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Abstract

Let G = (V, E) be a graph. If G is a Konig graph or if G is a graph without
3-cycles and 5-cycles, we prove that the following conditions are equivalent: Ag
is pure shellable, R/Ia is Cohen-Macaulay, G is an unmixed vertex decomposable
graph and G is well-covered with a perfect matching of Kénig type ey, ..., ey without
4-cycles with two e;’s. Furthermore, we study vertex decomposable and shellable
(non-pure) properties in graphs without 3-cycles and 5-cycles. Finally, we give some
properties and relations between critical, extendable and shedding vertices.

Keywords: Cohen-Macaulay, shellable, well-covered, unmixed, vertex decompo-
sable, Konig, girth

1 Introduction

Let G be a simple graph (without loops and multiplies edges) whose vertex set is V(G) =
{z1,...,z,} and edge set E(G). Let R = k[xy,...,x,] be a polynomial ring over a field k.
The edge ideal of G, denoted by I(G), is the ideal of R generated by all monomials z;z;
such that {z;,z;} € E(G). G is a Cohen-Macaulay graph if R/I1(G) is a Cohen-Macaulay
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ring (see [3], [20]). A subset F of V(G) is a stable set or independent set if e ¢ F for each
e € E(G). The cardinality of the maximum stable set is denoted by S(G). G is called
well-covered if every maximal stable set has the same cardinality. On the other hand, a
subset D of V(G) is a vertex cover of G if D Ne # & for every e € E(G). The number
of vertices in a minimum vertex cover of G is called the covering number of G and it is
denoted by 7(G). This number coincide with ht(1(G)), the height of I(G). If the minimal
vertex covers have the same cardinality, then G is called an unmized graph. Notice that,
D is a vertex cover if and only if V(G) \ D is a stable set. Hence, 7(G) = n — B(G)
and G is well-covered if and only if G is unmixed. The Stanley-Reisner complez of I(G),
denoted by Ag, is the simplicial complex whose faces are the stable sets of G. Recall
that a simplicial complex A is called pure if every facet has the same number of elements.
Thus, Ag is pure if and only if G is well-covered.

Some properties of G, Ag and I(G) allow an interaction between Commutative Alge-
bra and Combinatorial Theory. Examples of these properties are: Cohen-Macaulayness,
shellability, vertex decomposability and well-coveredness. These properties have been
studied in ([3], [4], [6], [7], [11], [12], [13], [16], [17], [18], [20], [22]). In general, we have
the following implications (see [3], [16], [20], [22])

Unmixed Pure

vertex decomposable shellable Cohen - Macaulay = Well - covered

The equivalence between the Cohen-Macaulay property and the unmixed vertex de-
composable property has been studied for some families of graphs: bipartite graphs (in [7]
and [11]); very well-covered graphs (in [5] and [13]); graphs with girth at least 5, block-
cactus (in [12]); and graphs without 4-cycles and 5-cycles (in [2]). For this paper, a cycle
C = (z1,29,...,2,) can have chords (edges between non-consecutive vertices in C') in G.
A cycle without chords is called an induced cycle.

If a bipartite graph is well-covered, pure shellable or Cohen-Macaulay, then it is Konig
and has a perfect matching. The perfect matching is important because it allowed Hibi
and Herzog to characterize Cohen-Macaulay bipartite graph (see [11]). Similarly, the
existence of a perfect matching allows one to find a classification of well-covered bipartite
graphs (see [15] and [19]). However, a 3-cycle and a 5-cycle are Cohen-Macaulay graphs,
but they does not have a perfect matching. This is the motivation for the study of
Cohen-Macaulay graphs without 3-cycles and 5-cycles. In particular, we are interested
in knowing if these graphs have a perfect matching. In this paper we prove that it is
affirmative.

The paper is organized as follow: in section 2 we give some properties and relations
between critical, shedding and extendable vertices that we will use in the following sec-
tions. In section 3 we prove some results about well-covered graphs. In section 4 we
prove the equivalences of unmixed vertex decomposable and Cohen-Macaulay properties
for Konig graphs and graphs without 3-cycles and 5-cycles. We prove that theses proper-
ties are equivalent to the following condition: G is an unmixed Konig graph with a perfect
matching ey, ..., e, without 4-cycles with two e;’s. This result extends the criterion of
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Herzog-Hibi for Cohen-Macaulay bipartite graphs, given in [11]. In [17] Van Tuyl proved
that the vertex decomposable property, the shellable (non-pure) property and the sequen-
tially Cohen-Macaulay property are equivalent in bipartite graphs. Furthermore, in [18]
Van Tuyl and Villarreal give a criterion that characterize shellable bipartite graphs. These
results and results obtained in section 4, motivate us to study the vertex decomposable
property and the shellable (non-pure) property for graphs without 3-cycles and 5-cycles.
In section 5, we prove that the neighborhood of a 2-connected block of G has a free vertex,
if G is a bipartite shellable graph or if G is a vertex decomposable graph without 3-cycles
and 5-cycles. Also, we prove that the criterion of Van Tuyl-Villarreal can be extended to
vertex decomposable graphs without 3-cycles and 5-cycles and shellable graphs with girth
at least 11. The equivalence between the shellable property and the vertex decomposable
property for graphs without 3-cycles and 5-cycles is an open problem.

2 Critical, extendable and shedding vertices.

Let X be asubset of V(G). The subgraph induced by X in G, denoted by G[X] is the graph
with vertex set X and whose edge set is {{z,y} € E(G) | z,y € X}. Furthermore, let G\ X
denote the induced subgraph G[V(G) \ X]. Now, if v € V(G), then the set of neighbors
of v (in G) is denoted by Ng(v) and its closed neighborhood is Ng[v] = Ng(v)U{v}. The
degree of v in G is degg(v) = |Ng(v)|.

Definition 1. G is vertex decomposable if G is a totally disconnected graph or there is
a vertex v such that

(a) G\ v and G \ Ng[v] are both vertex decomposable, and
(b) each stable set in G'\ Ng[v] is not a maximal stable set in G \ v.

A shedding vertex of G is any vertex which satisfies the condition (b). Equivalently,
v is a shedding vertex if for every stable set S contained in G \ Ng[v], there is some
x € Ng(v) such that S U {x} is stable.

Lemma 2. If x is a vertex of G, then x is a shedding vertex if and only if |Ng(z) \
Ng(S)| = 1 for every stable set S of G\ Ng[z].

Proof. =) We take a stable set S of G\ Ng[z]. Since z is a shedding vertex, then there is
a vertex z € Ng(z) such that SU{z} is a stable set of G\ z. Thus, z ¢ Ng[S]. Therefore,
[Na(2)\ Ne(S)| > 1.

<) We take a stable set S of G\ Ng[x]. Thus, there exists a vertex z € Ng(x)\ Ng(5).
Since z € Ng(x), we have that z ¢ S. Furthermore, z ¢ Ng(S), then S U {z} is a stable
set of G \ z. Consequently, S is not a maximal stable set of G\ z. Therefore, = is a
shedding vertex. O]

Definition 3. Let S be a stable set of G. If x is of degree zero in G \ Ng[S], then z is
called isolated vertexr in G\ Ng[S], or we say that S isolates to x.
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By Lemma 2, we have that x is not a shedding vertex if and only if there exists a stable
set S of G\ Ng[z] such that Ng(z) C Ng(9), i.e. x is an isolated vertex in G \ Ng[S].

Corollary 4. Let S be a stable set of G. If S isolates x in G, then x is not a shedding
vertez in G\ Ngly| for ally € S.

Proof. Since S isolates x, then dege\ng(s)(z) = 0 and in particular z € V(G \ N¢[S]).
Thus, Ng(x) € Ng[S]\ S. Hence, if y € S and G' = G\ Ngly|, then = € V(G).
Furthermore, since S N Nglz] = @, then S" = S\ y is a stable set in G’ \ Ng/[z]. Now,
since S isolates z, if a € Ng/(x), then there exists s € S such that {a,s} € F(G). But
a € Ng/(z), then a ¢ Ngly|, consequently s € S’ and {a,s} € E(G’'). This implies
|Ne/(z) \ Nev(S")| = 0. Therefore, by Lemma 2, x is not a shedding vertex in G'. O

Theorem 5. If x is a shedding vertex of G, then one of the following conditions hold:
(a) There is y € Ng(x) such that Ngly] € Nelz].
(b) x is in a 5-cycle with at most one chord.

Proof. We take Ng(z) = {1, %2, ...,y If G does not satisfy (a), then there is
{Zly sy Zk} - V(G) \ NG[:E]

such that {y;, z;} € E(G) fori € {1,...,k}. Wedenote by L = {z1,...,2,} ={z1,..., 2}
and suppose that z; # z; for 1 < i < j < ¢. By Lemma 2, if L is a stable set of
G, then |Ng(z) \ Ng(L)| > 1. But Ng(z) = {v1,...,ys} € Ng(L), then L is not a
stable set. Hence, ¢ > 2 and there exist z;,, 2z, € L such that {z;,,z,} € E(G). Thus,
there exist y;, and y;, such that y;, # y;, and {y;,, 2, }, {Y),, 2i,} € E(G). Furthermore,
{zi,vjo b {Zins i 1o {200 @}, {20, &} € E(G). Therefore, (x,y;,, 2iy, 2iy, Yj,) 18 a 5-cycle of G
with at most one chord. O

Definition 6. A vertex v is called simplicial if the induced subgraph G[Ng(v)] is a
complete graph (or clique). Equivalently, a simplicial vertex is a vertex that appears in
exactly one clique.

Remark 7. If v,w € V(G) such that Ng[v] C Nglw], then w is a shedding vertex of G
(see Lemma 6 in [22]). In particular, if v is a simplicial vertex, then any w € Ng(v) is a
shedding vertex (see Corollary 7 in [22]).

Corollary 8. Let G be graph without 4-cycles. If x is a shedding vertex of G, then x s
in a 5-cycle or there exists a simplicial vertex z such that {x,z} € E(G) with |Ng[z]| < 3.

Proof. By Theorem 5, if x is not in a 5-cycle, then there is z € Ng(z) such that Ng[z] C
Ng[z]. If degg(z) = 1, then z is a simplicial vertex. If degg(z) = 2, then Ng(z) = {z, w}.
Consequently, (z,x,w) is a 3-cycle since Ng|z] C Ng[z]. Thus, z is a simplicial vertex.
Now, if degs(z) > 3, then there are wy, ws € Ng(2) \ z. Since Nglz] € Nglz], we have
that (wy, z,wsy, x) is a 4-cycle of G. This is a contradiction. Therefore, |[Ng[z]| < 3 and 2
is a simplicial vertex. O
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Remark 9. If G is a 5-cycle with V(G) = {x1, x9, x3, 24, x5}, then each x; is a shedding
vertex.

Proof. We can assume that ¢ = 1, then {x3} and {z4} are the stable sets in G\ Ng[z1].
Furthermore, {x3,x5} and {xq, x4} are stable sets in G \ x;. Hence, each stable set of
G \ Ng[z1] is not a maximal stable set in G \ z;. Therefore, z; is a shedding vertex. [

Definition 10. A vertex v of G is critical if 7(G \ v) < 7(G). Furthermore, G is called a
vertex critical graph if each vertex of G is critical.

Lemma 11. If 7(G \ v) < 7(G), then 7(G) = 7(G \ v) + 1. Moreover, v is a critical
vertez if and only if 5(G) = B(G \ v).

Proof. 1f t is a minimal vertex cover such that [t| = 7(G \ v), then t U {v} is a vertex
cover of G. Thus, 7(G) < [tU{v}| = 7(G \ v) + 1. Consequently, if 7(G) > 7(G \ v), then
7(G) =7(G\v)+ 1.

Now, we have that 7(G) + 8(G) = |[V(G)| = |V(G\v)|+1=7(G\v)+ B(G\v) + 1.
Hence, B(G) = B(G\v) if and only if 7(G) = 7(G \ v) + 1. Therefore, v is a critical vertex
if and only if 8(G) = B(G \ v). O

Definition 12. A vertex v of G is called an extendable vertex if G and G \ v are well-
covered graphs with 5(G) = B(G \ v).

Note that if v is an extendable vertex, then every maximal stable set S of G\ v contains
a vertex of Ng(v).

Corollary 13. Let G be an unmized graph and x € V(G). The following conditions are
equivalent:

(a) x is an extendable vertex.
(b) |Na(z) \ Na(S)| = 1 for every stable set S of G\ Ng|x].
(c) = is a shedding vertez.

(d) x is a critical vertex and G \ © is unmized.

Proof. (a) < (b) ([8], Lemma 2).

(b) < (¢) By Lemma 2.

(a) < (d) Since G is unmixed, then by Lemma 11, = is extendable if and only if = is
a critical vertex and G \ = is unmixed. ]
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3 Konig and well-covered graphs

In this paper we denoted by Z; the set of the isolated vertices of G, that is,
Zo ={x € V(G) | degu(x)=0}.

Definition 14. G is a Konig graph if 7(G) = v(G) where v(G) is the maximum number
of pairwise disjoint edges. A perfect matching of Konig type of G is a collection ey, ..., e,
of pairwise disjoint edges whose union is V(G) and g = 7(G).

Proposition 15. Let G be a Konig graph and G' = G\ Zg. Then the following are
equivalent:

(a) G is unmized.
(b) G" is unmized.

(¢) If V(G') # @, then G’ has a perfect matching ey, ..., e, of Konig type such that for
any two edges f1 # fo and for two distinct vertices x € f1, y € fo contained in some
e;, one has that (fi \ z) U (f2\ y) is an edge.

Proof. (a)<(b) Since V(G) \ V(G') = Zg, then C is a vertex cover of G if and only if C'
is a vertex cover of G’. Therefore, G is unmixed if and only if G’ is unmixed.

(b)<(c) By ([14], Lemma 2.3 and Proposition 2.9). O

Definition 16. A graph G is called very well-covered if it is well-covered without isolated
vertices and |V(G)| = 2ht(1(G)).

Lemma 17. G is an unmized Konig graph if and only if G is totally disconnected or
G' = G\ Zg is very well-covered.

Proof. =) If G is not totally disconnected, then from Proposition 15, G’ has a perfect
matching ey, ..., e, of Kénig type. Hence, |V(G')| = 2¢g = 27(G’") = 2ht(I(G")). Further-
more, G is unmixed, therefore G’ is very well-covered.

<) If G is totally disconnected, then v(G) = 0 and 7(G) = 0. Hence, G is an unmixed
Ko6nig graph. Now, if GG is not totally disconnected, then G’ is very well-covered. Conse-
quently, by ([10], Corollary 3.7) G’ has a perfect matching. Thus, v(G’) = |[V(G')|/2 =
ht(G') = 7(G’). Hence, G’ is Konig. Furthermore, v(G) = v(G’') and 7(G) = 7(G’), then
G is Konig. Finally, since G’ is unmixed, by Proposition 15, G is also unmixed. ]

Definition 18. A subgraph H of G is called a c-minor (of G) if there exists a stable set
S of G, such that H = G \ Ng[9].

Remark 19. Each connected component of a graph G is a c-minor of G.

Remark 20. The unmixed property is closed under c-minors. That is, each c-minor of G
has the same property (see [20]).
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Definition 21. A vertex of degree one is called leaf or free vertex. Furthermore, an edge
which is incident with a leaf is called pendant.

Lemma 22. If G is an unmized graph and x € V(G), then Ng(x) does not contain two
free vertices.

Proof. We suppose that there exists x € V(G) such that yi,...,y, are free vertices in
Ng(z). Hence, Gy = G\ Ng[y1,...,vs)] = G\ {z,y1,...,ys} is unmixed. Now, we take
a maximal stable set S of G;. Thus, |[S| = (G1) since Gy is unmixed. Consequently,
S1 = SUA{y,...,ys} is a stable set in G. We take S, a maximal stable in G such that
x € Sy. Since G is unmixed, we have that |Ss| > |Si| = |S| + s. Furthermore, Sy \ z
is a stable set in Gy, then |Sy| < B(G1) + 1. This implies 5(G1) +1 > |S| + s. But,
|S| = B(Gh), therefore, s < 1. O

Definition 23. If v,w € V(G), then the distance d(u,v) between u and v in G is the
length of the shortest path joining them, otherwise d(u,v) = co. Now, if H C G, then
the distance from a vertex v to H is d(v, H) = min{d(v,u) | u € V(H)}. Furthermore, if
W C V(G), then we define d(v, W) = d(v, G[W]) and D;(W) = {v € V(G) | d(v, W) = i}.

Proposition 24. Let G be an unmixed connected graph without 3-cycles and 5-cycles. If
C s a T-cycle and H is a c-minor of G with C' C H such that C has three non-adjacent
vertices of degree 2 in H, then C' is a c-minor of G.

Proof. We take a minimal c-minor H of G such that C' C H and C has three non-adjacent
vertices of degree 2 in H. We can suppose that C' = (x, z1, w1, a, b, wa, 29) with degy(x) =
degy(wy) = degy(we) = 2. If {21,b} € E(H), then (z1,b,ws, 20,x) is a 5-cycle of G.
Thus, {z,b} ¢ E(H), similarly {z20,a} ¢ E(H). Furthermore, since G does not have
3-cycles, then {z1, 20}, {z1,a}, {#2,0} ¢ E(H). Hence, C is an induced cycle in H. On
the other hand, if there exists v € V(H) such that d(v,C) > 2, then H' = H \ Ng[v]
is a c-minor of G and C' C H' ¢ H. This is a contradiction by the minimality of H.
Therefore, d(v,C) < 1 for each v € V(H).

Now, if degg(b) > 3, then there exists ¢ € V(H) \ V(C) such that {b,c¢} € E(H). If
{¢, 22} ¢ E(G) implies that Ny, (22) has two free vertices, we and x, in H; = H\ Ng[wy, ],
this is a contradiction by Lemma 22. Thus {¢, 22} € E(H). Furthermore, {a,c}, {z1,c} ¢
E(H) since (a,b,c) and (21, wy,a,b,c) are not cycles in G. Hence, if degy(c) > 3, then
there exists d € V(H)\V(C) such that {c,d} € E(H). Also, {d,b},{d, 22}, {d, 21} ¢ E(H)
since (¢, b,d), (29,d,c) and (z1, x, 29, ¢, d) are not cycles of G. But d(d,C) < 1, so {a,d} €
E(H). Consequently, Ng,(z1) has two free vertices, wy and z, in Hy = H \ Ny|d, wy],
a contradiction by Lemma 22, then degy(c) = 2. This implies, Ny,(z2) has two free
vertices, wy and ¢, in Hy3 = H \ Ngla]. This is not possible, therefore degy(b) = 2.
Similarly, degg(a) = 2.

Now, if degy(z2) > 3 we have that there exists ¢ € V(H) \ V(C) such that {¢/, 22} €
E(H). If there exists d € V(H) \ V(C) such that {¢,d'} € E(H), then {d', 2z} or
{d'; 2} € E(G), since d(d',C) < 1. But (¢,d, z) and (z,29,¢,d’,z1) are not cycles
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of H, thus, Ng(c’) C {z1,22}. Consequently, Ng,(z2) has two free vertices, = and ¢/,
in Hy = H \ Ny|w], a contradiction. Hence degp(z2) = 2. Similarly, degp(z;) = 2.
Furthermore, since H is minimal, then it is connected. Therefore, H = C' and C' is a
c-minor of G. O

4 Konig and Cohen-Macaulay graphs without 3-cycles and 5-
cycles

Definition 25. A simplicial complex A is shellable if the facets (maximal faces) of A can
be ordered [, ..., F, such that for all 1 < i < j < s, there exists some v € F; \ F; and
some [ € {1,...,7 — 1} with F; \ F; = {v}. In this case, Fy,..., F; is called a shelling
of A. A graph G is called shellable if Ag is shellable. Furthermore, the facet set of A is
denoted by F(A).

Remark 26. The following properties: shellable, Cohen-Macaulay, sequentially Cohen-
Macaulay and vertex decomposable are closed under c-minors (see [1], [20]).

Remark 27. If G is very well-covered with a perfect matching ey, ..., ey, then the following
conditions are equivalent:

(1) G is Cohen-Macaulay.
(2) There are no 4-cycles with two e;’s.
Proof. By ([5], Theorem 3.4). O

Proposition 28. Let G be a Konig graph where G' = G \ Zg. Then the following
properties are equivalent:

(i) G is unmized vertex decomposable.
(ii) Ag is pure shellable.

(iii) R/I(G) is Cohen-Macaulay.

(

iv) V(G') = @ or G’ is an unmized graph with a perfect matching ey, ..., e, of Konig
type without 4-cycles with two e;’s.

(v) V(G") = @ or there exists a relabelling of the vertices V(G') = {x1, ..., T, y1,...,Yn}
such that {x1,y1}, ..., {xn, yn} is a perfect matching, X = {x1,...,xn} is a minimal
vertex cover of G' and the following conditions holds:

(a) If a; € {zi,vi} and {a;, z;},{y;, zx} € E(G’), then {a;,xx} € E(G') fori# j
and j # k;

(b) If {zs,y;} € E(G'), theni < j.
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Proof. (i)<(ii)<(ili) In each case G is unmixed and Konig. Hence, by Lemma 17, G
is totally disconnected or G’ is very well-covered. If GG is totally disconnected, then we
obtain the equivalences. Now, if G’ is very well-covered, then by ([13], Theorem 1.1) we
obtain the equivalences.

(iv)=-(iii) We can assume that V(G') # @. Thus, by Lemma 17, G’ is very well-
covered. Hence, by Remark 27 GG’ is Cohen-Macaulay. Therefore, GG is Cohen-Macaulay.

(iii)= (v) Since R/I(G) is Cohen-Macaulay, then G is unmixed. Consequently, by
Lemma 17, we can assume that G’ is very well-covered. Hence, by ([13], Lemma 3.1), G’
satisfies (v).

(v)=(iv) We can assume that V(G’) # @. Since, e; = {z1,y1},...,en = {Tn,yn}
is a perfect matching, then v(G’) = h. Furthermore, X is a minimal vertex cover, so
7(G') = h. Hence, eq,..., e, is a perfect matching of Konig type. Thus, from (a) and
Proposition 15, G’ is unmixed. On the other hand {y,...,y,} is a stable set. Therefore,
from (b), there are no 4-cycles with two e;’s. [

Corollary 29. Let G be a connected Konig graph. If G is Cohen-Macaulay, then G is an
1solated vertex or G has at least one free vertew.

Proof. By Proposition 28, if G is not an isolated vertex, then G has a perfect mat-
ching e; = {z1,y1},...,en = {zn, yn} where {z1,..., x5} is a minimal vertex cover. Thus,
{y1,...,yn} is a maximal stable set. Furthermore, if {x;,y;}, then ¢ < j. Hence, Ng(y1) =
{z1}. Therefore, y; is a free vertex. O

Lemma 30. Let G be an unmized connected graph with a perfect matching ey, ..., e, of
Konig type without 4-cycles with two e;’s and g > 2. For each z € V(G) we have that:

(a) If degn(2) = 2, then there exist {z,w}, {wi,ws} € E(G) such that degq(wq) = 1.
Furthermore, e; = {wy,wy} for somei € {1,...,g}.

(b) Ifdegn(z) = 1, then there exist {z, w1 },{wy, wa},{ws, w3} € E(G) such that degq(w3)

= 1. Moreover, e; = {z, w1} and e; = {wy, w3} for somei,j € {1,...,g}.
Proof. Since e; = {x1,y1},...,e4 = {x4,y,} is a perfect matching of Konig type we can
assume D = {z1,...,x,} is a minimal vertex cover. Thus, F' = {y1,...,y,} is a maximal

stable set. By Proposition 28, we can assume that if {z;,y,;} € E(G), then ¢ < j. Now,
we take a vertex z € V(G).

(a) First, we suppose that z = x;, and there is a vertex x; in Ng(xy). If y; is a free
vertex, then we take w; = x; and wy = y;, and e; = {w;,ws}. Now, we can assume
Ne(yj) \ z; = {xpy,- .. 2p } with py < -+ < p. < j. If y,, is not a free vertex, then
there is a vertex z, with p < p; such that {z,,y,,} € E(G). Since G is unmixed, from
Proposition 15, we obtain that {z,,y;} = ({2p, Up,} \ Up) U {yj,2p, } \ 2p,) € E(G).
But p < p1, a contradiction since p; is minimal. Consequently, degs(y,,) = 1. Also,
from Proposition 15, we have that {xy, z, } = {zk, 2;} \ ;) U {2, 95} \ ;) € E(G).
Hence, we take w; = x,, and wy = y,,, and we have that e, = {w;,ws}. Now, we
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assume that z = x and Ng(zx) \ v = {vyj,, .., y;, } with k < j; < --- < ji. We suppose
that degg(z;,) > 2. If there is a vertex y, such that {z;,,y.} € E(G), then r > j.
Since G is unmixed, {zg, v, } = {2z, v} \ vi) U {yr, 25} \ zj,) € E(G), a contradiction
since j; is maximal. Thus, there exists a vertex z, such that {z;,z,} € E(G). But,
since G is unmixed, then {zy,z,} = {2k, v, } \ ;) U {xp, 2, } \ zj,) € E(G). This is a
contradiction since Ng(zx) \ yx = {¥jy, - - -, ¥i, ;- Consequently, dege(z;,) = 1. Therefore,
we take wy = y;, and wy = z;,, with e, = {wy, wa}.

Finally, we assume that z = y, since y, is not a free vertex, then Ng(yx) \ 2 =
{zj,...,x;.} with j; <--- < j, <k. If y;, is not a free vertex, then there is a vertex
x4 such that {z,,y;,} € E(G) with ¢ < j;. This implies {z,, yx} = {zg v} \ y;,) U
({zj,,yx} \ z;,) € E(G). But ¢ < ji1, a contradiction. Therefore, degg(y;,) = 1 and we
take wy = xj, and wy = y;,. Hence, e;, = {wy, wy}.

(b) Since ey, ..., e, is a perfect matching, then there exists ¢ € {1,..., ¢} such that
e; = {z,2'}. Since G is connected, z is a free vertex and g > 2, then deg,(2') > 2. Thus,
by (a) there exist w, w) € V(G) such that {2, w|}, {w],w,} € E(G) where degg(w}) = 1
and {w}, w)} = e; for some j € {1,..., g}. Therefore, we take wy = 2/, wy = W}, ws = wj.
Consequently, e; = {z,w; } and e; = {wa, w3}. O

Remark 31. If C, is a n-cycle, then (), is vertex decomposable, shellable or sequentially
Cohen-Macaulay if and only if n = 3 or 5 (see [9] and [22]). Furthermore, a chordal graph,
which is a graph whose induced cycles are 3-cycles, is vertex decomposable (see Corollary
7 in [22]). In particular trees are vertex decomposable.

Theorem 32. Let G be a graph without 3-cycles and 5-cycles. If Gy,...,Gy are the
connected components of G, then the following conditions are equivalent:

a) G is unmized vertex decomposable.

(

(b) G is pure shellable.
(¢) G is Cohen-Macaulay
(

d) G is unmized and if G; is not an isolated vertez, then G; has a perfect matching
e1, ..., ey of Konig type without 4-cycles with two €}s.

Proof. (a) = (b) = (c) (see [16], [20], [22]).

(d) = (a) Since each component G; is Konig, then G is Konig. Therefore, from
Proposition 28, GG is unmixed vertex decomposable.

(c¢) = (d) Since G is Cohen-Macaulay, then G is unmixed. We proceed by induction on
|[V(G)|. We take x € V(G) such that degg () is minimal and we suppose that Ng(x) =
{z1,...,2-}. By Remark 26, G’ = G \ Ng|z| is a Cohen-Macaulay graph. We take
GY,...,G"., the connected components of G'. We can assume that V(G}) = {y;} for
ie{l,...,s'}. Since degg(z) is minimal, this implies {y;, 2;} € E(G) foralli € {1,...,s'}
and j € {1,...,r}. Since G does not contain 3-cycles, we have that Ng(z) is a stable
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set. If ' = s, then the only maximal stable sets of G are {y1,...,ys, 2} and {z1,..., 2.}
Thus, G is a bipartite graph. So, G is Kénig. Hence, by Proposition 28, GG satisfies (d).
Consequently, we can assume s > s’, implying that there is a component G with an edge
e ={w,w'}.

Now, we suppose that r > 2. Since degq(x) is minimal there exist a,b € V(G) such
that {a,w}, {b,w'} € E(G). If a = b, then (a,w,w’) is a 3-cycle in G. Hence, a # b.
If a,b € Ng(x), then (z,a,w,w’,b) is a 5-cycle in G. Thus, [{w,w’,a,b} NV (G})| = 3.
By induction hypothesis, G’ satisfies (d). So, G has a perfect matching and 7(G%) > 2.
Furthermore, by Corollary 29, G has a free vertex a’. Then, by Lemma 30 (b), there
exist edges {a’, w1}, {wi, wa}, {we,0'} € E(G]) such that degg:(a’) = dege (V') = 1. By
the minimality of degg(x) we have that o’ and b are adjacent with at least r — 1 neighbor
vertices of x. If r > 3, then there exists z; such that z; € Ng(a’) N Ng(b'). This implies
that (o', wy, ws, V', 2;) is a b-cycle of G. But G does not have 5-cycles, consequently, r = 2.
We can assume that {da’,z1},{V/, 20} € E(G), implying C' = (z,21,a,wy,wy, b, 23) is a
7-cycle with degg(a’) = degq (V') = degg(x) = 2. Hence, by Proposition 24, C'is a c-minor
of GG. Thus, by Remark 26, C' is Cohen-Macaulay. This is a contradiction by Remark 31.
Therefore, degg(z) = r < 1.

If » = 0, then the result is clear. Now, if r = 1 we can assume that G, ..., G} are the
connected components of G and z; € V(G;). Consequently, the connected components
of G\ Nglz| are Fy,..., F;,Ga,...,Gy where Fi, ..., F, are the connected components
of Gy \ Ng,[z]. By induction hypothesis Go,...,Gy satisfy (d). If F; = {d;}, then
N¢(#1) has two free vertices, d; and z, a contradiction by Lemma 22. Hence, |V (F;)| > 2
for i € {1,...,l}. By induction hypothesis, we have that F; has a perfect matching
M; = {ée},..., e, } of Kbnig type. Thus, {e}U(U._, M) is a perfect matching of Gy, where
e={x,z1}. Also, {z1} U (U§:1 X;) is a vertex cover of GG, where X; is a minimal vertex
cover of F;. Consequently, v(Gy) > 1+ 30 [Mi| =1+ 3 g =1+ 30 |Xi] = 7(Gy).
This implies that G is Konig. Furthermore, by Remark 26, we have that GGy is Cohen-
Macaulay. Therefore, by Proposition 28, GG satisfies (d). O

Corollary 33. Let G be a connected graph without 3-cycles and 5-cycles. If G is Cohen-
Macaulay, then G has at least one extendable vertex x adjacent to a free vertex.

Proof. From Theorem 32, G is Konig. Thus, by Corollary 29 there exists a free vertex x.
If No(x) = {y}, then by Remark 7, y is a shedding vertex. Therefore, from Corollary 13,
y is an extendable vertex, since G is unmixed. O

Definition 34. G is called whisker graph if there exists an induced subgraph H of G
such that V(H) = {z1,...,2zs}, V(G) =V(H)U{y1,...,ys} and E(G) = E(H)UW (H)
where W(H) = {{z1,11},...,{2s,ys}}. The edges of W (H) are called whiskers and they
form a perfect matching.

Definition 35. The girth of G is the length of the smallest cycle or infinite if G is a
forest.
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Corollary 36. Let G be a connected graph of girth 6 or more. If G is not an isolated
vertex, then the following conditions are equivalent:

i) G is unmized vertex decomposable.
ii) Ag is pure shellable.
iii) R/I(G) is Cohen-Macaulay.

v) G is very well-covered.

(
(
(
(iv) G is an unmized Konig graph.
(
(vi) G is unmized with G # Cs.

(

vii) G is a whisker graph.

Proof. (i) = (ii) = (iii) (see [16], [20], [22]). (iii) = (iv) G is unmixed and from Theorem
32, G is Konig. (iv) = (v) From Lemma 17. (v) = (vi) It is clear, since C7 is not very
well-covered.

(vi) = (vii) By ([8], Corollary 5), the pendant edges {z1,y1},..., {24, y,} of G form

a perfect matching. Since {z;,y;} is a pendant edge, we can assume that degq(y;) = 1
for each 1 < i < g. We take H = G[zy,...,x,]. Therefore, G is a whisker graph with

W(H) = {z1, 913, {2g: Yo} }-
(vii) = (i) By ([6], Theorem 4.4). O

5 Vertex decomposable and shellable properties in graphs with-
out 3-cycles and 5-cycles

Definition 37. A 5-cycle C of G is called basic if C' does not contain two adjacent vertices
of degree three or more in G.

Lemma 38. If G is a graph, then any vertex of degree at least 3 in a basic 5-cycle is a
shedding vertex.

Proof. Let C = (x1,29,x3,74,25) be a basic 5-cycle. We suppose that degg(xi) > 3,
since C' is a basic 5-cycle, then degy,(z3) = degqs(zs) = 2. Also, we can assume that
degn(x3) = 2. We take a stable set S of G\ Nglx;]. Since {z3,z4} € E(G), then
|S N {zs, 24} < 1. Hence, z3 ¢ S or 4 ¢ S. Consequently, S U {xo} or SU {x5} is a
stable set of G \ x1. Therefore, z; is a shedding vertex. O

Remark 39. If G has a shedding vertex v where G\ v and G \ Ng[v] are shellable
with shelling Fi,..., F; and Gy,...,G,, respectively, then G is shellable with shelling
Fi, ..., F, Gy U{v},...,G,U{v} (see Lemma 6 in [21]).
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Theorem 40. Let G be a connected graph with a basic 5-cycle C'. G s a shellable graph
if and only if there is a shedding vertex x € V(C) such that G\ © and G \ Ng|x] are
shellable graphs.

Proof. =) We can suppose that C' = (21, x9, 23, 24, x5). If G = C, then G is shellable. By
Remark 9, each vertex is a shedding vertex. Furthermore, G \ z; is a path with shelling
{2, x4}, {x2, x5}, {73, 25} and G \ Nglxy] is an edge. Therefore, G \ z; and G\ Ng[z1]
are shellable graphs. Now, we suppose G # C. We can assume that degg(z1) > 3. Since
C' is a basic 5-cycle, then degg(x2) = degg(zs) = 2. Also, we can suppose degg(x3) = 2
and degg(r4) > 2. By Lemma 38, x; is a shedding vertex. Furthermore by Remark
26, we have that G \ Ng|z4] is a shellable graph. Now, we will prove that G; = G \ x;
is shellable. Since G is shellable and since shellability is closed under c-minors, then
Gy = G\ Ng[zo] is shellable. We assume that Fi,..., F, is a shelling of Ag,. Also,
G3 = G\ Ng|xs,z5] is shellable. We suppose that Hy, Hs, ..., Hy is shelling of Ag,.
We take F' € F(Ag,). If zo € F, then F'\ 2o € F(Ag,) and there exists F; such
that ' = F; U{x}. If 2o ¢ F, then 23 € F and z4 ¢ F. Thus, x5 € F. Hence,
F\ {x3, 25} € F(Ag,), then there exists H; such that F' = H; U {z3,x5}. This implies,
F(Ag,) = {FAU{za},...,F. U{xs}, Hy U{z3,25},..., Hp U {x3,25}}. Furthermore,
Fiu{zs}, ..., F,U{xs} and HyU{z3, 25}, ..., HyU{zs, x5} are shellings. Now, x5 € (H;U
{z3,25})\ (F;U{x2}) and H; is a stable set of G without vertices of C. So, H;U{z2, x5} is
a maximal stable set of G since Ng(x2,2z5) = V(C) and {z3, x5} ¢ F(G). Consequently,
H; U{xo, x5} = F;U{zo} for some [ € {1,...,r} and (H; U{xs,x5}) \ (F1U{x2}) = {z3}.
Therefore, GG; is a shellable graph.

<) By Remark 39. O

Definition 41. A cut verter of a graph is one whose removal increases the number of
connected components. A block of a graph is a maximal subgraph without cut vertices.
A connected graph without cut vertices with at least three vertices is called 2-connected
graph.

In the following result P is a property closed under c-minors.

Theorem 42. Let G be a graph without 3-cycles and 5-cycles with a 2-connected block
B. If G satisfies the property P and B does not satisfy P, then there ezists x € Dy(B)
such that degg(x) = 1.

Proof. By contradiction, we assume that if € D;(B), then |Ng(z)| > 1. Thus, there
exist a,b € Ng(z) with a # b. We can suppose that a € V(B). If b € V(B), then
G[{z}UV(B)] is 2-connected. But B C G[{x}UV(B)]. This is a contradiction since B is a
block. Consequently, V(B)N Ng(x) = {a}. Now, we suppose that b € D;(B). Since there
is no 3-cycle in G, then a ¢ N¢(b). Hence, there exists ¢ € Ng(b) NV (B) such that ¢ # a.
This implies G[{z, b} UV (B)] is 2-connected. But B C G[{x,b} UV (B)], a contradiction.
Then D;(B) N Ng(z) = @. Thus, Ng(z) N (V(B)U Dy(B)) = {a} and b € Dy(B). Now,
if D1(B) = {z1,...,z,}, then there exists an a; such that V(B) N Ng(x;) = {a;}. Also,
there exists b; such that b; € Ng(z;) N Dyo(B). We can suppose that L = {by,...,bs} =
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{b1,...,b,} with b; # b; for 1 < i < j < s. We will prove that L is a stable set.
Suppose that {b;,0;} € E(G), if a; = a;, then (a;, z;,b;,b;, z;,a;) is a 5-cycle in G, this is
a contradiction. Consequently a; # a; and the induced subgraph G[{z;, b;,b;,z;} UV (B)]
is 2-connected. But B is a block, then {b;,b;} ¢ E(G). Therefore, L is a stable set.
Furthermore, G’ = G \ Ng|[L] is a c-minor of G, implying that G’ satisfies the property
P. Since D;(B) C Ng(L), we have that B is a connected component of G'. But, B does
not satisfy P. This is a contradiction since each connected component of GG is a c-minor.
Therefore, there exists a free vertex in D;(B). O

Corollary 43. Let G be a graph without 3-cycles and 5-cycles and B a 2-connected
block. If G is shellable (unmized, Cohen-Macaulay, sequentially Cohen-Macaulay or vertex
decomposable) and B is not shellable (unmized, Cohen - Macaulay, sequentially Cohen-
Macaulay or vertex decomposable), then there ezists x € Dy(B) such that degg(x) = 1.

Proof. From Remark 20, Remark 26 and Theorem 42. O]

Corollary 44. Let G be a bipartite graph and B a 2-connected block. If G is shellable,
then there ezists x € D1(B) such that degq(z) = 1.

Proof. Since G is bipartite, then B is bipartite. If H is a shellable bipartite graph, then
H has a free vertex (see [18], Lemma 2.8), and so H is not 2-connected. Hence, B is not
shellable. Therefore, by Corollary 43, there exists « € D;(B) such that degg(z) =1. O

Lemma 45. Let G be a graph without 3-cycles and 5-cycles. If G is vertex decomposable,
then G has a free vertex.

Proof. Since G is vertex decomposable, then there is a shedding vertex x. Furthermore,
there are no 5-cycles in G. Hence, by Theorem 5, there exists y € Ng(x) such that
Nely] € Nglz]. If z € Ng(y) \ z, then (z,y,z2) is a 3-cycle. This is a contradiction.
Therefore, Ng(y) = {z}, implying that y is a free vertex. ]

Theorem 46. Let G be a graph without 3-cycles and 5-cycles. G is vertex decomposable
if and only if there exists a free vertex x with Ng(x) = {y} such that Gy = G \ Ng[z| and
Go = G\ Ngly| are vertez decomposable.

Proof. =) By Lemma 45 there exists a free vertex x. Furthermore, by Remark 26, G
and (G5 are vertex decomposable.

<) By Remark 7, y is a shedding vertex. Moreover, G \ y = G U {z}. Furthermore,
since (31 is vertex decomposable, then G'\y is also it. Therefore, G is vertex decomposable,
since (5 is vertex decomposable. O

Corollary 47. If G is a 2-connected graph without 3-cycles and 5-cycles, then G is not
a vertexr decomposable.

Proof. Since G is 2-connected, then GG does not have a free vertex. Therefore, by Lemma
45, GG is not vertex decomposable. O]
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Theorem 48. Let G be a vertex decomposable graph without 3-cycles and 5-cycles. If B
is a 2-connected block of G, then D1(B) has a free vertex.

Proof. By Corollary 47, B is not vertex decomposable. Therefore, by Theorem 42, D;(B)
has a free vertex. O

Definition 49. Let Gy, G, be graphs. If K = G1 NG, is a complete graph with |V (K)| =
k, then G = G U Gy is called the k-clique-sum (or clique-sum) of GG; and G in K.

Corollary 50. If G is the 2-clique-sum of the cycles Cy and Co with |V (C1)| =1 < re =
[V (Cs)|, then G is vertex decomposable if and only if i =3 orry =1y = 5.

Proof. <) First, we suppose that ; = 3. Consequently, we can assume C} = (z1, T2, T3)
and zy,x3 € V(Cy) N V(Cs). Thus, x; is a simplicial vertex. Hence, by Remark 7, o
is a shedding vertex. Furthermore, G\ z2 and G\ Ng|xs] are trees. Consequently, by
Remark 31, G\ x5 and G'\ Ng|x2| are vertex decomposable graphs. Therefore, G is vertex
decomposable.

Now, we assume that r = ro = 5 with Cy = (21, e, 3, 24, x5) and Cy = (y1, T2, T3, Vs,
ys). We take a stable set S in G\ Ng[zs]. If 23 € 5, then S U {x,} is a stable set in
G1 =G\ 5. If xg ¢ S, then SU {1} is a stable set in G;. Consequently, by Lemma
2, x5 is a shedding vertex. Since x5 is a neighbor of a free vertex in Gy, then x5 is a
shedding vertex in G;. Furthermore, since G; \ x5 and G; \ Ng, [x2] are forests, then
they are vertex decomposable graphs, by Remark 31. Thus, G, is vertex decomposable.
Snce G\ Ng[zs] = Cs, it is vertex decomposable by Remark 31. Therefore, G is vertex
decomposable.

=) By Corollary 47, we have that {ry,r} N {3,5} # &. We suppose 1 # 3.
Sory = 5 or rp = 5. Consequently, we can assume that {Cy,Cy} = {C,C"} where
C = (z1,m9, 3, 24,25) and z9, 23 € V(C) NV (C"). Thus, G \ Ng[zs] = C' is vertex
decomposable. Hence, from Remark 31, |V (C")| € {3,5}. But r; # 3, then |[V(C")| =5
and r; = ry = 5. Therefore, ry =3 or r; =19 = 5. O

Lemma 51. Let G be a 2-connected graph with girth at least 11. Then G is not shellable.

Proof. Since G is 2-connected, then G is not a forest. Consequently, if r is the girth of G,
then there exists a cycle C' = (z1,29,...,2,). If G = C, then G is not shellable. Hence,
G # C implying D,(C) # @. We take y € D;(C), without loss of generality we can
assume that {z,,y} € E(G). If {x;,y} € E(G) for some i € {2,...,r}, then we take
the cycles C = (y,x1, 22, ...,2;) and Cy = (y, 1, Tp, Tp_1, ..., x;). Thus, |V(Cy)| =i+ 1
and |V (Cy)| = r —i+ 3. Since r is the girth of G, then i +1 > rand r —i+3 > r.
Consequently, 3 > ¢ implies 4 > r. But r > 11, this is a contradiction. This implies that
|INo(y)NV(C)| = 1. Now, we suppose that there exist y1,y2 € D1(C) such that {y1,y2} €
E(G). We can assume that {1, 11}, {zi, 2} € E(G). Since r > 11, then there are no
3-cycles in G. In particular, z; # z;. Now, we take the cycles C" = (y1, 21, ..., %, y2)
and C" = (y1, @1, Ty, Tpo1,y ..., T4y Y2). S0, [V(C)| = i+ 2 and |[V(C")| = r — i+ 4.
Since r is the girth, we have that i +2 > r and r — 7+ 4 > r. Hence, 4 > 7 and
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6 > r, this is a contradiction. Then D;(C') is a stable set. Now, since GG is 2-connected,
then for each y € D;(C) there exists z € Ng(y) N Do(C). If there exist z1, 29 € Do(C)
such that {z1,2,} € E(G), then there exist y;,y; € D1(C) such that {z1, 11}, {22,y;} €
E(G). Since there are no 3-cycles in GG, we have that y; # y;. We can assume that
{z1,u1},{xi,y;} € E(G). Since there are no 5-cycles, then i # 1. Consequently, there
exist cycles C] = (x1,...,24,Y;, 22, 21,y1) and C§ = (@, ..., %, T1,Y1, 21, 22,Y;). This
implies r < |[V(C])| =i+ 4 and r < |V(CY))| =r —i+6. Hence, i < 6 and r < 10, this is
a contradiction. Then Dy(C) is a stable set. Furthermore, C' is a connected component of
G\ N¢[D2(C)]. But C is not shellable, therefore G is not shellable, from Remark 26. [

Theorem 52. If G has girth at least 11, then G is shellable if and only if there exists
x € V(G) with Ng(z) = {y} such that G\ Ng|x] and G \ Ngly] are shellable.

Proof. <) By ([18], Theorem 2.9).

=) By Remark 26, shellability is closed under c-minors. Consequently, it is only
necessary to prove that GG has a free vertex. If every block of GG is an edge or a vertex,
then G is a forest and there exists € V(G) with degg(x) = 1. Hence, we can assume
that there exists a 2-connected block B of GG. The girth of B is at least 11, since B is an
induced subgraph of G. Thus, by Lemma 51, B is not shellable. Therefore, by Theorem
42, there exists x € D;(B) such that degg(x) = 1. O
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