond to fillings of hook shapes.

Lemma 4.4. Let µ be a hook shape of height h and width l with h + l − 1 = n, and let
A = {a1 6 · · · 6 an} be an ordered multiset. A pair of partial codes (X, Y ) of lengths l
and h respectively is a hook code of some filling σ of µ if and only if the four conditions
below are satisfied.

1. The leftmost 0 of X matches the rightmost 0 of Y .

2. The two codes do not overlap in any other position, and every position is part of at
least one of the two codes.

3. The code X is an element of Cl and is A-weakly increasing, where we restrict A to the
l letters corresponding to the positions of the entries of X.

4. The code Y , when read backwards, is an element of Ch and is A-weakly increasing,
where we restrict A to the h letters corresponding to the positions of the entries of Y .

Proof. First we show that the hook code of any filling σ of µ satisfies the four conditions.
Condition 1 follows immediately from Lemma 4.1, because the major index code is written
in reverse order. Condition 2 is clear since every entry is in either the row or the column
and only the corner square is in both. Conditions 3 and 4 follow immediately from the
definition of hook codes.

Now, suppose we have a pair of codes satisfying Conditions 1–4. Then there is a
unique way to form a row and a column of entries based on their elements, since they are
both valid Carlitz codes and are A-weakly increasing by Conditions 3 and 4. Because of
Condition 1 and Lemma 4.1, the leftmost entry of the row is the same as the bottommost
entry of the column, and so we can put them together to form a filling σ of a hook shape.
Because of Condition 2, the hook shape µ has the appropriate size and shape, and we are
done.

Using Lemma 4.4, we can now define our bijection.

Definition 4.5. For any hook shape µ and content α, let φ : Fαµ → F r(α)µ∗ be the map
defined by interchanging the pair of hook codes of a given filling and writing them back-
wards, and also reversing its alphabet.

Example 4.6. Starting with the tableau in Example 4.3, if we reverse the alphabet,
interchange invcode and majcode, and write the codes in backwards order, then we obtain
the filling and pair of codes below. It follows that the filling in Example 4.3 maps to the
filling below under φ.
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4 5 2 4
1
1
3
4

1 1 2 3 4 4 4 5
invcode 2 0 1 0
majcode 0 0 1 2 0

Theorem 4.7. We have that
maj(φ(σ)) = inv(σ)

and
inv(φ(σ)) = maj(σ)

for any filling σ of a given hook shape µ. Moreover, φ is a bijection from Fαµ to F r(α)µ∗ for
any content α.

Proof. Clearly φ interchanges inv and maj, since it interchanges the invcode and majcode
of the filling. To show it is a well-defined map into fillings of the conjugate shape, note
that reversing and interchanging the codes and reversing the alphabet results in a pair of
codes that satisfy conditions 1-4 of Lemma 4.4.

Finally, φ is a bijection - in fact, it is an involution - because the operations of reversing
the alphabet, interchanging the pair of codes, and writing the codes in the reverse order
are all involutions.

Corollary 4.8. The map φ above satisfies the conditions of Problem 1.15, proving com-
binatorially that

H̃µ(x; q, t) = H̃µ∗(x; t, q)

when µ is a hook shape.

5 Inversion Codes in the Hall-Littlewood Case

We now turn to the specialization in which one of the statistics is zero. In particular,
setting q = 0, the symmetry relation becomes

H̃µ(x; 0, t) = H̃µ∗(x; t, 0),

which is a symmetry relation between the transformed Hall-Littlewood polynomials
H̃µ(x; t) := H̃µ(x; 0, t). In this case the symmetry relation becomes∑

σ:µ→Z+

inv(σ)=0

tmaj(σ)xσ =
∑

ρ:µ∗→Z+

maj(ρ)=0

tinv(ρ)xρ. (4)

Combinatorially, we are trying to find natural morphisms

ϕ : Fαµ |inv=0 → F r(α)µ∗ |maj=0

of weighted sets, where Fαµ |inv=0 is equipped with the maj statistic, and Fαµ∗|maj=0 is
equipped with the inv statistic. For the bijection r(α), we will use the reverse map of
Definition 2.9.
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5.1 Generalized Carlitz Codes

In the context of Hall-Littlewood symmetry, we can think of the Carlitz bijection as a
solution to the case in which µ = (1n) is a straight shape with one column, filled with
distinct entries. Thus, we wish to generalize the notion of a Carlitz code to fillings of
arbitrary shapes having inv or maj equal to 0, using arbitrary alphabets.

Our generalization is motivated by the monomial basis of the Garsia-Procesi modules
in [6], which are closely connected to the cocharge (maj) statistic. We define a generalized
Carlitz code as follows.

Definition 5.1. A word having letters in {0, 1, 2, . . .} is Yamanouchi if every suffix
contains at least as many i’s as (i+ 1)’s for all i > 0.

A word w has content α = (α1, . . . , αk) if exactly αi of the entries of w are equal to
i− 1 for each i. We also sometimes say it has content A where A is the multiset of letters
of w.

Finally, a word w = w1 · · ·wn is µ-sub-Yamanouchi , or µ-Carlitz , if there exists
a Yamanouchi word v = v1 · · · vn of content µ such that wi < vi for all i.

Example 5.2. The sub-Yamanouchi words for shape µ = (1, 1, 1, . . . , 1) are precisely the
classical Carlitz codes.

We will see that the µ-sub-Yamanouchi words are the correct analog of Carlitz codes
in the case that our Young diagram fillings have distinct entries. However, in general we
require the following more precise definition.

Definition 5.3. We define Cµ,A to be the collection of all µ-sub-Yamanouchi codes which
are A-weakly increasing (see Definition 2.8). We call such codes generalized Carlitz
codes , and we equip this collection with the statistic Σ : Cµ,A → Z by Σ(c) =

∑
ci,

forming a weighted set (Cµ,A; Σ).

We now introduce the concept of the monomial of a code. The next three definitions
are compatible with the notation in [6].

Definition 5.4. Fix variables x1, x2, . . .. For any finite code c of length n, define its
monomial to be

xc = xc1n x
c2
n−1 · · ·xcn1 .

Also let CA(µ) be the set of all monomials xc of µ-sub-Yamanouchi words c that are
A-weakly increasing.

In [6], the authors define similar sets of monomials B(µ), which form bases of the
modules Rµ that arise naturally in the study of the Hall-Littlewood polynomials. We
will see that in the case A = {1, 2, . . . , n}, we have CA(µ) = B(µ), by showing that the
sets CA(µ) satisfy a generalized version of the recursion in [6]. To state this recursion we
require two more definitions, which follow the notation in [6].
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Definition 5.5. Given a partition µ, define µ(i) to be the partition formed by removing
the topmost square in the column ai that contains the rightmost square in the i-th row
µi. In other words, we remove the unique corner square that is in the µi-th column from
the left.

Definition 5.6. Given a set of monomials C and a monomial m, we write m · C to denote
the set of all monomials of the form m · x where x ∈ C.

The following recursion defines the sets B(µ).

Definition 5.7. The sets B(µ) are defined by B((1)) = {1} and the recursion

B(µ) =

µ∗1⊔
i−1

xi−1n · B(µ(i)).

We refer to these sets as the Garsia-Procesi module bases.

We require one new definition in order to state our general recursion in the next
proposition.

Definition 5.8. Let A = {a1, a2, . . . , an} with a1 6 a2 6 · · · 6 an be a multiset of

positive integers, and let λ be a partition of n − 1. We define C(t)A (λ) to be the set of all
monomials xd of λ-sub-Yamanouchi words d1 · · · dn−1 that are A \ {a1}-weakly increasing
and if a1 = a2 then d1 > t.

Proposition 5.9 (General Recursion). For any partition µ of n and any multiset of
positive integers A = {a1, a2, . . . , an} with a1 6 a2 6 · · · 6 an, we have

CA(µ) =

µ∗1⊔
i=1

xi−1n · C(i−1)A (µ(i)).

Proof. The sets forming the union on the right hand side are disjoint because the i-th set
consists only of monomials having xi−1n as their power of xn. We now show inclusion both
ways.

(⊆) Let xc ∈ CA(µ) where c = c1, . . . , cn is a µ-sub-Yamanouchi word which is A-
weakly increasing. Let i = c1 + 1, so that c1 = i − 1. Also let c′ = c2, . . . , cn. Notice
that if a1 = a2 then c2 > i − 1, and c′ is A \ {a1}-weakly increasing. Thus, to show

xc ∈ xi−1C(i−1)A (µ(i)), we just need to show that c′ is µ(i)-sub-Yamanouchi.
Since c is µ-sub-Yamanouchi, there exists a Yamanouchi word d having µi entries equal

to i−1 for each i, for which xc divides xd. Let t be the highest index such that µt+1 = µi.
Then µ(i) = (µ1, µ2, . . . , µt − 1, · · · , µk). So, we wish to show that we can form a new
µ-Yamanouchi word b from d so that we still have that xc divides xb but b1 = t. This way
c′ will be µ(i)-sub-Yamanouchi, with respect to b′ = b2, . . . , bn.

We have µt+2 < µt+1 by our assumption defining t, so there are strictly more t’s than
t+ 1’s in d. Notice that this means we can move the leftmost t in d any number of spots
to the left without changing the fact that the word is Yamanouchi.
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Also notice that d1 > c1 = i − 1. But since there are exactly as many i − 1’s as i’s,
i + 1’s, and so on up to t in d, we must in fact have d1 > t, for otherwise the suffix
d2, . . . , dn would not satisfy the Yamanouchi property. So d1 > t.

Now, let dr be the leftmost t in d. We form a subword of d as follows. Let d1 be the
first letter of our subword. Then let dp1 be the leftmost letter between d1 and dr with
t 6 dp1 6 dr, if it exists. Then let dp2 be the first letter between dp1 and dr for which
t 6 dp2 6 dp1 , and so on until we reach a point at which no such letter exists. We now
have a subsequence of letters d1, dp1 , dp2 , . . . , dpk , dr = t where dr is the leftmost t in d. We
define b to be the word formed from d by cyclically shifting this subsequence, replacing
dpi with dpi−1

for all i > 1, replacing dp1 with d1, and replacing d1 with dpk .
For instance, if µ = (4, 3, 3, 2, 2), i− 1 = 1, then t = 2, and we might have

c = 120412130010100

with
d = 430422130021100.

Then the subword of d consists of those letters in boldface above, and we cyclically shift
the boldface letters to the right in their positions to form

b = 240432130021100,

which is still µ-Yamanouchi and still dominates c in the sense that xc divides xb.
To verify that in general xc divides xb, notice that c1 = i− 1 6 t, and since the other

letters in the subword decrease to the right, we have bi > di for all i > 1. Thus each
bi > ci for all i, and so xc divides xb.

To show that b is still Yamanouchi, notice that to form b from d, we have moved
the leftmost t all the way to the left (which, we noted above, preserves the Yamanouchi
property) and moved each dpj to the right without crossing over any element having value
dpj − 1 (for otherwise our sequence dpj would have an extra element, a contradiction.)
Thus we have not changed the property of there being at least as many dpj − 1’s as dpj ’s
in each suffix, and we have not changed the property that there are at least as many
dpj ’s as dpj + 1’s in each suffix, because we moved these elements to the right. The other
Yamanouchi conditions remain unchanged, since we are only moving the letters dpj . Thus
b is Yamanouchi as well.

(⊇) For the other inclusion, let c = c1, . . . , cn be a word such that xc ∈ xi−1 · C(i)A (µ(i)).
Then c′ = c2, . . . , cn is µ(i)-sub-Yamanouchi, so there exists a word d′ = d2, . . . , dn which
is Yamanouchi of content µ(i) such that xc

′
divides xd

′
. Let d1 = t where t is the highest

index such that µt+1 = µi. Then d = d1, . . . , dn is Yamanouchi of shape µ by the definition
of µ(i), and since c1 = i− 1, we have c1 6 t = d1. Thus xc divides xd. Finally, note that
if a1 = a2 in A, then c2 > i − 1 by the definition of C(i). Thus c is A-weakly increasing.
It follows that xc ∈ CA(µ).

Notice that in the case A = [n] = {1, 2, . . . , n}, since there are no repeated entries,
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Proposition 5.9 reduces to

C[n](µ) =

µ∗1⊔
i−1

xi−1n · C[n−1](µ(i)).

Since this is the same as the recursion given for the sets B(µ) described in the previous
section, and C{1}((1)) = {x1} = B((1)), we have the following corollary.

Corollary 5.10. If A = {1, 2, . . . , n}, we have CA(µ) = B(µ).

As noted in [6], we can now also enumerate the sets CA(µ) in the case A = {1, 2, . . . , n}.
For, in this case the simplified recursion gives

|CA(µ)| =
∑
i

|CA(µ(i))|

with |C{1}((1))| = 1. But the multinomial coefficients
(
n
µ

)
satisfy

(
1
1

)
= 1 and the same

recursion: (
n

µ

)
=
∑
i

(
n

µi

)
.

Corollary 5.11. If A = {1, 2, . . . , n}, we have

|CA(µ)| =
(
n

µ

)
.

5.2 Inversion Codes

We can now generalize the inversion code of a permutation to arbitrary fillings ρ with
maj(ρ) = 0.

Definition 5.12. Let ρ be a filling of µ∗ having maj(ρ) = 0. Order its entries by size
with ties broken in reading order to form a totally ordered alphabet A = {a1, . . . , an}.
Then its inversion code , denoted invcode(ρ), is the word c1 · · · cn whose i-th entry ci is
the number of attacking pairs having ai as its smaller entry.

Example 5.13. Consider the following tableau.

3 4 2

2 4

2 2

1

There are three attacking pairs in this diagram: the 2 in the bottom row is attacked
by the 3 and 4 in its row, and the 3 is attacked by the 4 in the second row. When we
order the entries in reading order and record the number of larger numbers that attack
it, we get the following table.
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Entries 1 2 2 2 2 3 4 4
Code 0 0 0 0 2 1 0 0

Therefore, the inversion code of the filling above is 00002100.

Theorem 5.14. The inversion code of any filling ρ ∈ Fαµ∗ is α-weakly increasing and
µ-sub-Yamanouchi. Moreover, the map

invcode : (Fαµ∗|maj=0; inv)→ Cµ,A

is an isomorphism of weighted sets.

To prove Theorem 5.14, we first introduce some new notation. In analogy with the
cocharge word defined in [9], for fillings ρ having maj(ρ) = 0, we can form an associated
inversion word and describe a statistic on the inversion word that measures inv(ρ) in
the case that maj(ρ) = 0.

Definition 5.15. Let ρ be a filling of shape µ having maj = 0. We define the inversion
word of ρ as follows. Starting with the smallest value that appears in the filling, write
the column numbers of the entries with that value as they appear in reading order, and
then proceed with the second largest entry and so on.

For instance, the filling:

5 3 5 2

4 3 4 1

2 2 4

1

has inversion word 141242231313.
In order to compute inv(σ) given only its inversion word, we will use a visual repre-

sentation of the inversion word, which we call a diagram .

Definition 5.16. Fix a linearly ordered finite multiset A, with elements a1 6 a2 6 · · · 6
an. The diagram a function f : A → Z+ is the plot of the function with respect to the
ordering on A. We say that the diagram has shape µ if |f−1(i)| = µi for each i.

The diagrams we will be using are essentially the plot of the inversion word, considered
as a function on a multiset.

Definition 5.17. Let ρ be a filling of µ∗ having maj(ρ) = 0, and let w be the inversion
word of ρ. Let A be the multiset consisting of the entries of ρ, ordered from least to
greatest and in reading order in the case of a tie. Let f : A → Z+ be the function given
by f(ai) = wi. We define InvPlot(ρ) to be the diagram of the function f , whose plot has
µj dots in the j-th row.

Notice that the InvPlot of a filling of shape µ∗ has shape µ, the conjugate shape. For
instance, the tableau
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3 4 2

2 4

2 2

1

has maj = 0, and its inversion word is 11213122. Its plot is as follows.

1 2 2 2 2 3 4 4

To compute the number of inversions, we define the inversion labeling of a diagram
to be the result of labeling each row of dots µi in the diagram with the numbers 1, 2, . . . , µi
from right to left:

4 3
3

2

1

1
2 1

1 2 2 2 2 3 4 4

Finally, an inversion in the diagram of a function f : A → Z+, labeled as above, is a
pair of entries a < b in the ordered multiset A for which either:

I. The dots above a and b have the same label and f(a) > f(b), or

II. The dot in position a is labeled i and the dot in position b is labeled i + 1, and
f(b) > f(a).

So there are 3 inversions in the diagram above, two of type I and one of type II:

4 3
3

2

1

1
2 1

1 2 2 2 2 3 4 4

For fillings σ with maj(σ) = 0, there are no descents, and so the number of inversions
in InvPlot(σ) is equal to inv(σ). In particular, type I and II inversions correspond to
attacking pairs in the same row or on adjacent rows, respectively.

Remark 5.18. The type I and II inversions also correspond to the two types of inversions
used to define the dinv statistic on parking functions. Indeed, this was the original
motivation for the full definition of the inv statistic. [8]
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We now classify the types of diagrams that arise as the InvPlot of a filling.

Definition 5.19. A consecutive subsequence is in inversion-friendly order if, when
each row is labeled from right to left as above, all dots of label i + 1 in the subsequence
occur before the dots of label i for all i, and the dots of any given label appear in increasing
order from bottom to top.

An example of an inversion-friendly subsequence is shown below.

5

5

4
4

4
3 2

2

It is easy to check that, in the plot of any filling ρ having maj(ρ) = 0, every subsequence
above a fixed letter of the alphabet A is in inversion-friendly order. We claim that the
converse is true as well, namely, that every diagram having all such subsequences in
inversion-friendly order corresponds to a unique Young diagram filling ρ having maj(ρ) =
0.

Definition 5.20. A diagram is of inversion word type if every subsequence determined
by a fixed letter of A is in inversion-friendly order.

We let IDµ,A the set of all diagrams of shape µ of inversion word type over A. We
equip IDµ,A with its inv statistic to make it into a weighted set.

Proposition 5.21. Let µ be a partition of n, and let A be a multiset of n positive integers
with content α. The map InvPlot is an isomorphism of weighted sets

InvPlot : (Fαµ∗|maj=0; inv)→ (IDµ,A; inv).

Proof. As noted above, this is a map of sets that preserves the inv statistic since there
are no descents. To show it is bijective, we construct its inverse.

Let D be an arbitrary diagram in IDµ,A, and let f : A → Z+ be the corresponding
map. For any a ∈ A let `(a) be the label on the dot at height f(a). Then let ρ be the
filling of shape µ∗ in which a ∈ A is placed in the square in column f(a) from the left, and
height `(a) from the bottom. By the definition of InvPlot, we have that InvPlot(ρ) = D,
and furthermore if D = InvPlot(σ) then ρ = σ. Thus the map sending D to ρ is the
inverse of InvPlot.

We now show that the inversion-friendly diagrams are in weight-preserving bijection
with generalized Carlitz codes. This will complete the proof of Theorem 5.14.

Definition 5.22. The inversion code of a diagram w, denoted invcode(w) is the se-
quence {ci} whose i-th entry ci is the number of inversion pairs of the form (w(i), b).

Example 5.23. The inversion code of the following diagram is 00002100.
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4 3
3

2

1

1
2 1

1 2 2 2 2 3 4 4

Using Proposition 5.21, we can also define the inversion code of a filling ρ ∈ Fαµ |maj=0

to be
invcode(ρ) := invcode(InvPlot(ρ)).

It is easy to see that this matches the definition of inversion code above.
Finally, we wish to show that the map invcode : IDµ,A → Cµ,A is an isomorphism of

weighted sets. We break the proof into several lemmas for clarity.

Lemma 5.24. The map invcode is a well-defined morphism from IDµ,A → Cµ,A for all µ
and A.

Proof. Let w : A→ Z+ be a diagram in IDµ,A, and let c = invcode(w).
We first show that c is µ-sub-Yamanouchi. Let i > 0 and consider the subset of dots

labeled i in the inversion labeling of w, say w(r1), . . . , w(rt) from left to right. We claim
that w(rt−j) is the left element of at most j inversions for each j = 0, . . . , t − 1. Indeed,
w(rt−j) is to the left of exactly j dots labeled i; those dots in a lower row form the Type
I inversions with w(rt−j). For Type II, the dots labeled i + 1 in a higher row must have
an i to the right of them, so correspond to one of the dots labeled i in a higher row and
to the right of w(rt−j). Thus w(rt−j) is the left element of at most j inversions, and so
crt−j 6 j.

It follows that cr1 , . . . , crt is an ordinary Carlitz code. Therefore, c can be decomposed
into several Carlitz codes, one for each label, of lengths µ∗1, µ

∗
2, . . .. Let di be the resulting

upper bound on ci for each i. Then d is a union of the sequences

µ∗i , µ
∗
i − 1, . . . , 2, 1, 0

for each i, arranged so that each of these sequences retains its order. Thus d is a Ya-
manouchi code, since every entry di can be matched with a unique entry having value
di − 1 to its right, namely the next entry in the corresponding subsequence. Note also
that d is Yamanouchi of shape µ, since there are µ1 zeroes, µ2 ones, etc in d. Since c is
bounded above component-wise by d, we have that c is µ-sub-Yamanouchi.

We now show that c is A-weakly increasing. It suffices to show that for any two
consecutive dots w(t), w(t+1) of w that are in inversion-friendly order, we have ct 6 ct+1.
Suppose the dot w(t) is labeled i in the inversion labeling, and w(t+ 1) is labled j. Then
by assumption, since they are in inversion-friendly order, we have either i = j with the j
in a higher row than i, or j < i. The i is the left element of ct inversions and the j is the
left element of ct+1 inversions.

First suppose i = j and the j is in a higher row than the i, that is, w(t + 1) > w(t).
If b is an index to the right of the i such that (w(t), w(b)) is an inversion, then there
are three possibilities: First, w(b) could be labeled i and be below w(t), in which case
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(w(t + 1), w(b)) is also an inversion. Second, w(b) could be labeled i + 1 and be above
w(t) but below w(t + 1), in which case there is a dot labeled i in row w(b) to the right
of b, forming an inversion with w(t + 1). And third, w(b) could be labeled i + 1 and be
above row w(t + 1), in which case (w(t + 1), w(b)) is also an inversion. Thus there is at
least one inversion with w(t) as its left element for every inversion with w(t + 1) as the
left element, and so ct 6 ct+1 in this case.

Similarly, if j < i, then any dot labeled i or i+ 1 has a dot labeled j and a dot labeled
j + 1 to its right, and so ct 6 ct+1 in this case as well.

It follows that invcode is a well-defined map.

Lemma 5.25. The map invcode is injective.

Proof. We will show that given a code c, we can form an inversion-friendly diagram by
placing dots above c1, c2, . . . , cn from left to right. We claim that there is a unique height
that is compatible with c at each step.

With the empty word as a trivial base case, we proceed inductively. Suppose we have
already placed the first t−1 dots from the left. There may be several possible dot heights
available for the t-th dot, depending on the shape µ and which dot heights have already
been chosen. We claim that each possible height would result in a different value of the
code number ct. To show this, let h1 < h2 be two possible heights of the t-th dot. Since
the first t − 1 dots have been chosen and we know the shape of the diagram, the labels
i and j of a dot at height h1 or h2 respectively are uniquely determined. We also note
that the inversion code number ct is uniquely determined by the choice of the t-th dot
(given the first t− 1 dots), since any row of length µr > i that did not have a dot labeled
i among the first t values must necessarily have one afterwards, and so the set of label
values in each row to the right of the t-th entry is determined.

So, let r be the inversion code number ct that would result from the dot at height h1
labeled i, and s the code number for h2 labeled j. We wish to show that s 6= r, and we
consider the cases j 6 i and j > i separately.

If j 6 i, let k be the number of dots labeled i that would be below and to the right of
the w(t) if w(t) = h1 (labeled i). Then r − k would be the number of i + 1’s above and
to the right of it. Each of the k rows having the i’s also have j’s weakly to the right of
them because j 6 i, and each of the r− k rows with the i+ 1’s have both a j + 1 and a j
to the right. Thus if w(t) = h2 (labeled j) instead, the j would have at least r inversions,
and so s > r. But if w(t) = h2, then this j also forms an inversion with the j in row h1,
giving an extra inversion. Thus s > r, and so s 6= r in this case.

If j > i, consider the s dots labeled j or j + 1 that would form an inversion with w(t)
if w(t) = h2. Then each of these rows would also contain an i or i + 1 that would form
an inversion with the i at height h1, in addition to the row h2 itself, showing that r > s.
Thus s 6= r, as desired.

We have that |Cµ,A| = |CA(µ)| by our definition of C. Furthermore, when A =
{1, 2, . . . , n} we have | IDµ,A | =

(
n
µ

)
because we are simply counting the number of unre-

stricted diagrams having µ1 dots in the first row, µ2 in the second row, and so on. We
can now conclude bijectivity in this case.
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Corollary 5.11. The map invcode is bijective in the case A = {1, 2, . . . , n}.
We are now ready to prove Theorem 5.14.

Proof. We already have shown (Corollary 5.11) that invcode is a bijective map IDµ,[n] →
Cµ,[n]. Notice that for any other alphabet A = {a1, . . . , an}, we have IDµ,A ⊂ IDµ,[n] and
Cµ,A ⊂ Cµ,[n]. We also know that the map

invcode : IDµ,[n] → Cµ,[n]

restricts to an injective map invcode : IDµ,A → Cµ,A by Lemmas 5.24 and 5.25. It remains
to show that it is surjective onto Cµ,A.

Let c ∈ Cµ,A ⊂ Cµ,[n]. Then c is A-weakly increasing on constant letters of A. Let
d = invcode−1(c) ∈ IDµ,[n]. We wish to show that d is of inversion word type with respect
to A, so that d ∈ IDµ,A, that is, if r < s and ar = as in A then (d(ar), d(as)) is not
an inversion. Suppose (d(ar), d(as)) is an inversion. Then either d(ar) and d(as) are
both dots labeled i with d(as) < d(ar), or d(ar) is labeled i and d(as) labeled i + 1 with
d(as) > d(ar).

In the first case, if (d(as), d(at)) is another inversion involving as, then either d(at) is
lower than d(as) (and hence lower than d(ar)) and labeled i, or it is above it and labeled
i+ 1. If the former then (d(ar), d(at)) is an inversion, and if the latter, either there is an
i in the same row forming an inversion with d(ar), or the i+ 1 is above d(ar), forming an
inversion with it. Thus d(ar) is the left element of at least as many inversions as d(as),
plus one for the inversion (d(ar), d(as)). Thus cr > cs.

In the second case, if (d(as), d(at)) is another inversion, then d(at) is either lower (but
possibly above d(ar)) and labeled i + 1, or higher and labeled i + 2. In the former case
either d(at) itself forms an inversion with d(ar) or the i in its row does. In the latter case
the i + 1 in its row forms an inversion with d(ar). Since (d(ar), d(as)) is an inversion as
well, we again have cr > cs. But this contradicts the fact that c is A-weakly increasing.

Hence invcode is surjective, and thus bijective, from IDµ,A to Cµ,A. Clearly the map
preserves the statistics: the sum of all the entries of the inversion code of a diagram is
the total number of inversions of the diagram, so invcode sends inv to Σ. Therefore,

invcode : IDµ,A → Cµ,A

is an isomorphism of weighted sets.

6 Major Index Codes in the Hall-Littlewood Case

To complete the proof of the Hall-Littlewood case, it now suffices to find a weighted set
isomorphism

majcode : (Fαµ |inv=0; maj)→ Cµ,A

where α is the content of the alphabet A.
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Recall the recursion for the µ-sub-Yamanouchi codes of content A from Proposition
5.9:

CA(µ) =

µ∗1⊔
i=1

xi−1n · C(i−1)A (µ(i)).

Using this recursion, one possible strategy for constructing majcode is by showing com-
binatorially that Fαµ |inv=0 satisfies a similar recursion.

In this section, we present some partial progress towards finding the map majcode.
All of our work is based on the following four-step approach to the problem.

Step 1. Consider the content (1n) corresponding to fillings with distinct entries, and find an
explicit weighted set isomorphism

ψ : (F (1n)
µ |inv=0; maj)→

⊔
d

(F (1n−1)

µ(d+1) |inv=0; maj +d).

That is, ψ should send an inversion-free filling T of µ to an inversion-free filling
ψ(T ) of µ(d+1) for some d, such that

maj(ψ(T )) = maj(T )− d.

Step 2. Define the majcode of a filling T having content (1n) to be d1d2 . . . dn where

dk = maj(ψk(T ))−maj(ψk−1(T )).

Step 3. Check the base case of a single square, and conclude that because the recursion is
satisfied, majcode is an isomorphism of weighted sets

(F (1n)
µ |inv=0,maj)→ (Cµ,[n],Σ),

where Cµ,[n] is the set of generalized Carlitz codes of shape µ and content [n].

Step 4. Show that there is a standardization map

Standardize : Fαµ |inv=0 → F1n

µ |inv=0

that respects maj, such that the composition majcode ◦ Standardize is a bijection to
Cµ,A where A is the alphabet with content α. That is, show that after standardizing,
we get a major index code which is A-weakly increasing, and none of these codes
are mapped to twice.
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6.1 Killpatrick’s Method for Standard Fillings

For Step 1 in our strategy, in which A = {1, 2, . . . , n} is an alphabet with no repeated
letters, such a map can easily be extracted from the work of Killpatrick [12]. In this
paper, the author gives a combinatorial proof of a recursion for a generating function
involving charge , written ch, and defined in terms of cocharge as ch(µ) = n(µ) − cc(µ)
where n(µ) =

∑
i(i − 1) · µi. Killpatrick defines Wµ to be the set of words of content µ,

and lets ri,µ = |{j > i : µj = µi}|. The recursion is stated as:∑
w∈Wµ

qch(w) =
∑
i

qri,µ
∑

w∈W
µ(i)

qch(w).

If we substitute q → 1/q and multiply both sides by qn(µ), this becomes∑
w∈Wµ

qcc(w) =
∑
i

qi−1
∑

w∈W
µ(i)

qcc(w),

which is equivalent to the recursion we stated in Step 1 above. Killpatrick’s map ψ allows
us to define a map majcode′ that satisfies Steps 1-3 above. We therefore immediately
obtain the following result.

Theorem 6.1. In the case α = (1n) of fillings with distinct entries, we have that ϕ =

majcode′
−1 ◦ invcode is an isomorphism of weighted sets

ϕ : F (1n)
µ |maj=0 → F (1n)

µ∗ |inv=0.

However, Killpatrick’s map majcode′ does not satisfy the requirements of Step 4. To
illustrate this, we consider the case in which µ = (1n) is a straight column shape. In this
case, Killpatrick’s bijection majcode′ is defined by the following process:

1. Given a filling w of a straight column shape such as the one with reading word 1432
in the diagram below, check to see if the bottommost entry is the largest entry. If
not, cyclically increase each entry by 1 modulo the number of boxes n. Each such
cyclic increase, or cyclage , can be shown to decrease the major index by exactly
one (see Section 7 for details in the language of cocharge). We perform the minimal
number of cyclages to ensure that the bottommost letter is n, and let c1 be the
number of cyclages used. (In the figure, c1 = 2.)

2
3
4
1

3
4
1
2

4
1
2
3

1
2
3

2
3
1

3
1
2

1
2

2
1 1
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2. Once the bottommost entry is n, remove the bottom box, and repeat step 1 on the
new tableau. The resulting number of cyclages used is recorded as c2. (In the figure,
c2 = 2.)

3. Continue until there are no boxes left, and set majcode′(w) = c1c2 · · · cn. (In the
figure, majcode′(w) = 2210.)

Now, suppose we had a standardization map Standardize as in Step 4. Consider the
one-column tableaux having entries from the alphabet {2, 2, 1, 1, 1, 1} and major index 4.
There are three such tableaux:

2

1

2

1

1

1

1

1

2

2

1

1

1

1

1

2

1

2

There are also three (16)-sub-Yamanouchi codes that are {2, 2, 1, 1, 1, 1}-weakly in-
creasing and sum to 4, namely:

040000

130000

220000

It follows that Standardize maps these three tableaux to the three standardized fillings
whose codes majcode′ are 040000, 130000, and 220000, respectively. But these three
tableaux are:

6

1

5

4

3

2

5

1

6

4

3

2

4

1

6

5

3

2

Therefore, the map Standardize cannot preserve the relative ordering of the entries,
or even the positions of the descents. This makes it unlikely that a simple rule for such a
standardization map exists. However, it is possible that there exists a more complicated
combinatorial rule for such a map, and we leave this as an open question for future
investigation.

Question 6.2. Is there a natural map Standardize that satisfies the conditions of Step 4
for Killpatrick’s map majcode′?

Since standardization is not immediate, we now return to Carlitz’s bijection and gen-
eralize majcode to arbitrary inversion-free fillings of certain infinite families of shapes.
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40 80 120

91 10 20

102 51 111

32 62 71

40 80

91 10 20

102 51 111

32 62 71

40 80 20

91 10 111

102 51 71

32 62

20 40 80

91 111 10

102 51 71

32 62

Figure 2: The cocharge contribution of the entries in each tableau is shown as a su-
perscript. Notice that the sum of the cocharge contributions of a tableau is equal to its
major index. In addition, the three-step process of Proposition 6.13 does not change the
major index.

6.2 Cocharge Contribution and Structural Results

We now introduce some new definitions and technical lemmata which will be used through-
out the proofs in this chapter.

Definition 6.3. The cocharge contribution cc(i,j)(σ) of an entry σ(i, j) of a filling σ
is the number of descents that occur weakly below the entry (i, j) in its column, j.

It is easy to see that the cocharge contributions add up to the major index.

Proposition 6.4. Let σ : µ→ Z+ be any filling. Then maj(σ) is equal to the sum of the
cocharge contributions of the entries of σ, i.e.

maj(σ) =
∑

(i,j)∈µ

cc(i,j)(σ).

We omit the proof, and refer the reader to the example in Figure 2.

Definition 6.5. Let w be any sequence consisting of k 0’s and k 1’s, and let a1, a2, . . . , ak
be any ordering of the 0’s. We define the crossing number of w with respect to this
ordering as follows. Starting with a1, let b1 be the first 1 to the right of a1 in the sequence,
possibly wrapping around cyclically if there are no 1’s to the right of a1. Then let b2 be
the first 1 cyclically to the right of a2 other than b1, and so on. Then the crossing number
is the number of indices i for which bi is to the left of ai.

Example 6.6. If we order the 0’s from left to right, the word 10110010 has crossing
number 2.

Lemma 6.7. Let w be any sequence consisting of k 0’s and k 1’s. Then its crossing
number is independent of the choice of ordering of the 0’s.

Proof. Say that a word is 0-dominated if every prefix has at least as many 0’s as 1’s.
First, we note that there exists a cyclic shift of w which is 0-dominated. Indeed, consider
the partial sums of the (−1)wi ’s in the sequence, so that any 0 contributes +1 and any 1
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contributes −1. The total sum is 0, and we can shift to start at the index of the minimal
partial sum; the partial sums will now all be positive.

Now, we show by induction that any 0-dominated sequence has crossing numberm = 0.
It is clearly true for k = 1, since the only 0-dominated sequence is 01 in this case.

Suppose the claim holds for any 0-dominated sequence of k − 1 0’s and k − 1 1’s and
let s be an 0-dominated sequence with k 0’s. Choose an arbitrary 0 to be a1, and denote
it 0̂. Then since s is 0-dominated, the last term in s is a 1 and so 0̂ will be paired with a
1, denoted 1̂, to the right of it. Remove both 0̂ and 1̂ from s to form a sequence s′ having
k − 1 0’s and k − 1 1’s.

We claim that s′ is 0-dominated. Note that all prefixes of s′ that end to the left of 0̂
are unchanged, and hence still have at least as many 0’s as 1’s. Any prefix P ′ that ends
between 0̂ and 1̂ is the result of removing 0̂ from a corresponding prefix P of s, which had
at least as many 0’s as 1’s. If there were an equal number of 0’s as 1’s in P , then its last
term is a 1. This means that 1̂ was not the first 1 to the right of the 0, a contradiction.
So P has strictly more 0’s than 1’s, and so P ′ = P \ {0̂} has at least as many 0’s as 1’s.
Finally, any prefix which ends to the right of 1̂ has one less 0 and one less 1 than the
corresponding initial subsequence of s, and so it also has at least as many 0’s as 1’s. It
follows that s′ is 0-dominated.

By the inductive hypothesis, no matter how we order the remaining 0’s, there are
no crossing pairs. Since the choice of a1 was arbitrary, the crossing number is 0 for any
ordering of the 0’s.

Returning to the main proof, let w = w1w2 · · ·w2k and let i be such that the cyclic
shift w′ = wiwi+1 · · ·w2kw1w2 · · ·wi−1 is 0-dominated. Then every pairing in w′ has the 0
to the left of the 1, and so the crossing number of w is the number of pairings in which
the 0 is among wi · · ·w2k and the 1 is among w1 · · ·wi−1. Hence, the crossing number is
equal to the difference between the number of 1’s and 0’s among w1w2 · · ·wi−1. This is
independent of the choice of order of the 0’s, and the proof is complete.

In the rest of the paper, if a row r is above a row s in a filling, we say that we
rearrange r with respect to s if we place the entries of r in the unique ordering for
which there are no inversions in row r, given that s is below it.

Lemma 6.8. Let σ be a filling of the two-row shape (k, k) with inv(σ) = 0. Let σ′π be
formed by rearranging the bottom row via the permutation π, and rearranging the top row
with respect to the new bottom row. Then maj(σ) = maj(σ′π).

Proof. Let w be cocharge word of the diagram. No matter what the permutation of
rows, the cocharge word will remain unchanged, a sequence of k 1’s and k 2’s. But the
permutation of the bottom row determines a permutation of the 1’s, and the subsequent
ordering of the top row is determined by the process of selecting the first remaining 2
cyclically to the right of the 1 at each step. It forms a descent if and only if that 2 is to
the left of the 1, i.e. if it contributes to the crossing number. So the number of descents
is equal to the crossing number of the cocharge word (thinking of the 1’s as 0’s and the
2’s as 1’s), and by Lemma 6.7 the proof is complete.
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We now have the tools to prove the next technical lemma.

Lemma 6.9. Let a1, . . . , aw−1 be any positive integers, and suppose b1, . . . , bw are positive
integers such that in the partial tableau

b1 b2 · · · bw−1 bw
a1 a2 · · · aw−1

has no inversions among the bi’s. Then if we rearrange a1, . . . , aw−1 in any way and then
rearrange the b’s in the unique way that guarantees no inversions among the b’s, then the
entry bw is still in the last position. Furthermore, the total number of descents among
b1, . . . , bw is unchanged after this operation.

Proof. Consider the cyclic ordering of a1, . . . , aw−1, b1, . . . , bw. Since there are no inversions
among the b’s, we have that ai, bi, bw are in cyclic order for each i, possibly with bi = bw
or ai = bw.

Let bw, t1, . . . , t2w−2 be the ordering of these letters that is in cyclic order, with ties
broken in such a way that bw, ai, bi occur in that order in the sequence for each i. Then
if we replace the ai’s with 0’s and the bi’s with 1’s, the suffix t1, . . . , t2w−2 has crossing
number 0 since each ai is paired with bi to its right.

It follows from Lemma 6.7 that, if we rearrange the ai’s, the crossing number is still
0 and so bw still corresponds to the 1 at the beginning of the sequence. It follows that
bw is still in the last position in the new filling. Finally, by considering only the first
w− 1 columns, we can apply Lemma 6.8 to see that the total number of descents among
b1, . . . , bw−1 remains unchanged.

The following lemma is a sort of inverse to Lemma 6.9.

Lemma 6.10. Given two collections of letters b1, . . . , bw−1 and a1, . . . , aw, there is a
unique element ai among a1, . . . , aw such that, in any two-row tableau with

a1, . . . , âi, . . . , aw

as the entries in the bottom row and b1, . . . , bw−1, ai as the entries in the top, with no
inversions in the top row, the entry ai occurs in the rightmost position in the top row.

Proof. As usual, let us think of the ai’s as 0’s and the bi’s as 1’s in a cocharge word,
arranged according to the magnitudes of the ai’s and bi’s. Then we have a sequence of w
0’s and w − 1 1’s, and we wish to show that there is a unique 0 that, when we change it
to a 1, is not paired with any 0 when computing the crossing number. By Lemma 6.9,
there is a unique such 1 in any word of w − 1 0’s and w 1’s.

So, by Lemma 6.9, it suffices to find a 0 in the original tableau such that upon removal,
the remaining sequence starting with the entry to its right is 0-dominated. For instance,
in the sequence 001110100, which has 5 zeros and 4 ones, if we remove the second-to-last
zero and cyclically shift the letters so that the new sequence starts with the 0 to its right,
we get the sequence 00011101, which is 0-dominated.
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To show that there is a unique such 0, consider the up-down walk starting at 0 in
which we move up one step for each 0 in the sequence and down one step for each 1. Then
we end at height 1, since there is one more 0 than 1 in the sequence. For instance, the
sequence 001110100 corresponds to the up-down walk:

Consider the last visit to the minimum height of this walk. If the minimum height
is 0 then we simply remove the last 0 in the sequence and we are done. If the minimum
height is less than 0, then there are at least two up-steps (0’s) following it since it is the
last visit to the min. The first of these up-steps corresponds to a 0 which we claim is our
desired entry. Indeed, if we remove this 0, the walk starting at the next step and cycling
around the end of the word is a positive walk, corresponding to a 0-dominated sequence.

It is easy to see that if we do the same with any of the other 0-steps, the resulting
walk will not be positive and so the corresponding sequence will not be 0-dominated. This
completes the proof.

Notice that in a two-row shape with the bottom row ordered least to greatest and no
inversions in the second row, the descents must be “left-justified”: they must occur in
columns 1, . . . , k for some k. For, if br > ar is a descent and br−1 6 ar−1 is not, then
br > ar−1 by transitivity and we have br−1 6 ar−1 < br, forming an inversion. Moreover,
after the descents the bi’s are weakly increasing: bi 6 bj for k < i < j - this follows directly
from the fact that none of these bi’s are descents. The descents b1, . . . , bk are also weakly
increasing; otherwise we would have an inversion. We will use this fact throughout.

Lemma 6.11. Let a1 6 · · · 6 aw−1 and let b1, b2, . . . , bw be numbers such that the partial
tableau

b1 b2 · · · bw−1 bw
a1 a2 · · · aw−1

has no inversions in the second row. Then if we bump bw down one row so that

a1 6 a2 6 · · · 6 at 6 bw < at+1 6 · · · 6 aw−1

is the bottom row, and leave b1, . . . , bw−1 unchanged, then the new tableau still has no
inversions, and the descents in the second row remain the same (and left-justified).

Proof. Let k be the number of descents among the b’s. If k = 0, there are no descents,
and we must have bw 6 a1 so as not to have inversions. In this case, bw drops down into
the first position in the bottom row, and there are still no descents and no inversions since
b1 6 b2 6 . . . 6 bw−1 in this case.

If k > 1, then bk > ak is the last descent. Since bk and bw do not form an inversion
in the original tableau, we must either have ak < bk 6 bw or bw 6 ak < bk. We consider
these cases separately.
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Case 1: Suppose ak < bk 6 bw. Then t > k, i.e. bw drops to a position to the
right of the last descent, after which point we have bi 6 ai for all such i. Thus, for
instance, bt+1 < at+1, and since bw and bt+1 did not originally form a descent, we must
have bt+1 6 bw 6 at+1. This means that bt+1 6 bw, so bt+1 still does not form a descent in
the new tableau. Then, similarly we have bt+2 6 bw, and so bt+2 6 at+1, and so on. Thus
the descents have stayed the same in the new tableau.

Furthermore, since bi < bw for all i > t + 1 in this case, we have bi < bw < ai for all
i > t + 1, and since the bi’s after position k are weakly increasing, none of these form
inversions. Since b1, . . . , bt are above the same letters a1, . . . , at as before and are in the
same positions relative to the other bi’s, they cannot be the left elements of inversions
either.

Case 2: Suppose now that bw 6 ak < bk. If bw = ak then in fact it drops to the right
of ak and it is the same as the previous case. So we can assume that bw < ak < bk.

Then t 6 k, i.e. bw drops to a position underneath a descent of the original tableau
shape. Since bw 6 at+1 and at+1 < bt+1 is a descent, we have bw < bt+1 and so bt+1 is
still a descent in the new tableau. Similarly bi is still a descent for all i 6 k. To check
that bk+1 is still not a descent, assume it is: that ak < bk+1. Then bw 6 ak < bk+1, and
so bw 6 ak+1 6 bk+1 since the original filling had no inversions. If ak+1 < bk+1, we get a
contradiction, so ak+1 = bk+1. But then bw = ak+1, contradicting the fact that bw < ak+1.
Thus there is not an inversion in the (k+ 1)st position. Hence the descents stay the same
in this case as well.

Furthermore, consider bi and bj with i < j < w: if i is among 1, . . . , t then bi and bj
do not form an inversion since bi is still above ai. If i and j are both among t+ 1, . . . , k,
then they do not form an inversion, since bi and bj are both descents and bi < bj. If i
is among t + 1, . . . , k and j > k, note that bj < bw since it is in the run of non-descents
of the b’s. Hence bj < ai by transitivity, and so bj < ai < bi since bi is a descent. This
implies that bi and bj do not form an inversion. Finally, if i > k and j > i, we are once
again in the run of non-descents at the end, which is weakly increasing, and hence there
are no inversions since none are descents. We conclude that the bi’s have no inversions
among them in this case either.

Lemma 6.12. Let a1, . . . , aw−1, b1, . . . , bw, and cw be numbers such that the partial filling

cw
b1 b2 · · · bw−1 bw
a1 a2 · · · aw−1

has no inversions in the second row. Then there is an ordering t1, . . . , tw of a1, . . . , aw−1, bw
such that if s1, . . . , sw is the unique ordering of b1, . . . , bw−1, cw for which the partial filling

s1 s2 · · · sw
t1 t2 · · · tw

has no inversions in the second row, then the entry cw is directly above bw in the new
filling.
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Proof. Let T ′ be the two-row filling consisting of the s’s and t’s as in the statement of the
lemma. Let x be the cocharge word of T ′, with the bottom row indexed by 0 and the top
by 1. Then x consists of 0’s and 1’s, and as in Lemma 6.7, the number of descents in T ′

is the crossing number of this word. So bw is one of the 0’s in this word, and cw is one of
the 1’s, and we wish to show that there is some ordering of the 0’s in which bw is paired
with cw.

Assume to the contrary that bw cannot be paired with cw no matter how we order the
0’s. Choose a cyclic shift x̃ of x whose crossing number is 0, as we did in Lemma 6.7. If
bw is to the left of cw in x̃, then since it can’t be paired with cw there must be an index
k between that of bw and cw at which the prefix of the first k letters is 0-dominated. For,
if there were more 0’s than 1’s at every step up to cw then we can pair off the other 0’s
starting from the left until cw is the first 1 to the right of bw. This means we can choose
a different cyclic ordering, starting at the k + 1st letter, for which the crossing number is
also 0. In this cyclic shift, cw is to the left of bw. So we have reduced to the case that cw
is to the left of bw.

In this case, cw is one of the 1’s, and bw is one of the 0’s, e.g. in the 0-dominated
sequence 001011, we might have cw be the third entry and bw the fourth. Before we
dropped down the bw and cw, we had a tableau whose cocharge word looked like this word
except with the 0 of bw replaced by a 1, and the 1 of cw replaced by a 2 (in the example,
this would give us the word 002111.) Remove the 2 from this word. In the resulting word
of 0’s and 1’s, since we have bumped up a 0 to a 1 but removed one of the 1’s before it,
every prefix is 0-dominated except the entire word, which has one more 1 than it has 0’s.
Thus the very last 1 is the only entry which is not paired. But bw is, by assumption, the
entry which is unpaired in the original ordering. This is a contradiction, since bw was a 0
in the bumped-down word and hence could not have been in the last position.

It follows that there must exist an ordering of the 0’s in which bw is paired with cw.
This completes the proof.

6.3 Bumping from the Bottom

The Carlitz bijection on words, defined in Section 2.1, gives a map majcode for arbitrary
fillings of one-column shapes µ. We now present a strategy towards generalizing to all
shapes µ, and show that rectangles behave similarly to one-column shapes.

Our primary tool is the following technical result. This lemma generalizes the fact
that if we remove the largest entry n from the bottom of a one-column shape, we get a
major index code entry d = 0.

Proposition 6.13. Suppose σ : µ→ Z+ is a filling for which inv(σ) = 0 and the largest
entry n appears in the bottom row. Let σ↓ : µ(1) → Z+ be the filling obtained by:

1. Removing the rightmost n from the bottom row of σ, which must be in the rightmost
column since inv(σ) = 0,

2. Shifting each of the remaining entries in the rightmost column down one row,
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3. Rearranging the entries in each row in the unique way so that inv(σ↓) = 0.

Then the major index does not change:

maj(σ) = maj(σ↓).

To prove this, we require two further lemmas. In all of what follows, we let σ : µ→ Z+

be a filling with inv(σ) = 0 whose largest entry appears in the bottom row, and let
σ↓ : µ(1) → Z+ be constructed from σ as above.

Lemma 6.14. Suppose inv(σ) = 0. Let i > 1 be an index such that µi+1 = µ1, i.e. the
(i+ 1)st row of µ is as long as the bottom row. Then we have

cc(i+1,µ1)(σ) +
∑

16j6µ1−1

cc(i,j)(σ) =
∑

16j6µ1

cc(i,j)(σ↓).

Proof. We induct on i. For the base case, i = 1, the left hand side is the total cocharge
contribution of the entries (1, 1), (1, 2), . . . , (1, µ1 − 1) and the entry (2, µ1). The square
(1, µ1) is filled with the largest number n, by our assumption that n appears in the bottom
row and the fact that inv(σ) = 0. Thus the entry in (2, µ1) cannot be a descent, and so
the cocharge contribution of all of these entries are 0. Thus the left hand side is 0. The
right hand side is also 0, since it is the sum of the cocharge contributions from the bottom
row of σ↓.

For the induction, let i > 1 and suppose the claim is true for i−1. Then the induction
hypothesis states that

s := cc(i,µ1)(σ) +
∑

16j6µ1−1

cc(i−1,j)(σ) =
∑

16j6µ1

cc(i−1,j)(σ↓).

Then if there are k descents among the entries (i + 1, µ1) and (i, 1), . . . , (i, µ1 − 1) of σ,
then their total cocharge contribution is equal to s+ k, since they are the entries strictly
above those that contribute to the left hand side of the equation above.

So, to show that

cc(i+1,µ1)(σ) +
∑

16j6µ1−1

cc(i,j)(σ) =
∑

16j6µ1

cc(i,j)(σ↓),

it suffices to show that the total cocharge contribution of the i-th row of σ↓ is also s+ k.
By the induction hypothesis it is equivalent to show that there are k descents among the
entries in the i-th row of σ↓.

Now, let w = µ1 be the width of the tableau, and let a1, . . . , aw−1 be the first w − 1
entries in row i− 1 of σ. Let b1, . . . , bw be the elements of row i, and let cw be the entry
in square (i+ 1, w), above bw.

cw
b1 b2 · · · bw−1 bw
a1 a2 · · · aw−1
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Consider the 2×w tableau T ′ with bottom row elements a1, . . . , aw−1, bw and top row
elements b1, . . . , bw−1, cw. By Lemma 6.12, there is a way of rearranging the bottom row of
T ′ such that if we rearrange the top row respectively, then cw lies above bw. This suffices,
for now the remaining columns will form a tableau with no inversions in the second row,
with a1, . . . , aw−1 and b1, . . . , bw−1 as the entries of the rows. By Lemma 6.8 this has the
same number of descents independent of the ordering of the ai’s, and cw will be a descent
or not depending on whether it was a descent before. Thus there are still k descents in
the i-th row.

Lemma 6.14 shows that the cocharge contribution is conserved for rows i for which
µi+1 = µ1. The next lemma will show that the cocharge contribution is unchanged for
higher rows as well. Again, here σ is a filling having its largest entry n occurring in the
bottom row.

Lemma 6.15. Suppose inv(σ) = 0, and the rightmost (w-th) column of µ has height
µ∗w = h. Then in σ↓, row h consists of the first w − 1 letters of row h of σ in the same
order, and their cocharge contributions are the same as they were in σ.

It follows from this lemma that all higher rows are unchanged as well, and combining
this with Lemma 6.14, it will follow that maj(σ) = maj(σ↓).

Proof. We induct on h, the height of the rightmost column. For h = 1 and h = 2, we are
done by previous lemmata (see Lemma 6.11). So, suppose h > 3 and the claim holds for
all smaller h.

Performing the operation of Proposition 6.13, suppose we have bumped down all but
the topmost entry (in row h) of the rightmost column and rearranged each row with
respect to the previous. Let rows h− 2, h− 1, and h have contents:

d1 d2 · · · dw−1 dw
c1 c2 · · · cw−1
x1 x2 · · · xw−1 xw

Notice that, by the induction hypothesis, the entries c1, . . . , cw−1 are the same as they
were in σ before bumping down cw and have the same cocharge contributions as they
did before. Thus the row of d’s as shown is currently the same as row h of σ. So, we
wish to show that upon bumping dw down and rearranging all rows so that the filling has
no inversions, the entries in row h are still d1, d2, . . . , dw−1 in that order, and that these
entries have the same cocharge contributions as they did before.

We first show that the entries d1, . . . , dw−1 do not change their positions upon bumping
dw down to row h− 1 (and rearranging so that there are still no inversions.) We proceed
by strong induction on the width w. For the base case, w = 2, we have that d1 is the only
entry left in the top row, and therefore cannot change its position.

Now, assume that the claim is true for all widths less than w. If dw bumps down and
inserts in a row t above xt, then the numbers c1, . . . , ct−1 are still above x1, . . . , xt−1 respec-
tively since they are still first in cyclic order after each. Likewise the entries d1, . . . , dt−1

the electronic journal of combinatorics 23(2) (2016), #P2.38 40



remain the same in this case. Thus we may delete the first t − 1 columns and reduce to
a smaller case, in which the claim holds by the induction hypothesis. This allows us to
assume that when dw bumps down, it is in the first column, above x1, and so the tableau
looks like:

d∗ d∗ · · · d∗
dw c∗ · · · c∗ c∗
x1 x2 · · · xw−1 xw

where the ∗’s represent an appropriate permutation of the indices for d1, . . . , dw−1 and
c1, . . . , cw−1.

We now show that d1, . . . , dr remain in their respective positions for all r > 1, by
induction on r. (So, we are doing a triple induction on the height, the width of the
tableau, and the index of the d’s). For the base case, we wish to show that d1 is the entry
above dw in the new tableau. We have, from the fact that inv(σ) = inv(σ↓) = 0, that the
following triples are in cyclic order for any k such that 2 < k < w:

1. (x1, dw, c1), with possible equalities x1 = c1, dw = c1

2. (x1, c1, ck), with possible equalities x1 = ck, c1 = ck

3. (ck, dk, dw), with possible equalities ck = dw, dk = dw

4. (c1, d1, dk), with possible equalities c1 = dk, d1 = dk

Combining (1) and (2) above, we have that (x1, dw, c1, ck) are in cyclic order, and so in par-
ticular (dw, c1, ck) is in cyclic order. Combining this with (3) above, we have (dk, dw, c1, ck)
are in cyclic order, and in particular so are (dk, dw, c1). Using this and (4), we have
(dk, dw, c1, d1) are in cyclic order, and in particular either c1 6= d1 or c1 = d1 = dk, and so
(dw, d1, dk) are in cyclic order with either dw 6= d1 or dw = dk = d1; this implies that d1
and dk will not form an inversion if d1 is placed above the dw. Thus d1 does indeed stay
in the leftmost column.

For the induction step, suppose d1, . . . , dr−1 are in columns 1, . . . , r − 1 respectively
in σ↓. We wish to show that dr must be in the r-th position. To do so, first notice that
since ci is first in cyclic order after xi among ci, ci+1, . . . , cw−1 for each i, we have that for
each i, the element that appears above xi after bumping dw down is among c1, . . . , ci.

Suppose ck is above xk in the new tableau for some k 6 r−1. Then dk is in this column
as well by the induction hypothesis, and so removing this entire column will not affect
the relative ordering of the remaining entries. But now dr is the (r − 1)st of the d’s in
question, and therefore must be in the (r−1)st position by the induction hypothesis, and
so must be in the r-th position in the full tableau (prior to removing the k-th column).

Otherwise, if ck is never above xk for any k 6 r−1, we have that c1 must appear above
x2, since it can only be c1 or c2 but is not c2 by assumption. Then, c2 must appear above
x3, and so on, up to cr−2 appearing above xr−1. If cr appears above xr, then dr must be
above that since we knew from the previous tableau that it is first in cyclic order after
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cr among dr, . . . , dw−1. So the only case that remains is where cr−1 appears in column r,
above xr. The diagram is as follows:

d1 d2 d3 · · · dr−1 d∗ · · ·
dw c1 c2 · · · cr−2 cr−1 · · ·
x1 x2 x3 · · · xr−1 xr · · ·

We wish to show that the entry d∗ above is dr. First, we claim that (dw, c1, c2, . . . , cr) are
in cyclic order. For, we have (x1, c1, c2) and (x1, dw, c1) are in cyclic order, so (x1, dw, c1, c2)
are. Since (x2, c1, c2) and (x2, c2, c3) are in cyclic order, we have that (x2, c1, c2, c3) are in
cyclic order. Since (x1, c1, c3) are in cyclic order as well, we can combine this with the
last two observations to deduce that

(x1, dw, c1, c2, c3)

are in cyclic order. Now, we can use the triples (x3, c3, c4), (x3, c2, c3), and (x2, c2, c4) to
deduce that (x2, c1, c2, c3, c4) are in cyclic order as well. But since (x1, c1, c4) are in cyclic
order, this means that

(x1, dw, c1, c2, c3, c4)

are in cyclic order as well, and so on. At each step, to add ck to the list we only need
consider rows up to that of xk−1. Hence, the process continues up to k = r.

Finally, notice that since we are only concerned with relative cyclic order of the entries
to determine their positions, we may cyclically increase all the entries modulo the highest
entry in such a way that dw 6 c1 6 c2 6 · · · 6 cr in actual size. Furthermore, since we
are currently only concerned with the position of dr, which is determined by its relative
ordering with di for i > r and with cr−1, we may assume that cr 6 cr+1 6 cr+2 6 . . . 6 cn
are increasing as well; it will make no difference as to the value of d∗. But then the top
two rows behave exactly as in the two-row case of Lemma 6.11. We know that dr occurs
in the r-th column from this lemma, and the induction is complete.

We have shown that d1, . . . , dw−1 retain their ordering, and it remains to show that
they retain their cocharge contributions. If any ck lies above xk, and hence dk above it,
the column has not changed and so dk does indeed retain its cocharge contribution. So,
as before, we may remove such columns and reduce to the case in which the entries are:

d1 d2 d3 · · · dw−1
dw c1 c2 · · · cw−2 cw−1
x1 x2 x3 · · · xw−1 xw

For the first column, we have that (x1, dw, c1) are in cyclic order since dw and c1 do not
form an inversion. Moreover, either x1 6= dw or x1 = dw = c1, in which case we may
assume that dw is in fact located in the second column instead, and reduce to a smaller
case. So we may assume x1 6= dw. In addition, (c1, d1, dw) are in cyclic order, with c1 6= d1
unless c1 = d1 = dw, and if d1 = dw then we must have d1 = d2 = · · · = dw so that d1
does not form an inversion with any element in the new tableau. We now consider three
cases based on the actual ordering of x1, dw, c1 (which are in cyclic order):
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Case 1: Suppose x1 < dw 6 c1. Then since (c1, d1, dw) are in cyclic order, either d1
is greater than both c1 and dw or less than or equal to both. Since both c1 and dw are
descents when over x1, the cocharge contribution of d1 is unchanged in this case.

Case 2: Suppose dw 6 c1 6 x1. Then in this case neither c1 nor dw is a descent
when in the first column, and the same analysis as in Case 1 shows that d1 has the same
cocharge contribution in either case.

Case 3: Suppose c1 6 x1 < dw. Then c1 6 d1 6 dw. If d1 is strictly greater than c1,
it forms a descent with c1 and not with dw. But note that dw is a descent when in the
first column, and c1 is not, so the total number of descents weakly beneath d1 balances
out and is equal in either case. If d1 = c1, then d1 = d2 = · · · = dw, which is impossible
since then c1 = dw. So the cocharge contribution of d1 is the same in this case as well.

This completes the proof that d1 retains the same cocharge contribution. We now
show the same holds for an arbitrary column i.

In the i-th column we have di above ci−1 above xi. Note that (ci, di, dw) and (dw, ci−1, ci)
are in cyclic order (the latter by the above argument which showed that dw, c1, c2, . . . , cw−1
are in cyclic order given that the ci’s are arranged as above), so (ci, di, dw, ci−1) are in cyclic
order. In particular (ci, di, ci−1) are in cyclic order. Moreover, if ci = di then di = dw = ci.
Since dw, ci−1, ci are in cyclic order we must have ci = di = ci−1 in this situation.

We also have that (xi, ci−1, ci) are in cyclic order, and by a similar argument as above
we can assume xi 6= ci−1. So either xi < ci−1 6 ci, ci 6 xi < ci−1, or ci−1 6 ci 6 xi. The
exact same casework as above for these three possibilities then shows that di retains its
cocharge contribution.

Proposition 6.13 now follows immediately from Lemmas 6.14 and 6.15 and Proposition
6.4.

Lemma 6.10 allows us to recover σ from a tableau σ↓ whose second-longest row µk is one
square shorter than its longest rows (µ1 through µk−1). We simply raise the appropriate
entry ai from row µk−1 to row µk, then do the same from row µk−2 to µk−1, and so on,
and finally insert a number n in the bottom row, where n is larger than all of the other
entries in σ↓.

Example 6.16. Applying the process σ → σ↓ in the tableau below, the major index of
both the starting tableau and the ending tableau is 10.

4 8 12
9 1 2
10 5 11
3 6 7

4 8
9 1 2
10 5 11
3 6 7

4 8 2
9 1 11
10 5 7
3 6

2 4 8
9 11 1
10 5 7
3 6

6.4 Reducing Rectangles to Columns

Using Proposition 6.13, we can provide a new combinatorial proof of the recurrence of
Garsia and Procesi for all rectangular shapes µ = (a, a, a, . . . , a). This also will provide
the first letter of majcode for rectangular shapes.
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Theorem 6.17. Let A = {1, 2, . . . , n} be the alphabet with content α = (1n), and let
µ = (a, a, a, . . . , a) be a rectangle shape of size n. Then there is a weighted set isomorphism

ψ : (F (1n)
µ |inv=0; maj)→

µ∗1−1⊔
d=0

(F (1n−1)

µ(d+1) |inv=0; maj +d)

defined combinatorially by the following process.

1. Given a filling σ : µ→ Z+ with distinct entries 1, . . . , n and inv(σ) = 0, let i be the
row containing the entry n. Split the filling just beneath row i to get two fillings σtop
and σbot where σbot consists of rows 1, . . . , i− 1 of σ and σtop consists of rows i and
above.

2. Rearrange the entries of the rows of σtop in the unique way that forms a filling σ̃top
for which inv(σ̃top) = 0.

3. Apply the procedure of Proposition 6.13 to σ̃top, that is, removing the n from the
bottom row and bumping each entry in the last column down one row. Let the
resulting tableau be called τ .

4. Place τ on top of σbot and rearrange all rows to form a tableau ρ having inv(ρ) = 0.
Then we define ψ(σ) = ρ.

Moreover, if maj(σ) − maj(ψ(σ)) = d, then 0 6 d < µ∗1 and we assign ψ(σ) to the d-th
set in the disjoint union.

Remark 6.18. Theorem 6.17 gives a new combinatorial proof of the recursion∑
σ:µ→Z+
inv(σ)=0

qmaj(σ) =
∑
d

qd−1
∑

ρ:µ(d)→Z+
inv(ρ)=0

qmaj(ρ)

of Garsia and Procesi for rectangular shapes µ.

The map ψ of Theorem 6.17 is illustrated by the example below.

7 10 12
13 14 2
15 1 5
3 4 11
6 8 9

7 10 12
13 14 2

1 5 15
3 11 4
6 8 9

7 10 12
13 14 2

1 5
3 11
6 8

4
9

7 10 12
13 14 2
1 4 5
3 9 11
6 8

We now prove Theorem 6.17.
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Proof. It is clear that ψ is a morphism of weighted sets, preserving the statistics, so
we only need to show that ψ is a bijection. To do so, we construct an inverse map
φ = ψ−1 that takes a pair (ρ, d) and returns an appropriate filling σ : µ → Z+, where
ρ : µ(d−1) → Z+ is a filling with no inversions using the letters 1, . . . , n − 1, and d is a
number with 0 6 d 6 µ∗1 − 1. For simplicity let h = µ∗1 be the height of µ.

Let (ρ, d) be such a pair. Consider the fillings σ1, σ2, . . . , σh formed as follows. Let σh
be the tableau obtained by inserting the number n into the top row of ρ and rearranging
the entries of the top row so that inv(σh) = 0. Let σh−1 be the tableau formed from ρ by
first moving the unique element of the (h− 1)st row given by Lemma 6.10 to the top row,
and then inserting n into the (h− 1)st row and rearranging all rows so that there are no
inversions again. Then, let σh−1 be formed from ρ by first moving the same element, call
it ah−1, up to the top row, then using Lemma 6.10 again to move an element ah−2 from
row h−2 to row h−1, and finally inserting n in row h−2 and rearranging the rows again
so that there are no inversions. Continuing in this manner, we define each of σ1, . . . , σh
likewise, and it is easy to see that ψ(σi) = ρ for all i, by using Lemma 6.9 repeatedly.

Now, we wish to show that the numbers di = maj(σi) −maj(ρ) for i = 1, . . . , h form
a permutation of 0, . . . , h− 1. Let a1, . . . , ah−1 be the elements of rows 1, . . . , h− 1 that
were moved up by 1 in each of the steps as described above. By Proposition 6.13, the
filling σ1, whose rightmost column has entries ah−1, ah−2, . . . , a1, n from top to bottom,
has the same major index as ρ. So d1 = 0, and maj(σ1) = maj(ρ). We will now compare
all other σi’s to σ1 rather than to ρ.

We claim that the difference in the major index from σ1 to σi is the same as the
difference obtained when moving n up to row i (and shifting all lower entries down by
one) in the one-column filling having reading word ah−1, ah−2, . . . , a1, n. Then, by Carlitz’s
original bijection, we will be done, since each possible height gives a distinct difference
value d between 0 and h− 1.

To proceed, consider the total number of descents in each row. In σi, the entry n is in
the i-th row. Let τ consist of the top h− i rows of this filling, arranged so that inv(τ) = 0.
Then the top h − i − 1 rows (row 2 to h − i of τ) are the same as in σ1, with the same
descents. Thus if we rearrange every row with respect to the one beneath, including rows
i− 1 and below to form σi, each row also has the same number of descents as it does in
σ1 by Lemma 6.8.

We now show the same is true for row i + 1. In τ , we have ai above n, and the
remaining entries in that row are above the same set of entries they were in σ1. So the
number of descents in row i+ 1 goes down by 1 from σ1 to σi if ai > ai−1, and otherwise
it remains the same.

For rows i and below, we use Lemma 6.12. For any row t from 2 to i, the entries of
row t − 1 can be rearranged so that if row t is arranged on top of it with no inversions,
the entry at lies in the space above at−1 (or n lies above ai−1 in the case t = i.) The
remaining entries in the top row of this two-row arrangement are then above the same
set of entries they were in σ1, with no inversions between them, and by Lemma 6.8 they
have the same number of descents among them. So, the descents have only changed by
what the comparison of each at with at−1 (or n with ai−1) contributes.
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Therefore, the number of descents in a given row of σi, relative to σ1, can either increase
by 1, stay the same, or decrease by 1, according to whether it does in the one-column
shape filled by ah, . . . , a1, n when we move n up to height i.

Now, for rectangular shapes, if pt is the total number of descents in row t, it is easy
to see that the total cocharge contribution (major index) of the filling is the sum of the
partial sums

p1 + (p1 + p2) + (p1 + p2 + p3) + · · ·+ (p1 + · · ·+ ph).

Since the values of pt in σi differ by 0 or ±1 from the corresponding values of σ1, it follows
that the difference di is the sum of the partial sums of these differences. But this is the
same as the difference in the one-column case we are comparing to. This completes the
proof.

We now state some important corollaries that follow from Theorem 6.17.

Corollary 6.19. Let h = µ∗1 be the height of the rectangle shape µ. Since µ is a rectangle,
the shape µ(d+1) is independent of d ∈ {0, . . . , h − 1}, so let µ↓ be this shape. Let ρ ∈
F (1n−1)
µ↓ , so that there is a copy ρd of ρ in F (1n−1)

µ(d+1) |inv=0 for all d = 0, . . . , h − 1. Let

σd = ψ−1(ρd) for each d. Then for each i = 1, . . . , h, the largest entry n occurs in the i-th
row in exactly one of σ0, . . . , σh−1.

The next theorem, which also follows directly from the proof of Theorem 6.17, suggests
that the standardization map for rectangle shapes can be inherited from the standardiza-
tion map for single-column shapes described above.

Theorem 6.20 (Reducing rectangles to columns). For σ ∈ F (1n)
µ |inv=0 with µ a rectangle,

the value of d = maj(σ)−maj(ψ(σ)) can be determined as follows. Let σ1 be the unique

element of F (1n)
µ |inv=0 for which n is in the bottom row and ψ(σ1) = ψ(σ), so that σ1↓ =

ψ(σ1) = ψ(σ). Let ah−1, . . . , a1, n be the entries of the rightmost column of σ1 from top to
bottom. Then d is the same as the difference in the major index obtained from inserting
n into the i-th position in the one-column shape with reading word ah−1, . . . , a1.

This result is so crucial to the proofs of the results in the next section that it is helpful
to give the sequence of ai’s its own name. We call it the bumping sequence of σ.

Definition 6.21. Let σ be a filling of a rectangle shape µ having height h, with distinct
entries 1, 2, . . . , n. The bumping sequence of σ is the collection of entries a1, a2, . . . , ah−1
defined as in Theorem 6.20 above. If n is in the i-th row of σ, then a1, . . . , ai−1 are in
rows 1 through i− 1 respectively, and ai, . . . , ah−1 are in rows i+ 1 through h.

We can also say something about the position of these ai’s given the position of the
largest entry.

Proposition 6.22. Let µ be a rectangle shape of height h, and let σ ∈ F (1n)
µ with its largest

entry n in row i. Then if a1, . . . , ah−1 is the bumping sequence of σ, then ai+2, . . . , ah−1
all occur in columns weakly to the right of the n, and each aj is weakly to the right of aj−1
for j > i+ 3.
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Proof. Let c1, . . . , cr, n, cr+1, . . . , cm−1 be the entries in row i from left to right. Consider
the reordering of row i given by c1, . . . , cm−1, n and order row i + 1 with respect to this
ordering. Let the numbers in the new ordering in row i+ 1 be b1, . . . , bm−1, ai. Then ai is
the same as the value of ai from Theorem 6.20 by Lemma 6.9; that is, ai would lie above
n if we ordered c1, . . . , cm−1 by size as well.

Now, since c1, . . . , cr are the first r entries in both orderings of row i, it follows that
b1, . . . , br must be the first r entries in both corresponding orderings of row i + 1. Thus
ai, not being equal to any of b1, . . . , br, must be weakly to the right of the column that n
is in.

The same argument can be used to show that ai+1 is weakly to the right of ai as well,
and so on. This completes the proof.

6.5 Three Row Shapes

We now provide a complete bijection majcode in the case that µ = (µ1, µ2, µ3) is a
partition with at most three rows.

We start with the definition of majcode for two-row shapes, which we will use as part
of the algorithm for three rows.

Lemma 6.23. Let µ = (µ1, µ2) be any two-row shape of size n. Then there is a weighted
set isomorphism

ψ : (F (1n)
µ |inv=0; maj)→

1⊔
d=0

(F (1n−1)

µ(d+1) |inv=0; maj +d)

defined combinatorially by the following process. Given an element σ of F (1n)
µ |inv=0, that

is, a filling of the two-row shape µ having no inversions, consider its largest entry n.

1. If the n is in the bottom row, define ψ(σ) = σ↓ as in Proposition 6.13.

2. If the n is in the second row, remove it and re-order the remaining entries in the
top row so that there are no inversions. Let ψ(σ) be the resulting filling.

Proof. We first show that ψ is a morphism of weighted sets. If the n we remove is in the

bottom row, then by Proposition 6.13, the new filling σ↓ = ψ(σ) is in F (1n−1)

µ(1)
|inv=0 and

has the same major index as σ. This means that σ↓ is in the d = 0 component of the
disjoint union

1⊔
d=0

(F (1n−1)

µ(d+1) |inv=0; maj +d),

and the statistic is preserved in this case.

Otherwise, if the n is in the second (top) row, then σ′ = ψ(σ) is in F (1n−1)

µ(2)
|inv=0. We

wish to show that the difference in major index, d = maj(σ)−maj(σ′), is 1 in this case.
Indeed, notice that the bottom row remains unchanged after removing the n, and so the
difference in major index will be the same as if we ignore the extra µ1 − µ2 numbers at
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the end of the bottom row and consider just the rectangle that includes the second row
instead. By Theorem 6.17, it follows that d = 1. Therefore ψ is a morphism of weighted
sets.

To show that ψ is bijective, we construct an inverse map φ. First, let σ′ ∈ F (1n−1)

µ(1)
|inv=0.

Then we can insert n into the bottom row, and if µ is a rectangle also bump up one of
the entries of the bottom row according to Lemma 6.10. This creates a filling σ of shape
µ having the same major index as σ′. We define φ(σ′) = σ, which defines an inverse map

for ψ on the restriction of ψ to ψ−1
(
F (1n−1)

µ(1)
|inv=0

)
.

Now let σ′ be a filling of shape µ(2). The shape µ(2) has a longer first row than second
row, so we can insert n into the second row and rearrange the row entries to obtain an
inversion-free filling σ of shape µ and content α. We define φ(σ′) = σ, and by Theorem
6.17 applied to the two-row rectangle inside µ of width equal to the top row of µ, the

major index increases by 1 from σ′ to σ. Thus φ is an inverse to ψ on F (1n−1)

µ(1)
|inv=0, and

ψ is bijective.

We now complete the entire bijection for two rows by defining a standardization map
for two-row fillings.

Definition 6.24. For a two-row shape µ = (µ1, µ2), we define the map

Standardize : Fαµ |inv=0 → F1n

µ |inv=0

as follows. Given a filling σ ∈ Fαµ |inv=0, define Standardize(σ) to be the filling of µ with
content (1n) that respects the ordering of the entries of σ by size, with ties broken by
reading order.

Example 6.25. The standardization map for two rows is illustrated below.

2 2 3 3 3

3 1 1 3 3

3 4 8 9 10

5 1 2 6 7

We can now define majcode for two-row shapes.

Definition 6.26. Let µ = (µ1, µ2) be a two-row shape of size n. Given a filling σ of µ,
let σ = Standardize(σ). Then we define majcode(σ) = d1d2 · · · dn where

di = maj(ψi−1(σ))−maj(ψi(σ)),

and where ψ is the map defined in Lemma 6.23.

Remark 6.27. Notice that, given a filling σ of µ having arbitrary content, we have

majcode(σ) = majcode(Standardize(σ)).
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Theorem 6.28. The map majcode defined on two-row shapes µ = (µ1, µ2) is an isomor-
phism of weighted sets

Fαµ |inv=0 → Cµ,A

for each alphabet A and corresponding content α.

Proof. Putting together the recursions of Lemma 6.23 and Lemma 5.9, we have that
for the content (1n) corresponding to alphabet [n], the map majcode is a weighted set
isomorphism

F (1n)
µ |inv=0 → Cµ,[n].

Now, let A be any alphabet with content α. Let σ be a filling of µ with content α.
Then we know majcode(σ) = majcode(Standardize(σ)), so majcode(σ) ∈ Cµ,[n]. In other
words, majcode(σ) is µ-sub-Yamanouchi. In addition, since Standardize is an injective
map (there is clearly only one way to un-standardize a standard filling to obtain a filling
with a given alphabet), the map majcode, being a composition of Standardize and the
majcode for standard fillings, is injective as well on fillings with content α.

We now wish to show that majcode(σ) = d1, . . . , dn is A-weakly increasing, implying
that majcode is an injective morphism of weighted sets to Cµ,A. To check this, let σ̃ =
Standardize(σ). Then any repeated letter from σ will become a collection of squares that
have consecutive entries and are increasing in reading order in σ̃. Neither of the two
operations of the map ψ affects the reading order of such subcollections since consecutive
integers a and a + 1 cannot occur in reverse order in a filling with distinct entries and
no inversions. So, it suffices to show that if the largest entry m of σ occurs i times, then
d1 6 · · · 6 di.

In σ̃, the m’s of σ become the numbers n − i + 1, n − i + 2, . . . , n, and occur in
reading order. Thus we remove any of these that occur in the bottom row first, and for
those we have dt = 0. We continue removing these from the bottom row until there are
none left in the bottom row. Then the remaining dt’s up to di will equal 1. Therefore,
d1 6 d2 6 · · · 6 di, as required.

Finally, it now suffices to show that Fαµ |inv=0 as the same size as Cµ,A, since then the
injective map majcode is in fact a bijection. Note that the fillings σ of µ with content
α and inv(σ) = 0 are in one-to-one correspondence with the partitions of the alphabet
A of content α into blocks (disjoint sub-multisets) of size µ1, µ2, . . ., by considering the
contents of each row. This is the same as the number of ways of filling the conjugate shape
µ∗ with the reverse alphabet in such a way that maj = 0, by considering the contents of
each column. It follows that Fαµ |inv=0 has the same size as Fαµ |inv=0, which in turn has the
same size as Cµ,A by Theorem 5.14.

Corollary 6.29. For any two-row shape µ and content α, the map invcode−1 ◦majcode is
an isomorphism of weighted sets from Fαµ |inv=0 → F r(α)µ∗ |maj=0. This gives a combinatorial
proof of the identity

H̃µ(x; 0, t) = H̃µ∗(x; t, 0)

for two-row shapes.
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1 4 5

2 6 3
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1 4
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2
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ψ

ψ

ψ

ψ

ψ

ψ
∅

d1 = 1

d2 = 0

d3 = 0

d4 = 0

d5 = 1

d6 = 0

Figure 3: The map majcode for two-row shapes.

Example 6.30. In Figure 3, the map majcode is applied to a two-row filling σ. The
figure shows that majcode(σ) = 100010. If we apply invcode−1 to this code using the
reversed alphabet, we obtain the filling ρ below:

4 3

2 2

2 1

Notice that maj(σ) = inv(ρ) = 2.

We now have the tools to extend our map ψ to three-row shapes.

Definition 6.31. Let σ be any filling of a three-row shape µ = (µ1, µ2, µ3), and let σ′

be the 3× µ3 rectangle contained in σ. Let n be the largest entry in σ. Choosing one of
these n’s, say ni, we define ψni(σ) by the following process.

1. If ni is to the right of σ′, remove the n as in the two-row algorithm to form ψni(σ).

2. If ni is in the bottom row and in σ′, then σ is a rectangle and we let ψni(σ) = σ↓.
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3. If ni is in the second row and in σ′, let a2 be the top entry of the bumping sequence
of σ′. Let b be the entry in square (µ2 + 1, 2) if it exists, and let b = n+ 1 otherwise.
If b > a2, then remove ni and bump down a2 to the second row, and if b < a2,
simply remove ni. Rearrange the modified rows so that there are no inversions, and
let ψni(σ) be the resulting filling.

4. If ni is in the top row and in σ′, let a1, a2 be the bumping sequence of the 3 × µ3

rectangle in σ. If a2 > a1 or µ2 = µ3, then remove ni from σ. Otherwise, if a2 6 a1,
remove n and bump a2 up to the top row. Rearrange the modified rows so that
there are no inversions, and let ψni(σ) to be the resulting filling.

Lemma 6.32. Let µ = (µ1, µ2, µ3) be any three-row shape of size n. Then the map
ψ = ψn defined above is a morphism of weighted sets when restricted to fillings having
distinct entries. That is, in the case of distinct entries there is a unique choice of n, and

ψ : (F (1n)
µ |inv=0; maj)→

2⊔
d=0

(F (1n−1)

µ(d+1) |inv=0; maj +d)

is a morphism of weighted sets.

Proof. We wish to show that ψ is a morphism of weighted sets, i.e. that it preserves
the statistics on the objects. If the n is in the bottom row, then ψ(n) is in the d = 0
component of the disjoint union and the maj is preserved, by Proposition 6.13. If n is
in the second row and to the right of column µ3, then by Lemma 6.23 the difference in
maj upon removing it is 1 and we obtain a filling in the d = 1 component of the disjoint
union.

This leaves us with two possibilities: n is in the second row and weakly to the left of
column µ3, or n is in the top (third) row. In either case, if µ2 = µ3 then the mapping
is the same as that in Theorem 6.17, and we get a map to either the d = 1 or d = 2
component of the disjoint union. So we may assume µ2 6= µ3.

Case 1. Suppose that n is in the second row. We have two subcases to consider:
b < a2 and b > a2.

If b < a2, ψ(σ) is formed by removing the n and rearranging so that there are no
inversions. Note that any entry i to the right of n in row 2 is less than the entry directly
south of n. Furthermore, such entries i are not descents and are increasing from left
to right. Thus these entries simply slide to the left one space each to form ψ(σ) after
removing the n. So b is the only new entry to be weakly to the left of column µ3 in ψ(σ).
Since b is not a descent, the effect on the major index is the same as if we simply replaced
n by b in σ′. Consider any arrangement of the second row of σ′ in which n is at the end,
and arrange the top row relative to this ordering. Then a2 is at the end of this top row
by its definition, and so replacing n by b will make a2 a descent and thereby increase the
total cocharge contribution by 1. By Lemma 6.8 this is the same as the increase in the
cocharge contribution from σ to ψ(σ). Hence ψ(σ) lies in the d = 1 component of the
disjoint union.
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If b > a2, we claim that if a1 is the entry in the bottom row of the bumping sequence,
then b < a1. If a1 is to the right of the column that n is in then the claim clearly holds.
Otherwise, let a1, d1, d2, . . . , di be the consecutive entries in the bottom row starting from
a1 and ending at the entry di beneath the n, and let c1, . . . , ci be the entries in the second
row from the entry above a1 to the entry just before the n. The cj’s are all descents,
and the cj’s and dj’s are both increasing sequences. Since there are no inversions in the
second row, we have b < di. Since removing the n and bumping up a1 results in the a1 at
the end of the second row by definition, upon doing this the di’s all slide to the left one
space, and the ci’s must also remain in position and remain descents by Proposition 6.13.
In particular, this means that di < ci, and so b < ci as well. But then since there are no
inversions it follows that b < di−1, which is less than ci−1, and so on. Continuing, we find
that b < a1 as claimed.

Since b > a2 by assumption, it follows that a2 < a1 and so removing the n and bumping
down a2 in the rectangle results in a difference in major index of 2 by Theorem 6.20. Note
also that if we perform this bumping in the entire filling σ, the entry a2 ends up to the
left of column µ3 + 1 since a2 6 b and hence it is to the left of b in the second row. Thus
the entries to the right of the rectangle are preserved, and maj(ψ(σ)) = maj(σ) − 2. It
follows that ψ(σ) lies in the d = 2 component of the disjoint union.

Case 2. Suppose n is in the top row. If a2 > a1, then removing n results in the major
index decreasing by d = 2, and so ψ(σ) is in the d = 2 component of the disjoint union.
Otherwise, a2 6 a1. Since µ2 6= µ3, we remove the n and bump a2 up to the top row.

Since a2 6 a1, by Theorem 6.20 we find that simply removing the n results in a
decrease by 1 in the major index. Since the top row has had a descent removed (by the
proof of Theorem 6.17), it follows that the empty space created in the top row was not
above a descent, for otherwise the major index would decrease by 2. Thus in particular b
is not a descent.

It follows that if σ̃ is formed by bumping up a2 and inserting n in the second row, then
the n, being the last descent in the second row, will appear among the first µ3 columns
of σ̃. In addition, since a2 6 a1 this results in an increase in major index by 1 from σ to
σ̃, by Corollary 6.19.

We now wish to show that b > a2; if so, we claim removing n from σ̃ will result in
a decrease by 2 in the major index, and will also result in the tableau ψ(σ), thereby
showing that maj(ψ(σ)) = maj(σ)−1 and so ψ(σ) is in the d = 1 component. To see that
the major index decreases by 2 on removing n, note that by Proposition 6.20, the effect
of removing the n is the same as replacing n by b in the one-column shape with entries
a2, n, a1. If b > a2 then we have that b < a1 by the same argument as in Case 1 above,
and so the major index decreases by 2. Thus it suffices to show b > a2.

If a2 is not a descent of σ, this is clear, so suppose a2 is a descent of σ in the second
row. Let c be the entry directly below a2, and assume for contradiction that b < a2. Then
b < c, and furthermore the first non-descent in row 2, say e, is less than c. Note that by
our above argument we know that e lies within the rectangle σ′.

Now, we restrict our attention to σ′ and bump a2 and a1 up one row each, and consider
the ordering of the bottom row in which we place c in the column one to the left of the
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column that e was contained in and shift the remaining entries to the left to fill the row.
Rearranging the new second row with respect to the first, we consider the position of a1
relative to c. If a1 is to the left of the c we have a contradiction since a1 must land in
column µ3 by Lemma 6.9 and the definition of bumping sequence. Therefore the entries
in the second row to the left of c are unchanged. Since a1 > a2 > c, and all remaining
entries in the second row are either a1 or are less than c, we have that a1 must be on top
of the c in the second row. This is again a contradiction, since this implies that a1 does
not land in column µ3. It follows that b > a2, as desired.

This completes the proof that ψ is a well-defined morphism of weighted sets.

Lemma 6.33. The map ψ of Lemma 6.32 is an isomorphism.

Proof. We know from the lemma above that ψ is a morphism; it suffices to show that it

is bijective. First notice that the cardinality of
(
F (1n)
µ

)∣∣∣
inv=0

is(
n

µ

)
,

and the cardinality of
(⊔2

d=0F
(1n−1)

µ(d+1)

)∣∣∣
inv=0

is(
n− 1

µ1 − 1, µ2, µ3

)
+

(
n− 1

µ1, µ2 − 1, µ3

)
+

(
n− 1

µ1, µ2, µ3 − 1

)
.

Thus the cardinalities of the two sets are equal, and so it suffices to show that ψ is
surjective.

To do so, choose an element ζ of the codomain. Then ζ can lie in any one of the three

components of the disjoint union
(⊔2

d=0F
(1n−1)

µ(d+1)

)
|inv=0, and we consider these three cases

separately.
Case 1: Suppose ζ lies in the d = 0 component. Then we can insert n in the

bottom row so as to reverse the map of Proposition 6.13, and we obtain an element σ of(
F (1n)
µ

)
|inv=0 which maps to ζ under ψ.

Case 2: Now, suppose ζ lies in the d = 1 component. If µ2 = µ3 then µ(1) =
(µ1, µ2, µ3 − 1) and so we can find a filling σ of µ that maps to ζ by Proposition 6.17.
Otherwise, the shape of ζ is (µ1, µ2 − 1, µ3) and we wish to find a filling σ of shape µ for
which ψ(σ) = ζ. Let ρ be the filling of µ formed by inserting n into the second row and
rearranging entries so that there are no inversions. Notice that if the n lies to the right
of column µ3 then ψ(ρ) = ζ and we are done.

So, suppose n lies in the 3×µ3 rectangle in ρ. Let a1 and a2 be the bumping sequence
of this rectangle. Since n is the rightmost descent in the second row of ρ, inserting it did
not change the cocharge contribution of the portion to the right of column µ3; there were
no descents there in σ and there are none in ρ. Let b be the entry in column µ3 + 1, row
2 of ρ. If b < a2, then ψ(ρ) = ζ and we are done.

Otherwise, if b > a2, then by the argument in Lemma 6.32 we know that maj(ρ) −
maj(ζ) = 2. We have that τ := ψ(ρ) is the filling formed by removing the n and bumping
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a2 down to the second row, and that maj(ρ)−maj(τ) = 2. Hence maj(τ) = maj(ζ). Since
b > a2, a2 lies to the left of b in τ and hence is weakly to the left of column µ3. So, let σ
be the tableau formed by inserting n in the top row of τ . Now σ has shape µ, and can be
formed directly from ρ by shifting the position of n among a1 and a2 as in Theorem 6.20.

It follows that maj(σ) −maj(ρ) = ±1, and so maj(σ) −maj(τ) is equal to 1 or 3. It
is not 3 because τ is formed from σ by removing an n from the top row, which changes
the major index by at most 2 by Theorem 6.17. It follows that maj(σ)−maj(τ) = 1, and
therefore a2 6 a1 by Theorem 6.20. Thus ψ(σ) = ζ by the definition of ψ.

Case 3: Suppose ζ is in the d = 2 component. If µ2 = µ3 then we simply insert n into
ζ in either row 2 or 3 according to Theorem 6.20 to obtain a tableau σ with ψ(σ) = ζ.

Otherwise, if µ2 6= µ3, ζ has shape (µ1, µ2, µ3 − 1). Let ρ be the tableau of shape µ
formed by inserting n in the top row of ζ. Let a1 and a2 be the entries in row 1 and 2
corresponding to this n in the 3× µ3 rectangle contained in ρ. Then if a2 > a1, ψ(ρ) = ζ
and we’re done.

If instead a2 6 a1, then removing n from ρ decreases its major index by 1. Since
the number of descents in the top row goes down by exactly 1 by Lemma 6.23, we can
conclude that the entry in row 2, column µ3 is a non-descent; otherwise removing n from
ρ would decrease the major index by 2. So, let σ be the filling formed by removing n
from ρ, bumping a2 to the top row, and inserting n in the second row. Since there are
non-descents in the rectangle we have that n lies in the rectangle in σ as well.

Finally, again by the argument used for Lemma 6.32 we have that a2 6 b where b is
the entry in row 2, column µ3 + 1 in σ. Thus ψ(σ) = ζ as desired.

We can now complete the three-row case by defining its standardization map for fillings
with repeated entries. This definition is designed to force the majcode sequences to be
A-weakly increasing.

Definition 6.34. Given a filling σ of µ, define Standardize(σ) as follows. First, for any
letter i that occurs with multiplicity in σ, label the i’s with subscripts in reading order to
distinguish them. If we bump one of them up or down one row, choose the one to bump
from the row in question that preserves their reading order.

Let n be the largest entry that occurs in σ. For each such nt compute dt = maj(σ)−
maj(ψni(σ)), and let d = mint({dt}). Let nr be the last n in reading order for which
dr = d. Form the filling ψnr(σ), and repeat the process on the new filling. Once there are
no n’s left to remove, similarly remove the n − 1’s, and so on until the empty tableau is
reached.

Now, consider the order in which we removed the entries of σ and change the corre-
sponding entries to N,N − 1, . . . , 1 in that order, where N = |µ|. The resulting tableau
is Standardize(σ).

We can now define majcode for three-row shapes.

Definition 6.35. Let µ = (µ1, µ2, µ3) be a three-row shape of size n. Given a filling σ of
µ, let σ = Standardize(σ). Then we define majcode(σ) = d1d2 · · · dn where

di = maj(ψi−1(σ))−maj(ψi(σ)),
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and where ψ is the map defined in Lemma 6.32.

Remark 6.36. Notice that, given a filling σ of µ having arbitrary content, we have

majcode(σ) = majcode(Standardize(σ)).

To show that majcode is an isomorphism, we first state a structure lemma about
three-row shapes with no inversions.

Lemma 6.37. If the consecutive entries b1, . . . , bn in some row of a filling with no inver-
sions are directly above a weakly increasing block of squares c1 6 · · · 6 cn in the row below,
then there exists a k for which b1, . . . , bk are descents and bk+1, . . . , bn are not descents.
Moreover b1 6 · · · 6 bk and bk−1 6 · · · 6 bn are both increasing blocks of squares.

Proof. This is clear by the definition of inversions.

In particular, the second row has one (possibly empty) block of descents and one
(possibly empty) block of non-descents. The third row has up to two blocks of descents,
one for each of the blocks in the second row, and so on.

We also need to show that the cardinalities of the sets are equal in the case of repeated
entries.

Lemma 6.38. We have ∣∣Fαµ |inv=0

∣∣ = |Cµ,A|
for any alphabet A with content α and any shape µ.

Proof. Given an alphabet A, the cocharge word of any filling using the letters in A has
the property that it is weakly increasing on any run of a repeated letter, where we list the
elements of A from largest to smallest. Furthermore, the cocharge word has content µ. It
is not hard to see that a word is the cocharge word of a filling in Fαµ |inv=0 if and only if
it has content µ and is weakly increasing over repeated letters of A, listed from greatest
to least.

Recall that the fillings in F r(α)µ∗ |maj=0 can be represented by their inversion word ,
and a word is an inversion word for such a filling if and only if it has content µ and every
subsequence corresponding to a repeated letter of the reversed alphabet is in inversion-
friendly order. By swapping the inversion-friendly order for weakly increasing order above
each repeated letter, we have a bijection between inversion words and cocharge words,
and hence a bijection (of sets, not of weighted sets) from Fαµ |inv=0 to F r(α)µ∗ |maj=0. By
Theorem 5.14, we have that ∣∣∣F r(α)µ∗ |maj=0

∣∣∣ = |Cµ,A|,

and so the cardinality of Fαµ |inv=0 is equal to |Cµ,A| as well.

We can now complete the three-row case.
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Theorem 6.39. The map majcode defined on three-row shapes µ = (µ1, µ2) is an iso-
morphism of weighted sets

Fαµ |inv=0 → Cµ,A

for each alphabet A and corresponding content α.

Proof. By Lemmas 6.32, 6.33, and 5.9, we have that for the content (1n) corresponding
to alphabet [n], the map majcode is a weighted set isomorphism

F (1n)
µ |inv=0 → Cµ,[n].

Now, let A be any alphabet with content α. Let σ be a filling of µ with content α.
Then we know majcode(σ) = majcode(Standardize(σ)), so majcode(σ) ∈ Cµ,[n]. In other
words, majcode(σ) is µ-sub-Yamanouchi. In addition, since Standardize is an injective
map (there is clearly a unique way to un-standardize a standard filling to obtain a filling
with a given alphabet), the map majcode, being a composition of Standardize and the
majcode for standard fillings, is injective as well on fillings with content α.

We now wish to show that majcode(σ) = d1, . . . , dn is A-weakly increasing, implying
that majcode is an injective morphism of weighted sets to Cµ,A. By Lemma 6.38 this will
imply that it is an isomorphism of weighted sets. It suffices to show this for the largest
letter m of A by the definition of standardization. Suppose m occurs i times. We wish to
show that dj 6 dj+1 for all j 6 i− 1. So choose j 6 i− 1.

Suppose dj = 0. Then by the definition of Standardize, we have that the m we removed
from ψj−1(σ) was in the bottom row. If there are still m’s in the bottom row of ψj(σ)
then dj+1 = 0 as well. Otherwise dj+1 > 0, so dj 6 dj+1 in this case.

Suppose dj = 1. Then the m we removed from ψj−1(σ) was in either the first or second
row and there were no m’s in the bottom row. By the definition of ψ, there are therefore
no m’s in the bottom row of ψ(σ) either, and so dj+1 > 1 = dj.

Finally, suppose dj = 2. Let mj be the m we remove from ψj−1(σ) to obtain dj = 2.
As in the previous case we have dj+1 > 1, and we wish to show dj+1 6= 1. Let mj+1 be
the corresponding m. Since dj is minimal for ψj−1(σ), there are no m’s in ψj−1(σ) which
we can treat as the largest entry and remove according to ψ to form dj = 1. Therefore if
we removed mj+1 before mj we would also have a difference of 2 in the major index.

We consider three subcases separately for the locations of mj and mj+1: they can
either both be in the second row, mj can be in the second row with mj+1 in the third
(top) row, or they can both be in the top row. No other possibilities exist because they
must occur in reverse reading order, and cannot be in the bottom row since dj = 2.

Subcase 1: Suppose both mj and mj+1 are in the second row. Then mj+1 and mj

are at the end of the block of descents in that order, and weakly to the left of column
µ3. Let b be the entry in row 2, column µ3 + 1. Let a2 be the entry in the third row in
the bumping sequence of mj, and let a′2 be the entry in the bumping sequence of mj+1

in ψj(σ). Since dj = 2, we have a2 6 b and b < m, and so a2 6= m. Therefore no new
m’s are dropped down. In other words, mj+1 is indeed the m that will be removed upon
applying ψ the second time.
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We now need to check that mj+1 remains to the left of column µ3 after applying ψ.
Indeed, by Proposition 6.20, we have that the number of descents in row 2 goes down by
one, and the number of descents in the top row remains the same, upon applying ψ to
ψj−1(σ). Since there are no m’s in the bottom row, mj+1 is the rightmost descent in the
second row of ψj(σ), and the descent we lost was mj, so mj+1 remains in its column.

We now just need to show that a′2 6 b′, where b′ is the entry in row 2, column µ3 after
applying φ. Either b′ = b, b′ = a2, or b′ is the entry b0 that is bumped out from the first
µ3 − 2 columns when we drop down a2.

Consider any ordering of the first µ3 entries of the second row of ψj−1(σ) such that the
two m’s (mj+1 and mj) are at the end in that order, and also place b0 in the third-to-last
position. Now, rearrange the entries above these so that there are no inversions. We know
that a2 is at the end of the top row, above mj, by its definition. Let a be the entry above
mj+1 and let c be the entry to the left of that (if such a column exists.)

If b′ = a2, then the first µ3 − 2 entries of the second row are unchanged on applying
ψ. In our new ordering above, this means a′2 = a, and since a and a2 occur above the two
m’s in our new ordering, we have a 6 a2. It follows that a′2 6 b′.

If b′ 6= a2, then b′ is either b or b0. To find a′2 in our new ordering, bumping down the
a2 can be thought of as replacing the b0 with a2 and rearranging the top row again so
that there are no inversions. The first µ3 − 3 entries remain in the same positions, and
either c or a lies above mj+1 based on which comes later in cyclic order after a2. So either
a′2 = a or a′2 = c.

We now have to show that whether a′2 is a or c, it is less than both b and b0. Notice
that a2 6 b0: Since mj+1 stays in its place, either a2 replaces a larger entry among the
descents in the second row, which in turn bumps out a larger entry b0 among the non-
descents, or it replaces a non-descent itself and displaces a larger non-descent b0 to its
right. So if a′2 = a, then since a 6 a2 we have a′2 6 a2 6 b0 and also a′2 6 a2 6 b since
a2 6 b.

Finally, if a′2 = c, then a2, a, c are in cyclic order. If c 6 a2 we are done by the above
argument. Otherwise a2 < a 6 c or a2 = a = c, in which case a′2 = a and we are done by
the previous case. So a2 < a 6 c, but we already know a 6 a2, so we have a contradiction.
It follows that a′2 6 b′ as desired.

Subcase 2: Suppose mj and mj+1 are in the top row. Then by Lemma 6.37 and since
there are no m’s in the second row by the definition of Standardize, the m’s are either in
the first or second block of descents in the third row. If either of them is in the second
block, it is clear that removing mj results in dj = 1, not 2, a contradiction. So they are
both in the first block, themselves above descents in the second row, with mj+1 and mj

adjacent and in that order.
Now, removing mj will cause the block of non-descents to its right to slide to the left

one space (since they are necessarily less than the entry beneath mj). If the second block
of non-descents in the third row is nonempty, one of these will replace the last entry above
the descents in the second row, since all of these are still less than the entry below mj

and the least among the entries to the right will replace it. In that case the number of
descents to the right of mj is unchanged, and so dj = 1, a contradiction. Thus there are
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no non-descents in the second block, i.e. above the non-descents in row 2.
Because of this, removing mj simply causes all the entries to its right to slide to the

left one space, and the first descent to its right becomes a non-descent. The same then
happens when we remove mj+1 by the same argument. It follows that dj+1 = 2 in this
case.

Subcase 3: Suppose mj is in the second row and mj+1 in the top. Then the mj+1 is
to the left of mj, in the first block of descents in the third row, since otherwise we would
have a difference of 1 on removing mj+1. Moreover, as in the previous case, the top row
has no non-descents above the non-descents in row 2.

So, let a1, . . . , ar be the entries in row 3 that lie weakly to the right of mj’s column.
Then a1 is not a descent and each of a2, . . . , ar are descents. Let mj, b2, . . . , br be the
entries below them. If we rearrange these in the second row in the increasing order
b2, . . . , br,mj, and then rearrange the ai’s above them as aσ(1), . . . , aσ(r) so that there are
no inversions, there are still r−1 descents among the aσ(i)’s by Lemma 6.8. These descents
must be aσ(1), . . . , aσ(r−1) by Lemma 6.37, and the last entry aσ(r) above the mj is the
entry in mj’s bumping sequence.

Now, to form ψj(σ), we remove mj and drop down aσ(r). Notice that the entries in
the top row to the left of where mj was are unchanged: consider the 3×µ3 rectangle and
bump the mj down to the bottom row according to Theorem 6.17. Then bump it out
according to Proposition 6.13, which leaves us with the same top row as that of ψj(σ).
The entire top row save for the last entry is unchanged upon applying Proposition 6.13,
and so having the mj inserted into the second row instead can only change the entries to
the right of it in the row above. Thus the entries to its left in the top row are unchanged,
and have the same cocharge contribution as well.

Finally, in the columns weakly to the right of the column that mj was in, the entries
in the top row are aσ(1), . . . , aσ(r−1) in some order. We claim that the entries in the second
row are formed by replacing at most one of b2, . . . , br by a smaller entry, which is either
aσ(r) or something bumped to the right by aσ(r) if aσ(r) lands in a column to the left of
the bi’s. Indeed, the only way it would be a larger entry replacing them is if a descent
replaced mj, but in this case we would have dj = 1 since the number of descents in the
second row would be the same, and the number of descents in the top row would decrease
by only 1.

Therefore, the entries aσ(1), . . . , aσ(r−1) are all descents in the top row, and so removing
mj+1 still results in a difference dj+1 = 2. In particular, the descents formed by mj+1 and
one of the ai’s are removed, since the a’s all slide one position to the left, and did not
form new descents upon removing the mj+1 before the mj.

This completes the proof.

Corollary 6.40. For any three-row shape µ and content α, the map invcode−1 ◦majcode
is an isomorphism of weighted sets from Fαµ |inv=0 → F r(α)µ∗ |maj=0. This gives a combinato-
rial proof of the identity

H̃µ(x; 0, t) = H̃µ∗(x; t, 0)

for three-row shapes.
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Example 6.41. We demonstrate all of the above maps on the filling σ below, with its
repeated entries labeled with subscripts in reading order to distinguish them.

3 4 6 83

5 82 21 22

81 1

We will standardize and compute majcode simultaneously. To decide which of the 8’s to
remove first, we look at which would give the smallest first majcode. This is clearly the
83 in the bottom row, so we remove it and bump down the 2.

22 3 4 6

5 82 21

81 1

To decide which of the remaining 8’s to remove next, note that they both would decrease
maj by 2, and so we remove the one that comes last in reading order, namely 82. Since
1 < 2 we bump down the 1.

22 3 4 6

5 1 21

8

Finally, when we remove the last 8, the maj decreases by 2, so we do not have to lift the
5 up to the third row.

22 3 4 6

5 1 21

We can now use the two-row algorithm to complete the process, and we find majcode(σ) =
0220100000. The corresponding inversion diagram for the reverse alphabet

{1, 1, 1, 3, 4, 5, 6, 7, 7, 8}

is shown below.

4

2 1

4 3

3 2

2

1

1

1 1 1 3 4 5 6 7 7 8

Finally, we can reconstruct from this the filling ρ = invcode−1(0220100000) below.
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7 8 1

6 7 1

5 4

1 3

Note that inv(ρ) = maj(σ) = 5, and inv(σ) = maj(ρ) = 0.

Remark 6.42. The map above essentially uses the fact that a three-row shape is the union
of a rectangle and a two-row shape. For any shape that is the union of a rectangle and
two rows, a similar map can be used to remove the first n, and so for “snorkel” shapes
consisting of two rows plus a long column, a similar algorithm also produces a valid
majcode map.

In general, however, the resulting shape on removing the first n is no longer the union
of a rectangle and a two-row shape, and we cannot use an induction hypothesis.

However, we believe that this method may generalize to all shapes, as follows.

Problem 6.43. Extend the map ψ for three-row shapes to all shapes inductively, as
follows. One would first extend it to shapes which are the union of a three-row shape and
a single column, then use this to extend it to shapes which are the union of a three-row
shape and a rectangle shape, using Theorem 6.20. One could then iterate this new map
on any four-row shape, so majcode can then be defined on four-row shapes, and so on.

7 Application to Cocharge

Proposition 6.13 reveals an interesting property of the cocharge statistic on words, first
defined by Lascoux and Schützenberger. To define it, we first recall the definition of
Knuth equivalence.

Definition 7.1. Given a word w = w1 · · ·wn of positive integers, a Knuth move consists
of either:

• A transposition of the form xyz → xzy where x, y, z are consecutive letters and
y < x 6 z or z < x 6 y

• A transposition of the form xyz → yxz where x, y, z are consecutive letters and
x 6 z < y or y 6 z < x.

Two words w, w̃ are said to be Knuth equivalent if one can be reached from the other
via a sequence of Knuth moves. Knuth equivalence is an equivalence relation on words.
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Cocharge was originally defined as follows.

Definition 7.2. Given a word w = w1, · · · , wn with partition content µ, the cocharge
of w, denoted cc(w) is the unique statistic satisfying the following properties:

1. It is constant on Knuth equivalence classes, that is, if w is Knuth equivalent to w̃
then ccw = cc w̃.

2. If w = w1w2 · · ·wn and w 6= 1, let cyc(w) = w2w3 · · ·wnw1 be the word formed by
moving the first letter to the end. Then

cc(cyc(w)) = cc(w)− 1.

3. If the letters of w are weakly increasing then cc(w) = 0.

There is also an algorithmic way of computing cocharge.

Definition 7.3. Let w be a word with partition content µ, so that it has µ1 1’s, µ2 2’s,
and so on. Let w(1) be the subword formed by scanning w from right to left until finding
the first 1, then continuing to scan until finding a 2, and so on, wrapping around cyclically
if need be. Let w(2) be the subword formed by removing w(1) from w and performing the
same process on the remaining word, and in general define w(i) similarly for i = 1, . . . , µ1.

It turns out that
cc(w) =

∑
i

cc(w(i)),

(see, e.g., [9]) and one can compute the cocharge of a word w(i) having distinct entries
1, . . . , k by the following process.

1. Set a counter to be 0, and label the 1 in the word with this counter, i.e. give it a
subscript of 0.

2. If the 2 in the word is to the left of the 1, increment the counter by 1, and otherwise
do not change the counter. Label the 2 with the new value of the counter.

3. Continue this process on each successive integer up to k, incrementing the counter
if it is to the left of the previous letter.

4. When all entries are labeled, the sum of the subscripts is the cocharge.

The link between the major index of inversion free fillings and the cocharge of words
lies in the cocharge word construction.

Definition 7.4. The cocharge word of a filling σ : µ → Z+ is the word cw(σ) =
i1i2 · · · in consisting of the row indices of the cells uk = (ik, jk), where u1, u2, . . . , un is the
ordering of the cells of µ such that σ(u1) > σ(u2) > · · · > σ(un), and for each constant
segment σ(uj) = · · · = σ(uk), the cells uj, · · · , uk are in reverse reading order.
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As mentioned in Section 5.2, for any filling σ ∈ F|inv=0 we have maj(σ) = cc(cw(σ)).
(See [9] for the proof.) Therefore, we can translate some of our results regarding such
fillings to properties of words and their cocharge. We first require the following fact.

Lemma 7.5. If σ ∈ F|inv=0 and w = cw(σ), the words w(i) correspond to the columns of
σ, in the sense that the letters in the subword w(i) are in positions corresponding to the
entries in column i in σ.

Proof. If w = cw(σ) and σ has alphabet A = a1 > . . . > an, the letters ai for which the
corresponding letter wi equals r are the entries in row r. The smallest - that is rightmost
- ai, say ai0 , for which wi = 1 is the leftmost entry of the bottom row, i.e. the bottom
entry of the first column. The second entry of the first column is then the first ai in cyclic
order after ai0 for which wi = 2. This corresponds to the 2 in the subword w(1), and
similarly the letters in w(1) correspond to the entries in the first column.

A similar argument shows that the second column corresponds to w(2), and so on.

In particular, Proposition 6.13 states that if the largest entry of a filling σ ∈ F (1n)
µ |inv=0

is in the bottom row, then we can remove it, bump down any entries in its (rightmost)
column, and rearrange the rows to get a filling with no inversions. By Lemma 7.5, this
translates to the following result in terms of words.

Theorem 7.6. Let w = w1 · · ·wn be a word with partition content µ for which w1 = 1. Let
w(1), · · · , w(µ1) be its decomposition into subwords as in Definition 7.3. Then w1 ∈ w(µ1),
and if w′ is the word formed by removing w1 from w and also decreasing each letter that
is in w(µ1) by one, then

cc(w) = cc(w′).

This theorem fills a gap in our understanding of cocharge, as it gives a recursive way
of dealing with words that start with 1. These are the only words that do not satisfy the
relation cc(cyc(w)) = cc(w)− 1 of Definition 7.2.

Example 7.7. Consider the word 15221432313. It has three 1’s, three 2’s, and three 3’s,
but only one 4 and 5, so to find the word w(µ1) = w(3) we can ignore the 4 and 5. The
words w(1), w(2), and w(3), ignoring the 4 and 5, are the subwords listed below:

w 1 5 2 2 1 4 3 2 3 1 3

w(1) 3 2 1

w(2) 2 1 3

w(3) 1 2 3

and so the word w′ is formed by removing the leading 1 and decreasing the 2 and 3 from
w(3). Thus

w′ = 5121432213.

We also find that cc(w) = cc(w′) = 12.
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