On well-covered, vertex decomposable and Cohen-Macaulay graphs

Iván D. Castrillón*

Departamento de Matemáticas Centro de Investigación y de Estudios Avanzados del IPN Ciudad de México, México

idcastrillon@math.cinvestav.mx

Roberto Cruz

Instituto de Matemáticas Universidad de Antioquia Medellín, Colombia

roberto.cruz@udea.edu.co

Enrique Reyes

Departamento de Matemáticas Centro de Investigación y de Estudios Avanzados del IPN Ciudad de México, México

ereyes@math.cinvestav.mx

Submitted: Jan 17, 2016; Accepted: May 10, 2016; Published: May 27, 2016 Mathematics Subject Classifications: 13F55, 05E40, 05E45, 05C75

Abstract

Let G = (V, E) be a graph. If G is a König graph or if G is a graph without 3-cycles and 5-cycles, we prove that the following conditions are equivalent: Δ_G is pure shellable, R/I_{Δ} is Cohen-Macaulay, G is an unmixed vertex decomposable graph and G is well-covered with a perfect matching of König type e_1, \ldots, e_g without 4-cycles with two e_i 's. Furthermore, we study vertex decomposable and shellable (non-pure) properties in graphs without 3-cycles and 5-cycles. Finally, we give some properties and relations between critical, extendable and shedding vertices.

Keywords: Cohen-Macaulay, shellable, well-covered, unmixed, vertex decomposable, König, girth

1 Introduction

Let G be a simple graph (without loops and multiplies edges) whose vertex set is $V(G) = \{x_1, \ldots, x_n\}$ and edge set E(G). Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k. The *edge ideal* of G, denoted by I(G), is the ideal of R generated by all monomials $x_i x_j$ such that $\{x_i, x_j\} \in E(G)$. G is a Cohen-Macaulay graph if R/I(G) is a Cohen-Macaulay

^{*}Partially supported by CONACYT and ABACUS-CINVESTAV.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(2) (2016), #P2.39

ring (see [3], [20]). A subset F of V(G) is a stable set or independent set if $e \notin F$ for each $e \in E(G)$. The cardinality of the maximum stable set is denoted by $\beta(G)$. G is called well-covered if every maximal stable set has the same cardinality. On the other hand, a subset D of V(G) is a vertex cover of G if $D \cap e \neq \emptyset$ for every $e \in E(G)$. The number of vertices in a minimum vertex cover of G is called the covering number of G and it is denoted by $\tau(G)$. This number coincide with $\operatorname{ht}(I(G))$, the height of I(G). If the minimal vertex covers have the same cardinality, then G is called an unmixed graph. Notice that, D is a vertex cover if and only if $V(G) \setminus D$ is a stable set. Hence, $\tau(G) = n - \beta(G)$ and G is well-covered if and only if G is unmixed. The Stanley-Reisner complex of I(G), denoted by Δ_G , is the simplicial complex whose faces are the stable sets of G. Recall that a simplicial complex Δ is called pure if every facet has the same number of elements. Thus, Δ_G is pure if and only if G is well-covered.

Some properties of G, Δ_G and I(G) allow an interaction between Commutative Algebra and Combinatorial Theory. Examples of these properties are: Cohen-Macaulayness, shellability, vertex decomposability and well-coveredness. These properties have been studied in ([3], [4], [6], [7], [11], [12], [13], [16], [17], [18], [20], [22]). In general, we have the following implications (see [3], [16], [20], [22])

 $\begin{array}{ccc} \text{Unmixed} & \Rightarrow & \text{Pure} \\ \text{vertex decomposable} & \Rightarrow & \text{shellable} \end{array} \Rightarrow \text{Cohen - Macaulay} \Rightarrow & \text{Well - covered} \end{array}$

The equivalence between the Cohen-Macaulay property and the unmixed vertex decomposable property has been studied for some families of graphs: bipartite graphs (in [7] and [11]); very well-covered graphs (in [5] and [13]); graphs with girth at least 5, blockcactus (in [12]); and graphs without 4-cycles and 5-cycles (in [2]). For this paper, a cycle $C = (z_1, z_2, \ldots, z_n)$ can have chords (edges between non-consecutive vertices in C) in G. A cycle without chords is called an *induced cycle*.

If a bipartite graph is well-covered, pure shellable or Cohen-Macaulay, then it is König and has a perfect matching. The perfect matching is important because it allowed Hibi and Herzog to characterize Cohen-Macaulay bipartite graph (see [11]). Similarly, the existence of a perfect matching allows one to find a classification of well-covered bipartite graphs (see [15] and [19]). However, a 3-cycle and a 5-cycle are Cohen-Macaulay graphs, but they does not have a perfect matching. This is the motivation for the study of Cohen-Macaulay graphs without 3-cycles and 5-cycles. In particular, we are interested in knowing if these graphs have a perfect matching. In this paper we prove that it is affirmative.

The paper is organized as follow: in section 2 we give some properties and relations between critical, shedding and extendable vertices that we will use in the following sections. In section 3 we prove some results about well-covered graphs. In section 4 we prove the equivalences of unmixed vertex decomposable and Cohen-Macaulay properties for König graphs and graphs without 3-cycles and 5-cycles. We prove that theses properties are equivalent to the following condition: G is an unmixed König graph with a perfect matching e_1, \ldots, e_g without 4-cycles with two e_i 's. This result extends the criterion of Herzog-Hibi for Cohen-Macaulay bipartite graphs, given in [11]. In [17] Van Tuyl proved that the vertex decomposable property, the shellable (non-pure) property and the sequentially Cohen-Macaulay property are equivalent in bipartite graphs. Furthermore, in [18] Van Tuyl and Villarreal give a criterion that characterize shellable bipartite graphs. These results and results obtained in section 4, motivate us to study the vertex decomposable property and the shellable (non-pure) property for graphs without 3-cycles and 5-cycles. In section 5, we prove that the neighborhood of a 2-connected block of G has a free vertex, if G is a bipartite shellable graph or if G is a vertex decomposable graph without 3-cycles and 5-cycles. Also, we prove that the criterion of Van Tuyl-Villarreal can be extended to vertex decomposable graphs without 3-cycles and 5-cycles and shellable graphs with girth at least 11. The equivalence between the shellable property and the vertex decomposable property for graphs without 3-cycles and 5-cycles is an open problem.

2 Critical, extendable and shedding vertices.

Let X be a subset of V(G). The subgraph induced by X in G, denoted by G[X] is the graph with vertex set X and whose edge set is $\{\{x, y\} \in E(G) \mid x, y \in X\}$. Furthermore, let $G \setminus X$ denote the induced subgraph $G[V(G) \setminus X]$. Now, if $v \in V(G)$, then the set of neighbors of v (in G) is denoted by $N_G(v)$ and its closed neighborhood is $N_G[v] = N_G(v) \cup \{v\}$. The degree of v in G is $\deg_G(v) = |N_G(v)|$.

Definition 1. G is vertex decomposable if G is a totally disconnected graph or there is a vertex v such that

- (a) $G \setminus v$ and $G \setminus N_G[v]$ are both vertex decomposable, and
- (b) each stable set in $G \setminus N_G[v]$ is not a maximal stable set in $G \setminus v$.

A shedding vertex of G is any vertex which satisfies the condition (b). Equivalently, v is a shedding vertex if for every stable set S contained in $G \setminus N_G[v]$, there is some $x \in N_G(v)$ such that $S \cup \{x\}$ is stable.

Lemma 2. If x is a vertex of G, then x is a shedding vertex if and only if $|N_G(x) \setminus N_G(S)| \ge 1$ for every stable set S of $G \setminus N_G[x]$.

Proof. ⇒) We take a stable set *S* of $G \setminus N_G[x]$. Since *x* is a shedding vertex, then there is a vertex $z \in N_G(x)$ such that $S \cup \{z\}$ is a stable set of $G \setminus x$. Thus, $z \notin N_G[S]$. Therefore, $|N_G(x) \setminus N_G(S)| \ge 1$.

 \Leftarrow) We take a stable set S of $G \setminus N_G[x]$. Thus, there exists a vertex $z \in N_G(x) \setminus N_G(S)$. Since $z \in N_G(x)$, we have that $z \notin S$. Furthermore, $z \notin N_G(S)$, then $S \cup \{z\}$ is a stable set of $G \setminus x$. Consequently, S is not a maximal stable set of $G \setminus x$. Therefore, x is a shedding vertex.

Definition 3. Let S be a stable set of G. If x is of degree zero in $G \setminus N_G[S]$, then x is called *isolated vertex* in $G \setminus N_G[S]$, or we say that S *isolates* to x.

The electronic journal of combinatorics $\mathbf{23(2)}$ (2016), $\#\mathrm{P2.39}$

By Lemma 2, we have that x is not a shedding vertex if and only if there exists a stable set S of $G \setminus N_G[x]$ such that $N_G(x) \subseteq N_G(S)$, i.e. x is an isolated vertex in $G \setminus N_G[S]$.

Corollary 4. Let S be a stable set of G. If S isolates x in G, then x is not a shedding vertex in $G \setminus N_G[y]$ for all $y \in S$.

Proof. Since S isolates x, then $\deg_{G \setminus N_G[S]}(x) = 0$ and in particular $x \in V(G \setminus N_G[S])$. Thus, $N_G(x) \subseteq N_G[S] \setminus S$. Hence, if $y \in S$ and $G' = G \setminus N_G[y]$, then $x \in V(G')$. Furthermore, since $S \cap N_G[x] = \emptyset$, then $S' = S \setminus y$ is a stable set in $G' \setminus N_{G'}[x]$. Now, since S isolates x, if $a \in N_{G'}(x)$, then there exists $s \in S$ such that $\{a, s\} \in E(G)$. But $a \in N_{G'}(x)$, then $a \notin N_G[y]$, consequently $s \in S'$ and $\{a, s\} \in E(G')$. This implies $|N_{G'}(x) \setminus N_{G'}(S')| = 0$. Therefore, by Lemma 2, x is not a shedding vertex in G'. \Box

Theorem 5. If x is a shedding vertex of G, then one of the following conditions hold:

- (a) There is $y \in N_G(x)$ such that $N_G[y] \subseteq N_G[x]$.
- (b) x is in a 5-cycle with at most one chord.

Proof. We take $N_G(x) = \{y_1, y_2, \ldots, y_k\}$. If G does not satisfy (a), then there is

$$\{z_1,\ldots,z_k\}\subseteq V(G)\setminus N_G[x]$$

such that $\{y_i, z_i\} \in E(G)$ for $i \in \{1, \ldots, k\}$. We denote by $L = \{z_1, \ldots, z_q\} = \{z_1, \ldots, z_k\}$ and suppose that $z_i \neq z_j$ for $1 \leq i < j \leq q$. By Lemma 2, if L is a stable set of G, then $|N_G(x) \setminus N_G(L)| \ge 1$. But $N_G(x) = \{y_1, \ldots, y_k\} \subseteq N_G(L)$, then L is not a stable set. Hence, $q \ge 2$ and there exist $z_{i_1}, z_{i_2} \in L$ such that $\{z_{i_1}, z_{i_2}\} \in E(G)$. Thus, there exist y_{j_1} and y_{j_2} such that $y_{j_1} \neq y_{j_2}$ and $\{y_{j_1}, z_{i_1}\}, \{y_{j_2}, z_{i_2}\} \in E(G)$. Furthermore, $\{z_i, y_{j_2}\}, \{z_{i_2}, y_{j_1}\}, \{z_{i_1}, x\}, \{z_{i_2}, x\} \notin E(G)$. Therefore, $(x, y_{j_1}, z_{i_1}, z_{i_2}, y_{j_2})$ is a 5-cycle of G with at most one chord.

Definition 6. A vertex v is called simplicial if the induced subgraph $G[N_G(v)]$ is a complete graph (or clique). Equivalently, a simplicial vertex is a vertex that appears in exactly one clique.

Remark 7. If $v, w \in V(G)$ such that $N_G[v] \subseteq N_G[w]$, then w is a shedding vertex of G (see Lemma 6 in [22]). In particular, if v is a simplicial vertex, then any $w \in N_G(v)$ is a shedding vertex (see Corollary 7 in [22]).

Corollary 8. Let G be graph without 4-cycles. If x is a shedding vertex of G, then x is in a 5-cycle or there exists a simplicial vertex z such that $\{x, z\} \in E(G)$ with $|N_G[z]| \leq 3$.

Proof. By Theorem 5, if x is not in a 5-cycle, then there is $z \in N_G(x)$ such that $N_G[z] \subseteq N_G[x]$. If $\deg_G(z) = 1$, then z is a simplicial vertex. If $\deg_G(z) = 2$, then $N_G(z) = \{x, w\}$. Consequently, (z, x, w) is a 3-cycle since $N_G[z] \subseteq N_G[x]$. Thus, z is a simplicial vertex. Now, if $\deg_G(z) \ge 3$, then there are $w_1, w_2 \in N_G(z) \setminus x$. Since $N_G[z] \subseteq N_G[x]$, we have that (w_1, z, w_2, x) is a 4-cycle of G. This is a contradiction. Therefore, $|N_G[z]| \le 3$ and z is a simplicial vertex. Remark 9. If G is a 5-cycle with $V(G) = \{x_1, x_2, x_3, x_4, x_5\}$, then each x_i is a shedding vertex.

Proof. We can assume that i = 1, then $\{x_3\}$ and $\{x_4\}$ are the stable sets in $G \setminus N_G[x_1]$. Furthermore, $\{x_3, x_5\}$ and $\{x_2, x_4\}$ are stable sets in $G \setminus x_1$. Hence, each stable set of $G \setminus N_G[x_1]$ is not a maximal stable set in $G \setminus x_1$. Therefore, x_1 is a shedding vertex. \Box

Definition 10. A vertex v of G is critical if $\tau(G \setminus v) < \tau(G)$. Furthermore, G is called a vertex critical graph if each vertex of G is critical.

Lemma 11. If $\tau(G \setminus v) < \tau(G)$, then $\tau(G) = \tau(G \setminus v) + 1$. Moreover, v is a critical vertex if and only if $\beta(G) = \beta(G \setminus v)$.

Proof. If t is a minimal vertex cover such that $|t| = \tau(G \setminus v)$, then $t \cup \{v\}$ is a vertex cover of G. Thus, $\tau(G) \leq |t \cup \{v\}| = \tau(G \setminus v) + 1$. Consequently, if $\tau(G) > \tau(G \setminus v)$, then $\tau(G) = \tau(G \setminus v) + 1$.

Now, we have that $\tau(G) + \beta(G) = |V(G)| = |V(G \setminus v)| + 1 = \tau(G \setminus v) + \beta(G \setminus v) + 1$. Hence, $\beta(G) = \beta(G \setminus v)$ if and only if $\tau(G) = \tau(G \setminus v) + 1$. Therefore, v is a critical vertex if and only if $\beta(G) = \beta(G \setminus v)$.

Definition 12. A vertex v of G is called an *extendable* vertex if G and $G \setminus v$ are wellcovered graphs with $\beta(G) = \beta(G \setminus v)$.

Note that if v is an extendable vertex, then every maximal stable set S of $G \setminus v$ contains a vertex of $N_G(v)$.

Corollary 13. Let G be an unmixed graph and $x \in V(G)$. The following conditions are equivalent:

- (a) x is an extendable vertex.
- (b) $|N_G(x) \setminus N_G(S)| \ge 1$ for every stable set S of $G \setminus N_G[x]$.
- (c) x is a shedding vertex.
- (d) x is a critical vertex and $G \setminus x$ is unmixed.

Proof. $(a) \Leftrightarrow (b)$ ([8], Lemma 2).

 $(b) \Leftrightarrow (c)$ By Lemma 2.

 $(a) \Leftrightarrow (d)$ Since G is unmixed, then by Lemma 11, x is extendable if and only if x is a critical vertex and $G \setminus x$ is unmixed.

3 König and well-covered graphs

In this paper we denoted by Z_G the set of the isolated vertices of G, that is,

$$Z_G = \{ x \in V(G) \mid \deg_G(x) = 0 \}.$$

Definition 14. G is a König graph if $\tau(G) = \nu(G)$ where $\nu(G)$ is the maximum number of pairwise disjoint edges. A perfect matching of König type of G is a collection e_1, \ldots, e_g of pairwise disjoint edges whose union is V(G) and $g = \tau(G)$.

Proposition 15. Let G be a König graph and $G' = G \setminus Z_G$. Then the following are equivalent:

- (a) G is unmixed.
- (b) G' is unmixed.
- (c) If $V(G') \neq \emptyset$, then G' has a perfect matching e_1, \ldots, e_g of König type such that for any two edges $f_1 \neq f_2$ and for two distinct vertices $x \in f_1$, $y \in f_2$ contained in some e_i , one has that $(f_1 \setminus x) \cup (f_2 \setminus y)$ is an edge.

Proof. (a) \Leftrightarrow (b) Since $V(G) \setminus V(G') = Z_G$, then C is a vertex cover of G if and only if C is a vertex cover of G'. Therefore, G is unmixed if and only if G' is unmixed.

(b) \Leftrightarrow (c) By ([14], Lemma 2.3 and Proposition 2.9).

red if it is well covered without isolat

Definition 16. A graph G is called *very well-covered* if it is well-covered without isolated vertices and |V(G)| = 2ht(I(G)).

Lemma 17. G is an unmixed König graph if and only if G is totally disconnected or $G' = G \setminus Z_G$ is very well-covered.

Proof. ⇒) If G is not totally disconnected, then from Proposition 15, G' has a perfect matching e_1, \ldots, e_g of König type. Hence, $|V(G')| = 2g = 2\tau(G') = 2ht(I(G'))$. Furthermore, G' is unmixed, therefore G' is very well-covered.

 \Leftarrow) If G is totally disconnected, then $\nu(G) = 0$ and $\tau(G) = 0$. Hence, G is an unmixed König graph. Now, if G is not totally disconnected, then G' is very well-covered. Consequently, by ([10], Corollary 3.7) G' has a perfect matching. Thus, $\nu(G') = |V(G')|/2 =$ ht(G') = $\tau(G')$. Hence, G' is König. Furthermore, $\nu(G) = \nu(G')$ and $\tau(G) = \tau(G')$, then G is König. Finally, since G' is unmixed, by Proposition 15, G is also unmixed.

Definition 18. A subgraph H of G is called a c-minor (of G) if there exists a stable set S of G, such that $H = G \setminus N_G[S]$.

Remark 19. Each connected component of a graph G is a c-minor of G.

Remark 20. The unmixed property is closed under c-minors. That is, each c-minor of G has the same property (see [20]).

Definition 21. A vertex of degree one is called *leaf* or *free vertex*. Furthermore, an edge which is incident with a leaf is called *pendant*.

Lemma 22. If G is an unmixed graph and $x \in V(G)$, then $N_G(x)$ does not contain two free vertices.

Proof. We suppose that there exists $x \in V(G)$ such that y_1, \ldots, y_s are free vertices in $N_G(x)$. Hence, $G_1 = G \setminus N_G[y_1, \ldots, y_s] = G \setminus \{x, y_1, \ldots, y_s\}$ is unmixed. Now, we take a maximal stable set S of G_1 . Thus, $|S| = \beta(G_1)$ since G_1 is unmixed. Consequently, $S_1 = S \cup \{y_1, \ldots, y_s\}$ is a stable set in G. We take S_2 a maximal stable in G such that $x \in S_2$. Since G is unmixed, we have that $|S_2| \ge |S_1| = |S| + s$. Furthermore, $S_2 \setminus x$ is a stable set in G_1 , then $|S_2| \le \beta(G_1) + 1$. This implies $\beta(G_1) + 1 \ge |S| + s$. But, $|S| = \beta(G_1)$, therefore, $s \le 1$.

Definition 23. If $v, w \in V(G)$, then the distance d(u, v) between u and v in G is the length of the shortest path joining them, otherwise $d(u, v) = \infty$. Now, if $H \subseteq G$, then the distance from a vertex v to H is $d(v, H) = min\{d(v, u) \mid u \in V(H)\}$. Furthermore, if $W \subseteq V(G)$, then we define d(v, W) = d(v, G[W]) and $D_i(W) = \{v \in V(G) \mid d(v, W) = i\}$.

Proposition 24. Let G be an unmixed connected graph without 3-cycles and 5-cycles. If C is a 7-cycle and H is a c-minor of G with $C \subseteq H$ such that C has three non-adjacent vertices of degree 2 in H, then C is a c-minor of G.

Proof. We take a minimal c-minor H of G such that $C \subseteq H$ and C has three non-adjacent vertices of degree 2 in H. We can suppose that $C = (x, z_1, w_1, a, b, w_2, z_2)$ with $\deg_H(x) =$ $\deg_H(w_1) = \deg_H(w_2) = 2$. If $\{z_1, b\} \in E(H)$, then (z_1, b, w_2, z_2, x) is a 5-cycle of G. Thus, $\{z_1, b\} \notin E(H)$, similarly $\{z_2, a\} \notin E(H)$. Furthermore, since G does not have 3-cycles, then $\{z_1, z_2\}, \{z_1, a\}, \{z_2, b\} \notin E(H)$. Hence, C is an induced cycle in H. On the other hand, if there exists $v \in V(H)$ such that $d(v, C) \ge 2$, then $H' = H \setminus N_G[v]$ is a c-minor of G and $C \subseteq H' \subset H$. This is a contradiction by the minimality of H. Therefore, $d(v, C) \le 1$ for each $v \in V(H)$.

Now, if $\deg_H(b) \ge 3$, then there exists $c \in V(H) \setminus V(C)$ such that $\{b, c\} \in E(H)$. If $\{c, z_2\} \notin E(G)$ implies that $N_{H_1}(z_2)$ has two free vertices, w_2 and x, in $H_1 = H \setminus N_H[w_1, c]$, this is a contradiction by Lemma 22. Thus $\{c, z_2\} \in E(H)$. Furthermore, $\{a, c\}, \{z_1, c\} \notin E(H)$ since (a, b, c) and (z_1, w_1, a, b, c) are not cycles in G. Hence, if $\deg_H(c) \ge 3$, then there exists $d \in V(H) \setminus V(C)$ such that $\{c, d\} \in E(H)$. Also, $\{d, b\}, \{d, z_2\}, \{d, z_1\} \notin E(H)$ since $(c, b, d), (z_2, d, c)$ and (z_1, x, z_2, c, d) are not cycles of G. But $d(d, C) \le 1$, so $\{a, d\} \in E(H)$. Consequently, $N_{H_2}(z_1)$ has two free vertices, w_1 and x, in $H_2 = H \setminus N_H[d, w_2]$, a contradiction by Lemma 22, then $\deg_H(c) = 2$. This implies, $N_{H_3}(z_2)$ has two free vertices, w_2 and c, in $H_3 = H \setminus N_H[a]$. This is not possible, therefore $\deg_H(b) = 2$.

Now, if $\deg_H(z_2) \ge 3$ we have that there exists $c' \in V(H) \setminus V(C)$ such that $\{c', z_2\} \in E(H)$. If there exists $d' \in V(H) \setminus V(C)$ such that $\{c', d'\} \in E(H)$, then $\{d', z_1\}$ or $\{d', z_2\} \in E(G)$, since $d(d', C) \le 1$. But (c', d', z_2) and (x, z_2, c', d', z_1) are not cycles

The electronic journal of combinatorics $\mathbf{23(2)}$ (2016), #P2.39

of H, thus, $N_H(c') \subseteq \{z_1, z_2\}$. Consequently, $N_{H_4}(z_2)$ has two free vertices, x and c', in $H_4 = H \setminus N_H[w_1]$, a contradiction. Hence $\deg_H(z_2) = 2$. Similarly, $\deg_H(z_1) = 2$. Furthermore, since H is minimal, then it is connected. Therefore, H = C and C is a c-minor of G.

4 König and Cohen-Macaulay graphs without 3-cycles and 5cycles

Definition 25. A simplicial complex Δ is shellable if the facets (maximal faces) of Δ can be ordered F_1, \ldots, F_s such that for all $1 \leq i < j \leq s$, there exists some $v \in F_j \setminus F_i$ and some $l \in \{1, \ldots, j-1\}$ with $F_j \setminus F_l = \{v\}$. In this case, F_1, \ldots, F_s is called a shelling of Δ . A graph G is called shellable if Δ_G is shellable. Furthermore, the facet set of Δ is denoted by $\mathcal{F}(\Delta)$.

Remark 26. The following properties: shellable, Cohen-Macaulay, sequentially Cohen-Macaulay and vertex decomposable are closed under c-minors (see [1], [20]).

Remark 27. If G is very well-covered with a perfect matching e_1, \ldots, e_g , then the following conditions are equivalent:

- (1) G is Cohen-Macaulay.
- (2) There are no 4-cycles with two e_i 's.

Proof. By ([5], Theorem 3.4).

Proposition 28. Let G be a König graph where $G' = G \setminus Z_G$. Then the following properties are equivalent:

- (i) G is unmixed vertex decomposable.
- (ii) Δ_G is pure shellable.
- (iii) R/I(G) is Cohen-Macaulay.
- (iv) $V(G') = \emptyset$ or G' is an unmixed graph with a perfect matching e_1, \ldots, e_g of König type without 4-cycles with two e_i 's.
- (v) $V(G') = \emptyset$ or there exists a relabelling of the vertices $V(G') = \{x_1, \ldots, x_h, y_1, \ldots, y_h\}$ such that $\{x_1, y_1\}, \ldots, \{x_h, y_h\}$ is a perfect matching, $X = \{x_1, \ldots, x_h\}$ is a minimal vertex cover of G' and the following conditions holds:
 - (a) If $a_i \in \{x_i, y_i\}$ and $\{a_i, x_j\}, \{y_j, x_k\} \in E(G')$, then $\{a_i, x_k\} \in E(G')$ for $i \neq j$ and $j \neq k$;
 - (b) If $\{x_i, y_j\} \in E(G')$, then $i \leq j$.

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) In each case G is unmixed and König. Hence, by Lemma 17, G is totally disconnected or G' is very well-covered. If G is totally disconnected, then we obtain the equivalences. Now, if G' is very well-covered, then by ([13], Theorem 1.1) we obtain the equivalences.

 $(iv) \Rightarrow (iii)$ We can assume that $V(G') \neq \emptyset$. Thus, by Lemma 17, G' is very wellcovered. Hence, by Remark 27 G' is Cohen-Macaulay. Therefore, G is Cohen-Macaulay.

(iii) \Rightarrow (v) Since R/I(G) is Cohen-Macaulay, then G is unmixed. Consequently, by Lemma 17, we can assume that G' is very well-covered. Hence, by ([13], Lemma 3.1), G' satisfies (v).

 $(\mathbf{v}) \Rightarrow (i\mathbf{v})$ We can assume that $V(G') \neq \emptyset$. Since, $e_1 = \{x_1, y_1\}, \ldots, e_h = \{x_h, y_h\}$ is a perfect matching, then $\nu(G') = h$. Furthermore, X is a minimal vertex cover, so $\tau(G') = h$. Hence, e_1, \ldots, e_h is a perfect matching of König type. Thus, from (a) and Proposition 15, G' is unmixed. On the other hand $\{y_1, \ldots, y_h\}$ is a stable set. Therefore, from (b), there are no 4-cycles with two e_i 's.

Corollary 29. Let G be a connected König graph. If G is Cohen-Macaulay, then G is an isolated vertex or G has at least one free vertex.

Proof. By Proposition 28, if G is not an isolated vertex, then G has a perfect matching $e_1 = \{x_1, y_1\}, \ldots, e_h = \{x_h, y_h\}$ where $\{x_1, \ldots, x_h\}$ is a minimal vertex cover. Thus, $\{y_1, \ldots, y_h\}$ is a maximal stable set. Furthermore, if $\{x_i, y_j\}$, then $i \leq j$. Hence, $N_G(y_1) = \{x_1\}$. Therefore, y_1 is a free vertex.

Lemma 30. Let G be an unmixed connected graph with a perfect matching e_1, \ldots, e_g of König type without 4-cycles with two e_i 's and $g \ge 2$. For each $z \in V(G)$ we have that:

- (a) If $\deg_G(z) \ge 2$, then there exist $\{z, w_1\}, \{w_1, w_2\} \in E(G)$ such that $\deg_G(w_2) = 1$. Furthermore, $e_i = \{w_1, w_2\}$ for some $i \in \{1, \dots, g\}$.
- (b) If $\deg_G(z) = 1$, then there exist $\{z, w_1\}, \{w_1, w_2\}, \{w_2, w_3\} \in E(G)$ such that $\deg_G(w_3) = 1$. Moreover, $e_i = \{z, w_1\}$ and $e_j = \{w_2, w_3\}$ for some $i, j \in \{1, \dots, g\}$.

Proof. Since $e_1 = \{x_1, y_1\}, \ldots, e_g = \{x_g, y_g\}$ is a perfect matching of König type we can assume $D = \{x_1, \ldots, x_g\}$ is a minimal vertex cover. Thus, $F = \{y_1, \ldots, y_g\}$ is a maximal stable set. By Proposition 28, we can assume that if $\{x_i, y_j\} \in E(G)$, then $i \leq j$. Now, we take a vertex $z \in V(G)$.

(a) First, we suppose that $z = x_k$ and there is a vertex x_j in $N_G(x_k)$. If y_j is a free vertex, then we take $w_1 = x_j$ and $w_2 = y_j$, and $e_j = \{w_1, w_2\}$. Now, we can assume $N_G(y_j) \setminus x_j = \{x_{p_1}, \ldots, x_{p_r}\}$ with $p_1 < \cdots < p_r < j$. If y_{p_1} is not a free vertex, then there is a vertex x_p with $p < p_1$ such that $\{x_p, y_{p_1}\} \in E(G)$. Since G is unmixed, from Proposition 15, we obtain that $\{x_p, y_j\} = (\{x_p, y_{p_1}\} \setminus y_{p_1}) \cup (\{y_j, x_{p_1}\} \setminus x_{p_1}) \in E(G)$. But $p < p_1$, a contradiction since p_1 is minimal. Consequently, $\deg_G(y_{p_1}) = 1$. Also, from Proposition 15, we have that $\{x_k, x_{p_1}\} = (\{x_k, x_j\} \setminus x_j) \cup (\{x_{p_1}, y_j\} \setminus y_j) \in E(G)$. Hence, we take $w_1 = x_{p_1}$ and $w_2 = y_{p_1}$, and we have that $e_{p_1} = \{w_1, w_2\}$. Now, we

assume that $z = x_k$ and $N_G(x_k) \setminus y_k = \{y_{j_1}, \ldots, y_{j_t}\}$ with $k < j_1 < \cdots < j_t$. We suppose that $\deg_G(x_{j_t}) \ge 2$. If there is a vertex y_r such that $\{x_{j_t}, y_r\} \in E(G)$, then $r > j_t$. Since G is unmixed, $\{x_k, y_r\} = (\{x_k, y_{j_t}\} \setminus y_{j_t}) \cup (\{y_r, x_{j_t}\} \setminus x_{j_t}) \in E(G)$, a contradiction since j_t is maximal. Thus, there exists a vertex x_p such that $\{x_{j_t}, x_p\} \in E(G)$. But, since G is unmixed, then $\{x_k, x_p\} = (\{x_k, y_{j_t}\} \setminus y_{j_t}) \cup (\{x_p, x_{j_t}\} \setminus x_{j_t}) \in E(G)$. This is a contradiction since $N_G(x_k) \setminus y_k = \{y_{j_1}, \ldots, y_{i_t}\}$. Consequently, $\deg_G(x_{j_t}) = 1$. Therefore, we take $w_1 = y_{j_t}$ and $w_2 = x_{j_t}$, with $e_{j_t} = \{w_1, w_2\}$.

Finally, we assume that $z = y_k$, since y_k is not a free vertex, then $N_G(y_k) \setminus x_k = \{x_{j_1}, \ldots, x_{j_r}\}$ with $j_1 < \cdots < j_r < k$. If y_{j_1} is not a free vertex, then there is a vertex x_q such that $\{x_q, y_{j_1}\} \in E(G)$ with $q < j_1$. This implies $\{x_q, y_k\} = (\{x_q, y_{j_1}\} \setminus y_{j_1}) \cup (\{x_{j_1}, y_k\} \setminus x_{j_1}) \in E(G)$. But $q < j_1$, a contradiction. Therefore, $\deg_G(y_{j_1}) = 1$ and we take $w_1 = x_{j_1}$ and $w_2 = y_{j_1}$. Hence, $e_{j_1} = \{w_1, w_2\}$.

(b) Since e_1, \ldots, e_g is a perfect matching, then there exists $i \in \{1, \ldots, g\}$ such that $e_i = \{z, z'\}$. Since G is connected, z is a free vertex and $g \ge 2$, then $\deg_G(z') \ge 2$. Thus, by (a) there exist $w'_1, w'_2 \in V(G)$ such that $\{z', w'_1\}, \{w'_1, w'_2\} \in E(G)$ where $\deg_G(w'_2) = 1$ and $\{w'_1, w'_2\} = e_j$ for some $j \in \{1, \ldots, g\}$. Therefore, we take $w_1 = z', w_2 = w'_1, w_3 = w'_2$. Consequently, $e_i = \{z, w_1\}$ and $e_j = \{w_2, w_3\}$.

Remark 31. If C_n is a n-cycle, then C_n is vertex decomposable, shellable or sequentially Cohen-Macaulay if and only if n = 3 or 5 (see [9] and [22]). Furthermore, a chordal graph, which is a graph whose induced cycles are 3-cycles, is vertex decomposable (see Corollary 7 in [22]). In particular trees are vertex decomposable.

Theorem 32. Let G be a graph without 3-cycles and 5-cycles. If G_1, \ldots, G_k are the connected components of G, then the following conditions are equivalent:

- (a) G is unmixed vertex decomposable.
- (b) G is pure shellable.
- (c) G is Cohen-Macaulay
- (d) G is unmixed and if G_i is not an isolated vertex, then G_i has a perfect matching e_1, \ldots, e_g of König type without 4-cycles with two e'_i s.

Proof. (a) \Rightarrow (b) \Rightarrow (c) (see [16], [20], [22]).

(d) \Rightarrow (a) Since each component G_i is König, then G is König. Therefore, from Proposition 28, G is unmixed vertex decomposable.

(c) \Rightarrow (d) Since G is Cohen-Macaulay, then G is unmixed. We proceed by induction on |V(G)|. We take $x \in V(G)$ such that $\deg_G(x)$ is minimal and we suppose that $N_G(x) = \{z_1, \ldots, z_r\}$. By Remark 26, $G' = G \setminus N_G[x]$ is a Cohen-Macaulay graph. We take G'_1, \ldots, G'_s , the connected components of G'. We can assume that $V(G'_i) = \{y_i\}$ for $i \in \{1, \ldots, s'\}$. Since $\deg_G(x)$ is minimal, this implies $\{y_i, z_j\} \in E(G)$ for all $i \in \{1, \ldots, s'\}$ and $j \in \{1, \ldots, r\}$. Since G does not contain 3-cycles, we have that $N_G(x)$ is a stable

set. If s' = s, then the only maximal stable sets of G are $\{y_1, \ldots, y_{s'}, x\}$ and $\{z_1, \ldots, z_r\}$. Thus, G is a bipartite graph. So, G is König. Hence, by Proposition 28, G satisfies (d). Consequently, we can assume s > s', implying that there is a component G'_i with an edge $e = \{w, w'\}$.

Now, we suppose that $r \ge 2$. Since $\deg_G(x)$ is minimal there exist $a, b \in V(G)$ such that $\{a, w\}, \{b, w'\} \in E(G)$. If a = b, then (a, w, w') is a 3-cycle in G. Hence, $a \ne b$. If $a, b \in N_G(x)$, then (x, a, w, w', b) is a 5-cycle in G. Thus, $|\{w, w', a, b\} \cap V(G'_i)| \ge 3$. By induction hypothesis, G' satisfies (d). So, G'_i has a perfect matching and $\tau(G'_i) \ge 2$. Furthermore, by Corollary 29, G'_i has a free vertex a'. Then, by Lemma 30 (b), there exist edges $\{a', w_1\}, \{w_1, w_2\}, \{w_2, b'\} \in E(G'_i)$ such that $\deg_{G'_i}(a') = \deg_{G'_i}(b') = 1$. By the minimality of $\deg_G(x)$ we have that a' and b' are adjacent with at least r - 1 neighbor vertices of x. If $r \ge 3$, then there exists z_j such that $z_j \in N_G(a') \cap N_G(b')$. This implies that (a', w_1, w_2, b', z_j) is a 5-cycle of G. But G does not have 5-cycles, consequently, r = 2. We can assume that $\{a', z_1\}, \{b', z_2\} \in E(G), \text{ implying } C = (x, z_1, a', w_1, w_2, b', z_2)$ is a 7-cycle with $\deg_G(a') = \deg_G(b') = \deg_G(x) = 2$. Hence, by Proposition 24, C is a c-minor of G. Thus, by Remark 26, C is Cohen-Macaulay. This is a contradiction by Remark 31. Therefore, $\deg_G(x) = r \le 1$.

If r = 0, then the result is clear. Now, if r = 1 we can assume that G_1, \ldots, G_k are the connected components of G and $z_1 \in V(G_1)$. Consequently, the connected components of $G \setminus N_G[x]$ are $F_1, \ldots, F_l, G_2, \ldots, G_k$ where F_1, \ldots, F_l are the connected components of $G_1 \setminus N_{G_1}[x]$. By induction hypothesis G_2, \ldots, G_k satisfy (d). If $F_j = \{d_j\}$, then $N_G(z_1)$ has two free vertices, d_j and x, a contradiction by Lemma 22. Hence, $|V(F_i)| \ge 2$ for $i \in \{1, \ldots, l\}$. By induction hypothesis, we have that F_i has a perfect matching $M_i = \{e_1^i, \ldots, e_{g_i}^i\}$ of König type. Thus, $\{e\} \cup (\bigcup_{i=1}^l M_i)$ is a perfect matching of G_1 , where $e = \{x, z_1\}$. Also, $\{z_1\} \cup (\bigcup_{i=1}^l X_i)$ is a vertex cover of G_1 , where X_i is a minimal vertex cover of F_i . Consequently, $\nu(G_1) \ge 1 + \sum_{i=1}^l |M_i| = 1 + \sum_{i=1}^l g_i = 1 + \sum_{i=1}^l |X_i| \ge \tau(G_1)$. This implies that G_1 is König. Furthermore, by Remark 26, we have that G_1 is Cohen-Macaulay. Therefore, by Proposition 28, G_1 satisfies (d).

Corollary 33. Let G be a connected graph without 3-cycles and 5-cycles. If G is Cohen-Macaulay, then G has at least one extendable vertex x adjacent to a free vertex.

Proof. From Theorem 32, G is König. Thus, by Corollary 29 there exists a free vertex x. If $N_G(x) = \{y\}$, then by Remark 7, y is a shedding vertex. Therefore, from Corollary 13, y is an extendable vertex, since G is unmixed.

Definition 34. G is called whisker graph if there exists an induced subgraph H of G such that $V(H) = \{x_1, \ldots, x_s\}, V(G) = V(H) \cup \{y_1, \ldots, y_s\}$ and $E(G) = E(H) \cup W(H)$ where $W(H) = \{\{x_1, y_1\}, \ldots, \{x_s, y_s\}\}$. The edges of W(H) are called whiskers and they form a perfect matching.

Definition 35. The *girth* of G is the length of the smallest cycle or infinite if G is a forest.

The electronic journal of combinatorics 23(2) (2016), #P2.39

Corollary 36. Let G be a connected graph of girth 6 or more. If G is not an isolated vertex, then the following conditions are equivalent:

- (i) G is unmixed vertex decomposable.
- (ii) Δ_G is pure shellable.
- (iii) R/I(G) is Cohen-Macaulay.
- (iv) G is an unmixed König graph.
- (v) G is very well-covered.
- (vi) G is unmixed with $G \neq C_7$.
- (vii) G is a whisker graph.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) (see [16], [20], [22]). (iii) \Rightarrow (iv) *G* is unmixed and from Theorem 32, *G* is König. (iv) \Rightarrow (v) From Lemma 17. (v) \Rightarrow (vi) It is clear, since C_7 is not very well-covered.

(vi) \Rightarrow (vii) By ([8], Corollary 5), the pendant edges $\{x_1, y_1\}, \ldots, \{x_g, y_g\}$ of G form a perfect matching. Since $\{x_i, y_i\}$ is a pendant edge, we can assume that $\deg_G(y_i) = 1$ for each $1 \leq i \leq g$. We take $H = G[x_1, \ldots, x_n]$. Therefore, G is a whisker graph with $W(H) = \{\{x_1, y_1\}, \ldots, \{x_g, y_g\}\}.$

(vii) \Rightarrow (i) By ([6], Theorem 4.4).

5 Vertex decomposable and shellable properties in graphs without 3-cycles and 5-cycles

Definition 37. A 5-cycle C of G is called *basic* if C does not contain two adjacent vertices of degree three or more in G.

Lemma 38. If G is a graph, then any vertex of degree at least 3 in a basic 5-cycle is a shedding vertex.

Proof. Let $C = (x_1, x_2, x_3, x_4, x_5)$ be a basic 5-cycle. We suppose that $\deg_G(x_1) \ge 3$, since C is a basic 5-cycle, then $\deg_G(x_2) = \deg_G(x_5) = 2$. Also, we can assume that $\deg_G(x_3) = 2$. We take a stable set S of $G \setminus N_G[x_1]$. Since $\{x_3, x_4\} \in E(G)$, then $|S \cap \{x_3, x_4\}| \le 1$. Hence, $x_3 \notin S$ or $x_4 \notin S$. Consequently, $S \cup \{x_2\}$ or $S \cup \{x_5\}$ is a stable set of $G \setminus x_1$. Therefore, x_1 is a shedding vertex. \Box

Remark 39. If G has a shedding vertex v where $G \setminus v$ and $G \setminus N_G[v]$ are shellable with shelling F_1, \ldots, F_k and G_1, \ldots, G_q , respectively, then G is shellable with shelling $F_1, \ldots, F_k, G_1 \cup \{v\}, \ldots, G_q \cup \{v\}$ (see Lemma 6 in [21]).

The electronic journal of combinatorics $\mathbf{23(2)}$ (2016), #P2.39

Theorem 40. Let G be a connected graph with a basic 5-cycle C. G is a shellable graph if and only if there is a shedding vertex $x \in V(C)$ such that $G \setminus x$ and $G \setminus N_G[x]$ are shellable graphs.

Proof. \Rightarrow) We can suppose that $C = (x_1, x_2, x_3, x_4, x_5)$. If G = C, then G is shellable. By Remark 9, each vertex is a shedding vertex. Furthermore, $G \setminus x_1$ is a path with shelling $\{x_2, x_4\}, \{x_2, x_5\}, \{x_3, x_5\}$ and $G \setminus N_G[x_1]$ is an edge. Therefore, $G \setminus x_1$ and $G \setminus N_G[x_1]$ are shellable graphs. Now, we suppose $G \neq C$. We can assume that $\deg_G(x_1) \geq 3$. Since C is a basic 5-cycle, then $\deg_G(x_2) = \deg_G(x_5) = 2$. Also, we can suppose $\deg_G(x_3) = 2$ and $\deg_G(x_4) \ge 2$. By Lemma 38, x_1 is a shedding vertex. Furthermore by Remark 26, we have that $G \setminus N_G[x_1]$ is a shellable graph. Now, we will prove that $G_1 = G \setminus x_1$ is shellable. Since G is shellable and since shellability is closed under c-minors, then $G_2 = G \setminus N_G[x_2]$ is shellable. We assume that F_1, \ldots, F_r is a shelling of Δ_{G_2} . Also, $G_3 = G \setminus N_G[x_3, x_5]$ is shellable. We suppose that H_1, H_2, \ldots, H_k is shelling of Δ_{G_3} . We take $F \in \mathcal{F}(\Delta_{G_1})$. If $x_2 \in F$, then $F \setminus x_2 \in \mathcal{F}(\Delta_{G_2})$ and there exists F_i such that $F = F_i \cup \{x_2\}$. If $x_2 \notin F$, then $x_3 \in F$ and $x_4 \notin F$. Thus, $x_5 \in F$. Hence, $F \setminus \{x_3, x_5\} \in \mathcal{F}(\Delta_{G_3})$, then there exists H_j such that $F = H_j \cup \{x_3, x_5\}$. This implies, $\mathcal{F}(\Delta_{G_1}) = \{F_1 \cup \{x_2\}, \dots, F_r \cup \{x_2\}, H_1 \cup \{x_3, x_5\}, \dots, H_k \cup \{x_3, x_5\}\}.$ Furthermore, $F_1 \cup \{x_2\}, \ldots, F_r \cup \{x_2\}$ and $H_1 \cup \{x_3, x_5\}, \ldots, H_k \cup \{x_3, x_5\}$ are shellings. Now, $x_3 \in (H_j \cup \{x_3, x_5\})$ $\{x_3, x_5\}$ ($F_i \cup \{x_2\}$) and H_i is a stable set of G without vertices of C. So, $H_i \cup \{x_2, x_5\}$ is a maximal stable set of G_1 since $N_G(x_2, x_5) = V(C)$ and $\{x_2, x_5\} \notin E(G)$. Consequently, $H_j \cup \{x_2, x_5\} = F_l \cup \{x_2\}$ for some $l \in \{1, \dots, r\}$ and $(H_j \cup \{x_3, x_5\}) \setminus (F_l \cup \{x_2\}) = \{x_3\}.$ Therefore, G_1 is a shellable graph.

 \Leftarrow) By Remark 39.

Definition 41. A *cut vertex* of a graph is one whose removal increases the number of connected components. A *block* of a graph is a maximal subgraph without cut vertices. A connected graph without cut vertices with at least three vertices is called 2-connected graph.

In the following result P is a property closed under c-minors.

Theorem 42. Let G be a graph without 3-cycles and 5-cycles with a 2-connected block B. If G satisfies the property P and B does not satisfy P, then there exists $x \in D_1(B)$ such that $\deg_G(x) = 1$.

Proof. By contradiction, we assume that if $x \in D_1(B)$, then $|N_G(x)| > 1$. Thus, there exist $a, b \in N_G(x)$ with $a \neq b$. We can suppose that $a \in V(B)$. If $b \in V(B)$, then $G[\{x\} \cup V(B)]$ is 2-connected. But $B \subsetneq G[\{x\} \cup V(B)]$. This is a contradiction since B is a block. Consequently, $V(B) \cap N_G(x) = \{a\}$. Now, we suppose that $b \in D_1(B)$. Since there is no 3-cycle in G, then $a \notin N_G(b)$. Hence, there exists $c \in N_G(b) \cap V(B)$ such that $c \neq a$. This implies $G[\{x, b\} \cup V(B)]$ is 2-connected. But $B \subsetneq G[\{x, b\} \cup V(B)]$, a contradiction. Then $D_1(B) \cap N_G(x) = \emptyset$. Thus, $N_G(x) \cap (V(B) \cup D_1(B)) = \{a\}$ and $b \in D_2(B)$. Now, if $D_1(B) = \{x_1, \ldots, x_r\}$, then there exists an a_i such that $V(B) \cap N_G(x_i) = \{a_i\}$. Also, there exists b_i such that $b_i \in N_G(x_i) \cap D_2(B)$. We can suppose that $L = \{b_1, \ldots, b_s\} =$

 $\{b_1, \ldots, b_r\}$ with $b_i \neq b_j$ for $1 \leq i < j \leq s$. We will prove that L is a stable set. Suppose that $\{b_i, b_j\} \in E(G)$, if $a_i = a_j$, then $(a_i, x_i, b_i, b_j, x_j, a_i)$ is a 5-cycle in G, this is a contradiction. Consequently $a_i \neq a_j$ and the induced subgraph $G[\{x_i, b_i, b_j, x_j\} \cup V(B)]$ is 2-connected. But B is a block, then $\{b_i, b_j\} \notin E(G)$. Therefore, L is a stable set. Furthermore, $G' = G \setminus N_G[L]$ is a c-minor of G, implying that G' satisfies the property P. Since $D_1(B) \subset N_G(L)$, we have that B is a connected component of G'. But, B does not satisfy P. This is a contradiction since each connected component of G is a c-minor. Therefore, there exists a free vertex in $D_1(B)$.

Corollary 43. Let G be a graph without 3-cycles and 5-cycles and B a 2-connected block. If G is shellable (unmixed, Cohen-Macaulay, sequentially Cohen-Macaulay or vertex decomposable) and B is not shellable (unmixed, Cohen - Macaulay, sequentially Cohen-Macaulay or vertex decomposable), then there exists $x \in D_1(B)$ such that $\deg_G(x) = 1$.

Proof. From Remark 20, Remark 26 and Theorem 42.

Corollary 44. Let G be a bipartite graph and B a 2-connected block. If G is shellable, then there exists $x \in D_1(B)$ such that $\deg_G(x) = 1$.

Proof. Since G is bipartite, then B is bipartite. If H is a shellable bipartite graph, then H has a free vertex (see [18], Lemma 2.8), and so H is not 2-connected. Hence, B is not shellable. Therefore, by Corollary 43, there exists $x \in D_1(B)$ such that $\deg_G(x) = 1$. \Box

Lemma 45. Let G be a graph without 3-cycles and 5-cycles. If G is vertex decomposable, then G has a free vertex.

Proof. Since G is vertex decomposable, then there is a shedding vertex x. Furthermore, there are no 5-cycles in G. Hence, by Theorem 5, there exists $y \in N_G(x)$ such that $N_G[y] \subseteq N_G[x]$. If $z \in N_G(y) \setminus x$, then (x, y, z) is a 3-cycle. This is a contradiction. Therefore, $N_G(y) = \{x\}$, implying that y is a free vertex.

Theorem 46. Let G be a graph without 3-cycles and 5-cycles. G is vertex decomposable if and only if there exists a free vertex x with $N_G(x) = \{y\}$ such that $G_1 = G \setminus N_G[x]$ and $G_2 = G \setminus N_G[y]$ are vertex decomposable.

Proof. \Rightarrow) By Lemma 45 there exists a free vertex x. Furthermore, by Remark 26, G_1 and G_2 are vertex decomposable.

 \Leftarrow) By Remark 7, y is a shedding vertex. Moreover, $G \setminus y = G_1 \cup \{x\}$. Furthermore, since G_1 is vertex decomposable, then $G \setminus y$ is also it. Therefore, G is vertex decomposable, since G_2 is vertex decomposable.

Corollary 47. If G is a 2-connected graph without 3-cycles and 5-cycles, then G is not a vertex decomposable.

Proof. Since G is 2-connected, then G does not have a free vertex. Therefore, by Lemma 45, G is not vertex decomposable. \Box

The electronic journal of combinatorics 23(2) (2016), #P2.39

Theorem 48. Let G be a vertex decomposable graph without 3-cycles and 5-cycles. If B is a 2-connected block of G, then $D_1(B)$ has a free vertex.

Proof. By Corollary 47, B is not vertex decomposable. Therefore, by Theorem 42, $D_1(B)$ has a free vertex.

Definition 49. Let G_1, G_2 be graphs. If $K = G_1 \cap G_2$ is a complete graph with |V(K)| = k, then $G = G_1 \cup G_2$ is called the *k*-clique-sum (or clique-sum) of G_1 and G_2 in K.

Corollary 50. If G is the 2-clique-sum of the cycles C_1 and C_2 with $|V(C_1)| = r_1 \leq r_2 = |V(C_2)|$, then G is vertex decomposable if and only if $r_1 = 3$ or $r_1 = r_2 = 5$.

Proof. \Leftarrow) First, we suppose that $r_1 = 3$. Consequently, we can assume $C_1 = (x_1, x_2, x_3)$ and $x_2, x_3 \in V(C_1) \cap V(C_2)$. Thus, x_1 is a simplicial vertex. Hence, by Remark 7, x_2 is a shedding vertex. Furthermore, $G \setminus x_2$ and $G \setminus N_G[x_2]$ are trees. Consequently, by Remark 31, $G \setminus x_2$ and $G \setminus N_G[x_2]$ are vertex decomposable graphs. Therefore, G is vertex decomposable.

Now, we assume that $r_1 = r_2 = 5$ with $C_1 = (x_1, x_2, x_3, x_4, x_5)$ and $C_2 = (y_1, x_2, x_3, y_4, y_5)$. We take a stable set S in $G \setminus N_G[x_5]$. If $x_2 \in S$, then $S \cup \{x_4\}$ is a stable set in $G_1 = G \setminus x_5$. If $x_2 \notin S$, then $S \cup \{x_1\}$ is a stable set in G_1 . Consequently, by Lemma 2, x_5 is a shedding vertex. Since x_2 is a neighbor of a free vertex in G_1 , then x_2 is a shedding vertex in G_1 . Furthermore, since $G_1 \setminus x_2$ and $G_1 \setminus N_{G_1}[x_2]$ are forests, then they are vertex decomposable graphs, by Remark 31. Thus, G_1 is vertex decomposable. Since $G \setminus N_G[x_5] = C_2$, it is vertex decomposable by Remark 31. Therefore, G is vertex decomposable.

⇒) By Corollary 47, we have that $\{r_1, r_2\} \cap \{3, 5\} \neq \emptyset$. We suppose $r_1 \neq 3$. So $r_1 = 5$ or $r_2 = 5$. Consequently, we can assume that $\{C_1, C_2\} = \{C, C'\}$ where $C = (x_1, x_2, x_3, x_4, x_5)$ and $x_2, x_3 \in V(C) \cap V(C')$. Thus, $G \setminus N_G[x_5] = C'$ is vertex decomposable. Hence, from Remark 31, $|V(C')| \in \{3, 5\}$. But $r_1 \neq 3$, then |V(C')| = 5 and $r_1 = r_2 = 5$. Therefore, $r_1 = 3$ or $r_1 = r_2 = 5$.

Lemma 51. Let G be a 2-connected graph with girth at least 11. Then G is not shellable.

Proof. Since G is 2-connected, then G is not a forest. Consequently, if r is the girth of G, then there exists a cycle $C = (x_1, x_2, \ldots, x_r)$. If G = C, then G is not shellable. Hence, $G \neq C$ implying $D_1(C) \neq \emptyset$. We take $y \in D_1(C)$, without loss of generality we can assume that $\{x_1, y\} \in E(G)$. If $\{x_i, y\} \in E(G)$ for some $i \in \{2, \ldots, r\}$, then we take the cycles $C_1 = (y, x_1, x_2, \ldots, x_i)$ and $C_2 = (y, x_1, x_r, x_{r-1}, \ldots, x_i)$. Thus, $|V(C_1)| = i + 1$ and $|V(C_2)| = r - i + 3$. Since r is the girth of G, then $i + 1 \ge r$ and $r - i + 3 \ge r$. Consequently, $3 \ge i$ implies $4 \ge r$. But $r \ge 11$, this is a contradiction. This implies that $|N_G(y) \cap V(C)| = 1$. Now, we suppose that there exist $y_1, y_2 \in D_1(C)$ such that $\{y_1, y_2\} \in E(G)$. We can assume that $\{x_1, y_1\}, \{x_i, y_2\} \in E(G)$. Since $r \ge 11$, then there are no 3-cycles in G. In particular, $x_1 \ne x_i$. Now, we take the cycles $C' = (y_1, x_1, \ldots, x_i, y_2)$ and $C'' = (y_1, x_1, x_r, x_{r-1}, \ldots, x_i, y_2)$. So, |V(C')| = i + 2 and |V(C'')| = r - i + 4. Since r is the girth, we have that $i + 2 \ge r$ and $r - i + 4 \ge r$. Hence, $4 \ge i$ and

 $6 \ge r$, this is a contradiction. Then $D_1(C)$ is a stable set. Now, since G is 2-connected, then for each $y \in D_1(C)$ there exists $z \in N_G(y) \cap D_2(C)$. If there exist $z_1, z_2 \in D_2(C)$ such that $\{z_1, z_2\} \in E(G)$, then there exist $y_1, y_j \in D_1(C)$ such that $\{z_1, y_1\}, \{z_2, y_j\} \in E(G)$. Since there are no 3-cycles in G, we have that $y_1 \neq y_j$. We can assume that $\{x_1, y_1\}, \{x_i, y_j\} \in E(G)$. Since there are no 5-cycles, then $i \neq 1$. Consequently, there exist cycles $C'_1 = (x_1, \ldots, x_i, y_j, z_2, z_1, y_1)$ and $C'_2 = (x_i, \ldots, x_r, x_1, y_1, z_1, z_2, y_j)$. This implies $r \leq |V(C'_1)| = i + 4$ and $r \leq |V(C'_2)| = r - i + 6$. Hence, $i \leq 6$ and $r \leq 10$, this is a contradiction. Then $D_2(C)$ is a stable set. Furthermore, C is a connected component of $G \setminus N_G[D_2(C)]$. But C is not shellable, therefore G is not shellable, from Remark 26. \Box

Theorem 52. If G has girth at least 11, then G is shellable if and only if there exists $x \in V(G)$ with $N_G(x) = \{y\}$ such that $G \setminus N_G[x]$ and $G \setminus N_G[y]$ are shellable.

Proof. \Leftarrow) By ([18], Theorem 2.9).

 \Rightarrow) By Remark 26, shellability is closed under c-minors. Consequently, it is only necessary to prove that G has a free vertex. If every block of G is an edge or a vertex, then G is a forest and there exists $x \in V(G)$ with $\deg_G(x) = 1$. Hence, we can assume that there exists a 2-connected block B of G. The girth of B is at least 11, since B is an induced subgraph of G. Thus, by Lemma 51, B is not shellable. Therefore, by Theorem 42, there exists $x \in D_1(B)$ such that $\deg_G(x) = 1$.

Acknowledgements

The authors are grateful to the referees whose suggestions improved the presentation of this paper.

References

- J. Biermann, C. A. Francisco, and H. Tài Hà, A. Van Tuyl. Partial coloring, vertex decomposability and sequentially Cohen-Macaulay simplicial complexes. J. Commut. Algebra, 7(3):337–352, 2015.
- [2] T. Biyikoğlu and Y. Civan. Vertex-decomposable graphs, codismantlability, Cohen-Macaulayness, and Castelnuovo-Mumford regularity. *Electron. J. Combin.*, 21(1) 2014, #P1.1.
- [3] A. Bruns and J. Herzog. Cohen-Macaulay Ring. Cambridge University Press, Cambridge, 1998.
- [4] I. D. Castrillón and R. Cruz. Escalonabilidad de grafos e hipergrafos simples que contienen vértices simpliciales. *Matemáticas: Enseñanza Universitaria*, XX(1):69– 80, 2012.
- [5] M. Crupi, G. Rinaldo, and N. Terai. Cohen-Macaulay edge ideal whose height is half of the number of vertices. *Nagoya Math. J.*, 201:117–131, 2011.
- [6] A. Dochtermann and A. Engström. Algebraic properties of edge ideals via combinatorial topology. *Electron. J. Combin.*, 16(2), 2009.

- [7] M. Estrada and R. H. Villarreal. Cohen-Macaulay bipartite graphs. Arch. Math., 68(2):124–128, 1997.
- [8] A. Finbow, B. Hartnell, and R. J. Nowakowski. A characterization of well covered graphs of girth 5 or greater. J. Combin. Theory Ser. B, 57(1):44–68, 1993.
- [9] C. A. Francisco and A. Van Tuyl. Sequentially Cohen-Macaulay edge ideals. Proc. Amer. Math. Soc. (electronic), 135(8):2327–2337, 2007.
- [10] I. Gitler and C. E. Valencia. On bounds for some graph invariants. Bol. Soc. Mat. Mexicana, 16(2):73–94, 2010.
- [11] J. Herzog and T. Hibi. Distributive lattices, bipartite graphs and Alexander duality. J. Algebraic Combin., 22:289–302, 2005.
- [12] D. T. Hoang, N. C. Minh, T. N Trung. Cohen-Macaulay graphs with large girth. J. Algebra Appl., 14(7), 2015.
- [13] M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai, and S. Yassemi. Vertex decomposability and regularity of very well-covered graphs. J. Pure Appl. Algebra, 215(10):2473–2480, 2011.
- [14] S. Morey, E. Reyes, and R. H. Villarreal. Cohen-Macaulay, shellable and unmixed clutters with perfect matching of König type. J. Pure Appl. Algebra, 212(7):1770– 1786, 2008.
- [15] G. Ravindra. Well-covered graphs. J. Combin. Inform. System Sci. 2(1):20–21, 1977.
- [16] R. P. Stanley. Combinatorics and Commutative Algebra. Second edition, Progress in Mathematics 41. Birkhäuser Boston, Inc., Boston, MA. 1996.
- [17] A. Van Tuyl. Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and regularity. Arch. Math., 93:451-459, 2009.
- [18] A. Van Tuyl, and R. H. Villarreal. Shellable graphs and sequentially Cohen-Macaulay bipartite graphs. J. Combin. Theory Ser. A, 115(5):799–814, 2008.
- [19] R. H. Villarreal. Unmixed bipartite graphs. Rev. Colombiana Mat., 41(2):393–395, 2007.
- [20] R. H. Villarreal. Monomial Algebras. Second edition, Monographs and Research Notes in Mathematics, Chapman & Hall/CRC. 2015.
- [21] M. L Wachs. Obstructions to shellability. Discrete Comput. Geom., 22(1):95–103, 1999.
- [22] R. Woodroofe. Vertex decomposable graphs and obstructions to shellability. Proc. Amer. Math. Soc., 137:3235-3246, 2009.