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Abstract

Let G = (V,E) be a graph. If G is a König graph or if G is a graph without
3-cycles and 5-cycles, we prove that the following conditions are equivalent: ∆G

is pure shellable, R/I∆ is Cohen-Macaulay, G is an unmixed vertex decomposable
graph and G is well-covered with a perfect matching of König type e1, . . . , eg without
4-cycles with two ei’s. Furthermore, we study vertex decomposable and shellable
(non-pure) properties in graphs without 3-cycles and 5-cycles. Finally, we give some
properties and relations between critical, extendable and shedding vertices.

Keywords: Cohen-Macaulay, shellable, well-covered, unmixed, vertex decompo-
sable, König, girth

1 Introduction

Let G be a simple graph (without loops and multiplies edges) whose vertex set is V (G) =
{x1, . . . , xn} and edge set E(G). Let R = k[x1, . . . , xn] be a polynomial ring over a field k.
The edge ideal of G, denoted by I(G), is the ideal of R generated by all monomials xixj
such that {xi, xj} ∈ E(G). G is a Cohen-Macaulay graph if R/I(G) is a Cohen-Macaulay
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ring (see [3], [20]). A subset F of V (G) is a stable set or independent set if e * F for each
e ∈ E(G). The cardinality of the maximum stable set is denoted by β(G). G is called
well-covered if every maximal stable set has the same cardinality. On the other hand, a
subset D of V (G) is a vertex cover of G if D ∩ e 6= ∅ for every e ∈ E(G). The number
of vertices in a minimum vertex cover of G is called the covering number of G and it is
denoted by τ(G). This number coincide with ht(I(G)), the height of I(G). If the minimal
vertex covers have the same cardinality, then G is called an unmixed graph. Notice that,
D is a vertex cover if and only if V (G) \ D is a stable set. Hence, τ(G) = n − β(G)
and G is well-covered if and only if G is unmixed. The Stanley-Reisner complex of I(G),
denoted by ∆G, is the simplicial complex whose faces are the stable sets of G. Recall
that a simplicial complex ∆ is called pure if every facet has the same number of elements.
Thus, ∆G is pure if and only if G is well-covered.

Some properties of G, ∆G and I(G) allow an interaction between Commutative Alge-
bra and Combinatorial Theory. Examples of these properties are: Cohen-Macaulayness,
shellability, vertex decomposability and well-coveredness. These properties have been
studied in ([3], [4], [6], [7], [11], [12], [13], [16], [17], [18], [20], [22]). In general, we have
the following implications (see [3], [16], [20], [22])

Unmixed
vertex decomposable

⇒ Pure
shellable

⇒ Cohen - Macaulay ⇒ Well - covered

The equivalence between the Cohen-Macaulay property and the unmixed vertex de-
composable property has been studied for some families of graphs: bipartite graphs (in [7]
and [11]); very well-covered graphs (in [5] and [13]); graphs with girth at least 5, block-
cactus (in [12]); and graphs without 4-cycles and 5-cycles (in [2]). For this paper, a cycle
C = (z1, z2, . . . , zn) can have chords (edges between non-consecutive vertices in C) in G.
A cycle without chords is called an induced cycle.

If a bipartite graph is well-covered, pure shellable or Cohen-Macaulay, then it is König
and has a perfect matching. The perfect matching is important because it allowed Hibi
and Herzog to characterize Cohen-Macaulay bipartite graph (see [11]). Similarly, the
existence of a perfect matching allows one to find a classification of well-covered bipartite
graphs (see [15] and [19]). However, a 3-cycle and a 5-cycle are Cohen-Macaulay graphs,
but they does not have a perfect matching. This is the motivation for the study of
Cohen-Macaulay graphs without 3-cycles and 5-cycles. In particular, we are interested
in knowing if these graphs have a perfect matching. In this paper we prove that it is
affirmative.

The paper is organized as follow: in section 2 we give some properties and relations
between critical, shedding and extendable vertices that we will use in the following sec-
tions. In section 3 we prove some results about well-covered graphs. In section 4 we
prove the equivalences of unmixed vertex decomposable and Cohen-Macaulay properties
for König graphs and graphs without 3-cycles and 5-cycles. We prove that theses proper-
ties are equivalent to the following condition: G is an unmixed König graph with a perfect
matching e1, . . . , eg without 4-cycles with two ei’s. This result extends the criterion of
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Herzog-Hibi for Cohen-Macaulay bipartite graphs, given in [11]. In [17] Van Tuyl proved
that the vertex decomposable property, the shellable (non-pure) property and the sequen-
tially Cohen-Macaulay property are equivalent in bipartite graphs. Furthermore, in [18]
Van Tuyl and Villarreal give a criterion that characterize shellable bipartite graphs. These
results and results obtained in section 4, motivate us to study the vertex decomposable
property and the shellable (non-pure) property for graphs without 3-cycles and 5-cycles.
In section 5, we prove that the neighborhood of a 2-connected block of G has a free vertex,
if G is a bipartite shellable graph or if G is a vertex decomposable graph without 3-cycles
and 5-cycles. Also, we prove that the criterion of Van Tuyl-Villarreal can be extended to
vertex decomposable graphs without 3-cycles and 5-cycles and shellable graphs with girth
at least 11. The equivalence between the shellable property and the vertex decomposable
property for graphs without 3-cycles and 5-cycles is an open problem.

2 Critical, extendable and shedding vertices.

Let X be a subset of V (G). The subgraph induced by X in G, denoted by G[X] is the graph
with vertex setX and whose edge set is {{x, y} ∈ E(G) | x, y ∈ X}. Furthermore, letG\X
denote the induced subgraph G[V (G) \X]. Now, if v ∈ V (G), then the set of neighbors
of v (in G) is denoted by NG(v) and its closed neighborhood is NG[v] = NG(v)∪{v}. The
degree of v in G is degG(v) = |NG(v)|.

Definition 1. G is vertex decomposable if G is a totally disconnected graph or there is
a vertex v such that

(a) G \ v and G \NG[v] are both vertex decomposable, and

(b) each stable set in G \NG[v] is not a maximal stable set in G \ v.

A shedding vertex of G is any vertex which satisfies the condition (b). Equivalently,
v is a shedding vertex if for every stable set S contained in G \ NG[v], there is some
x ∈ NG(v) such that S ∪ {x} is stable.

Lemma 2. If x is a vertex of G, then x is a shedding vertex if and only if |NG(x) \
NG(S)| > 1 for every stable set S of G \NG[x].

Proof. ⇒) We take a stable set S of G\NG[x]. Since x is a shedding vertex, then there is
a vertex z ∈ NG(x) such that S∪{z} is a stable set of G\x. Thus, z /∈ NG[S]. Therefore,
|NG(x) \NG(S)| > 1.

⇐) We take a stable set S of G\NG[x]. Thus, there exists a vertex z ∈ NG(x)\NG(S).
Since z ∈ NG(x), we have that z /∈ S. Furthermore, z /∈ NG(S), then S ∪ {z} is a stable
set of G \ x. Consequently, S is not a maximal stable set of G \ x. Therefore, x is a
shedding vertex.

Definition 3. Let S be a stable set of G. If x is of degree zero in G \ NG[S], then x is
called isolated vertex in G \NG[S], or we say that S isolates to x.
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By Lemma 2, we have that x is not a shedding vertex if and only if there exists a stable
set S of G \NG[x] such that NG(x) ⊆ NG(S), i.e. x is an isolated vertex in G \NG[S].

Corollary 4. Let S be a stable set of G. If S isolates x in G, then x is not a shedding
vertex in G \NG[y] for all y ∈ S.

Proof. Since S isolates x, then degG\NG[S](x) = 0 and in particular x ∈ V (G \ NG[S]).
Thus, NG(x) ⊆ NG[S] \ S. Hence, if y ∈ S and G′ = G \ NG[y], then x ∈ V (G′).
Furthermore, since S ∩ NG[x] = ∅, then S ′ = S \ y is a stable set in G′ \ NG′ [x]. Now,
since S isolates x, if a ∈ NG′(x), then there exists s ∈ S such that {a, s} ∈ E(G). But
a ∈ NG′(x), then a /∈ NG[y], consequently s ∈ S ′ and {a, s} ∈ E(G′). This implies
|NG′(x) \NG′(S ′)| = 0. Therefore, by Lemma 2, x is not a shedding vertex in G′.

Theorem 5. If x is a shedding vertex of G, then one of the following conditions hold:

(a) There is y ∈ NG(x) such that NG[y] ⊆ NG[x].

(b) x is in a 5-cycle with at most one chord.

Proof. We take NG(x) = {y1, y2, . . . , yk}. If G does not satisfy (a), then there is

{z1, . . . , zk} ⊆ V (G) \NG[x]

such that {yi, zi} ∈ E(G) for i ∈ {1, . . . , k}. We denote by L = {z1, . . . , zq} = {z1, . . . , zk}
and suppose that zi 6= zj for 1 6 i < j 6 q. By Lemma 2, if L is a stable set of
G, then |NG(x) \ NG(L)| > 1. But NG(x) = {y1, . . . , yk} ⊆ NG(L), then L is not a
stable set. Hence, q > 2 and there exist zi1 , zi2 ∈ L such that {zi1 , zi2} ∈ E(G). Thus,
there exist yj1 and yj2 such that yj1 6= yj2 and {yj1 , zi1}, {yj2 , zi2} ∈ E(G). Furthermore,
{zi, yj2}, {zi2 , yj1}, {zi1 , x}, {zi2 , x} /∈ E(G). Therefore, (x, yj1 , zi1 , zi2 , yj2) is a 5-cycle of G
with at most one chord.

Definition 6. A vertex v is called simplicial if the induced subgraph G[NG(v)] is a
complete graph (or clique). Equivalently, a simplicial vertex is a vertex that appears in
exactly one clique.

Remark 7. If v, w ∈ V (G) such that NG[v] ⊆ NG[w], then w is a shedding vertex of G
(see Lemma 6 in [22]). In particular, if v is a simplicial vertex, then any w ∈ NG(v) is a
shedding vertex (see Corollary 7 in [22]).

Corollary 8. Let G be graph without 4-cycles. If x is a shedding vertex of G, then x is
in a 5-cycle or there exists a simplicial vertex z such that {x, z} ∈ E(G) with |NG[z]| 6 3.

Proof. By Theorem 5, if x is not in a 5-cycle, then there is z ∈ NG(x) such that NG[z] ⊆
NG[x]. If degG(z) = 1, then z is a simplicial vertex. If degG(z) = 2, then NG(z) = {x,w}.
Consequently, (z, x, w) is a 3-cycle since NG[z] ⊆ NG[x]. Thus, z is a simplicial vertex.
Now, if degG(z) > 3, then there are w1, w2 ∈ NG(z) \ x. Since NG[z] ⊆ NG[x], we have
that (w1, z, w2, x) is a 4-cycle of G. This is a contradiction. Therefore, |NG[z]| 6 3 and z
is a simplicial vertex.
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Remark 9. If G is a 5-cycle with V (G) = {x1, x2, x3, x4, x5}, then each xi is a shedding
vertex.

Proof. We can assume that i = 1, then {x3} and {x4} are the stable sets in G \ NG[x1].
Furthermore, {x3, x5} and {x2, x4} are stable sets in G \ x1. Hence, each stable set of
G \NG[x1] is not a maximal stable set in G \ x1. Therefore, x1 is a shedding vertex.

Definition 10. A vertex v of G is critical if τ(G \ v) < τ(G). Furthermore, G is called a
vertex critical graph if each vertex of G is critical.

Lemma 11. If τ(G \ v) < τ(G), then τ(G) = τ(G \ v) + 1. Moreover, v is a critical
vertex if and only if β(G) = β(G \ v).

Proof. If t is a minimal vertex cover such that |t| = τ(G \ v), then t ∪ {v} is a vertex
cover of G. Thus, τ(G) 6 |t∪{v}| = τ(G \ v) + 1. Consequently, if τ(G) > τ(G \ v), then
τ(G) = τ(G \ v) + 1.

Now, we have that τ(G) + β(G) = |V (G)| = |V (G \ v)|+ 1 = τ(G \ v) + β(G \ v) + 1.
Hence, β(G) = β(G\v) if and only if τ(G) = τ(G\v)+1. Therefore, v is a critical vertex
if and only if β(G) = β(G \ v).

Definition 12. A vertex v of G is called an extendable vertex if G and G \ v are well-
covered graphs with β(G) = β(G \ v).

Note that if v is an extendable vertex, then every maximal stable set S of G\v contains
a vertex of NG(v).

Corollary 13. Let G be an unmixed graph and x ∈ V (G). The following conditions are
equivalent:

(a) x is an extendable vertex.

(b) |NG(x) \NG(S)| > 1 for every stable set S of G \NG[x].

(c) x is a shedding vertex.

(d) x is a critical vertex and G \ x is unmixed.

Proof. (a)⇔ (b) ([8], Lemma 2).

(b)⇔ (c) By Lemma 2.

(a) ⇔ (d) Since G is unmixed, then by Lemma 11, x is extendable if and only if x is
a critical vertex and G \ x is unmixed.
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3 König and well-covered graphs

In this paper we denoted by ZG the set of the isolated vertices of G, that is,

ZG = {x ∈ V (G) | degG(x) = 0}.

Definition 14. G is a König graph if τ(G) = ν(G) where ν(G) is the maximum number
of pairwise disjoint edges. A perfect matching of König type of G is a collection e1, . . . , eg
of pairwise disjoint edges whose union is V (G) and g = τ(G).

Proposition 15. Let G be a König graph and G′ = G \ ZG. Then the following are
equivalent:

(a) G is unmixed.

(b) G′ is unmixed.

(c) If V (G′) 6= ∅, then G′ has a perfect matching e1, . . . , eg of König type such that for
any two edges f1 6= f2 and for two distinct vertices x ∈ f1, y ∈ f2 contained in some
ei, one has that (f1 \ x) ∪ (f2 \ y) is an edge.

Proof. (a)⇔(b) Since V (G) \ V (G′) = ZG, then C is a vertex cover of G if and only if C
is a vertex cover of G′. Therefore, G is unmixed if and only if G′ is unmixed.

(b)⇔(c) By ([14], Lemma 2.3 and Proposition 2.9).

Definition 16. A graph G is called very well-covered if it is well-covered without isolated
vertices and |V (G)| = 2ht(I(G)).

Lemma 17. G is an unmixed König graph if and only if G is totally disconnected or
G′ = G \ ZG is very well-covered.

Proof. ⇒) If G is not totally disconnected, then from Proposition 15, G′ has a perfect
matching e1, . . . , eg of König type. Hence, |V (G′)| = 2g = 2τ(G′) = 2ht(I(G′)). Further-
more, G′ is unmixed, therefore G′ is very well-covered.

⇐) If G is totally disconnected, then ν(G) = 0 and τ(G) = 0. Hence, G is an unmixed
König graph. Now, if G is not totally disconnected, then G′ is very well-covered. Conse-
quently, by ([10], Corollary 3.7) G′ has a perfect matching. Thus, ν(G′) = |V (G′)|/2 =
ht(G′) = τ(G′). Hence, G′ is König. Furthermore, ν(G) = ν(G′) and τ(G) = τ(G′), then
G is König. Finally, since G′ is unmixed, by Proposition 15, G is also unmixed.

Definition 18. A subgraph H of G is called a c-minor (of G) if there exists a stable set
S of G, such that H = G \NG[S].

Remark 19. Each connected component of a graph G is a c-minor of G.

Remark 20. The unmixed property is closed under c-minors. That is, each c-minor of G
has the same property (see [20]).
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Definition 21. A vertex of degree one is called leaf or free vertex. Furthermore, an edge
which is incident with a leaf is called pendant.

Lemma 22. If G is an unmixed graph and x ∈ V (G), then NG(x) does not contain two
free vertices.

Proof. We suppose that there exists x ∈ V (G) such that y1, . . . , ys are free vertices in
NG(x). Hence, G1 = G \ NG[y1, . . . , ys] = G \ {x, y1, . . . , ys} is unmixed. Now, we take
a maximal stable set S of G1. Thus, |S| = β(G1) since G1 is unmixed. Consequently,
S1 = S ∪ {y1, . . . , ys} is a stable set in G. We take S2 a maximal stable in G such that
x ∈ S2. Since G is unmixed, we have that |S2| > |S1| = |S| + s. Furthermore, S2 \ x
is a stable set in G1, then |S2| 6 β(G1) + 1. This implies β(G1) + 1 > |S| + s. But,
|S| = β(G1), therefore, s 6 1.

Definition 23. If v, w ∈ V (G), then the distance d(u, v) between u and v in G is the
length of the shortest path joining them, otherwise d(u, v) = ∞. Now, if H ⊆ G, then
the distance from a vertex v to H is d(v,H) = min{d(v, u) | u ∈ V (H)}. Furthermore, if
W ⊆ V (G), then we define d(v,W ) = d(v,G[W ]) and Di(W ) = {v ∈ V (G) | d(v,W ) = i}.

Proposition 24. Let G be an unmixed connected graph without 3-cycles and 5-cycles. If
C is a 7-cycle and H is a c-minor of G with C ⊆ H such that C has three non-adjacent
vertices of degree 2 in H, then C is a c-minor of G.

Proof. We take a minimal c-minor H of G such that C ⊆ H and C has three non-adjacent
vertices of degree 2 in H. We can suppose that C = (x, z1, w1, a, b, w2, z2) with degH(x) =
degH(w1) = degH(w2) = 2. If {z1, b} ∈ E(H), then (z1, b, w2, z2, x) is a 5-cycle of G.
Thus, {z1, b} /∈ E(H), similarly {z2, a} /∈ E(H). Furthermore, since G does not have
3-cycles, then {z1, z2}, {z1, a}, {z2, b} /∈ E(H). Hence, C is an induced cycle in H. On
the other hand, if there exists v ∈ V (H) such that d(v, C) > 2, then H ′ = H \ NG[v]
is a c-minor of G and C ⊆ H ′ ⊂ H. This is a contradiction by the minimality of H.
Therefore, d(v, C) 6 1 for each v ∈ V (H).

Now, if degH(b) > 3, then there exists c ∈ V (H) \ V (C) such that {b, c} ∈ E(H). If
{c, z2} /∈ E(G) implies that NH1(z2) has two free vertices, w2 and x, in H1 = H\NH [w1, c],
this is a contradiction by Lemma 22. Thus {c, z2} ∈ E(H). Furthermore, {a, c}, {z1, c} /∈
E(H) since (a, b, c) and (z1, w1, a, b, c) are not cycles in G. Hence, if degH(c) > 3, then
there exists d ∈ V (H)\V (C) such that {c, d} ∈ E(H). Also, {d, b}, {d, z2}, {d, z1} /∈ E(H)
since (c, b, d), (z2, d, c) and (z1, x, z2, c, d) are not cycles of G. But d(d, C) 6 1, so {a, d} ∈
E(H). Consequently, NH2(z1) has two free vertices, w1 and x, in H2 = H \ NH [d, w2],
a contradiction by Lemma 22, then degH(c) = 2. This implies, NH3(z2) has two free
vertices, w2 and c, in H3 = H \ NH [a]. This is not possible, therefore degH(b) = 2.
Similarly, degH(a) = 2.

Now, if degH(z2) > 3 we have that there exists c′ ∈ V (H) \ V (C) such that {c′, z2} ∈
E(H). If there exists d′ ∈ V (H) \ V (C) such that {c′, d′} ∈ E(H), then {d′, z1} or
{d′, z2} ∈ E(G), since d(d′, C) 6 1. But (c′, d′, z2) and (x, z2, c

′, d′, z1) are not cycles
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of H, thus, NH(c′) ⊆ {z1, z2}. Consequently, NH4(z2) has two free vertices, x and c′,
in H4 = H \ NH [w1], a contradiction. Hence degH(z2) = 2. Similarly, degH(z1) = 2.
Furthermore, since H is minimal, then it is connected. Therefore, H = C and C is a
c-minor of G.

4 König and Cohen-Macaulay graphs without 3-cycles and 5-
cycles

Definition 25. A simplicial complex ∆ is shellable if the facets (maximal faces) of ∆ can
be ordered F1, . . . , Fs such that for all 1 6 i < j 6 s, there exists some v ∈ Fj \ Fi and
some l ∈ {1, . . . , j − 1} with Fj \ Fl = {v}. In this case, F1, . . . , Fs is called a shelling
of ∆. A graph G is called shellable if ∆G is shellable. Furthermore, the facet set of ∆ is
denoted by F(∆).

Remark 26. The following properties: shellable, Cohen-Macaulay, sequentially Cohen-
Macaulay and vertex decomposable are closed under c-minors (see [1], [20]).

Remark 27. If G is very well-covered with a perfect matching e1, . . . , eg, then the following
conditions are equivalent:

(1) G is Cohen-Macaulay.

(2) There are no 4-cycles with two ei’s.

Proof. By ([5], Theorem 3.4).

Proposition 28. Let G be a König graph where G′ = G \ ZG. Then the following
properties are equivalent:

(i) G is unmixed vertex decomposable.

(ii) ∆G is pure shellable.

(iii) R/I(G) is Cohen-Macaulay.

(iv) V (G′) = ∅ or G′ is an unmixed graph with a perfect matching e1, . . . , eg of König
type without 4-cycles with two ei’s.

(v) V (G′) = ∅ or there exists a relabelling of the vertices V (G′) = {x1, . . . , xh, y1, . . . , yh}
such that {x1, y1}, . . . , {xh, yh} is a perfect matching, X = {x1, . . . , xh} is a minimal
vertex cover of G′ and the following conditions holds:

(a) If ai ∈ {xi, yi} and {ai, xj}, {yj, xk} ∈ E(G′), then {ai, xk} ∈ E(G′) for i 6= j
and j 6= k;

(b) If {xi, yj} ∈ E(G′), then i 6 j.
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Proof. (i)⇔(ii)⇔(iii) In each case G is unmixed and König. Hence, by Lemma 17, G
is totally disconnected or G′ is very well-covered. If G is totally disconnected, then we
obtain the equivalences. Now, if G′ is very well-covered, then by ([13], Theorem 1.1) we
obtain the equivalences.

(iv)⇒(iii) We can assume that V (G′) 6= ∅. Thus, by Lemma 17, G′ is very well-
covered. Hence, by Remark 27 G′ is Cohen-Macaulay. Therefore, G is Cohen-Macaulay.

(iii)⇒ (v) Since R/I(G) is Cohen-Macaulay, then G is unmixed. Consequently, by
Lemma 17, we can assume that G′ is very well-covered. Hence, by ([13], Lemma 3.1), G′

satisfies (v).

(v)⇒(iv) We can assume that V (G′) 6= ∅. Since, e1 = {x1, y1}, . . . , eh = {xh, yh}
is a perfect matching, then ν(G′) = h. Furthermore, X is a minimal vertex cover, so
τ(G′) = h. Hence, e1, . . . , eh is a perfect matching of König type. Thus, from (a) and
Proposition 15, G′ is unmixed. On the other hand {y1, . . . , yh} is a stable set. Therefore,
from (b), there are no 4-cycles with two ei’s.

Corollary 29. Let G be a connected König graph. If G is Cohen-Macaulay, then G is an
isolated vertex or G has at least one free vertex.

Proof. By Proposition 28, if G is not an isolated vertex, then G has a perfect mat-
ching e1 = {x1, y1}, . . . , eh = {xh, yh} where {x1, . . . , xh} is a minimal vertex cover. Thus,
{y1, . . . , yh} is a maximal stable set. Furthermore, if {xi, yj}, then i 6 j. Hence, NG(y1) =
{x1}. Therefore, y1 is a free vertex.

Lemma 30. Let G be an unmixed connected graph with a perfect matching e1, . . . , eg of
König type without 4-cycles with two ei’s and g > 2. For each z ∈ V (G) we have that:

(a) If degG(z) > 2, then there exist {z, w1}, {w1, w2} ∈ E(G) such that degG(w2) = 1.
Furthermore, ei = {w1, w2} for some i ∈ {1, . . . , g}.

(b) If degG(z) = 1, then there exist {z, w1},{w1, w2},{w2, w3} ∈ E(G) such that degG(w3)
= 1. Moreover, ei = {z, w1} and ej = {w2, w3} for some i, j ∈ {1, . . . , g}.

Proof. Since e1 = {x1, y1}, . . . , eg = {xg, yg} is a perfect matching of König type we can
assume D = {x1, . . . , xg} is a minimal vertex cover. Thus, F = {y1, . . . , yg} is a maximal
stable set. By Proposition 28, we can assume that if {xi, yj} ∈ E(G), then i 6 j. Now,
we take a vertex z ∈ V (G).

(a) First, we suppose that z = xk and there is a vertex xj in NG(xk). If yj is a free
vertex, then we take w1 = xj and w2 = yj, and ej = {w1, w2}. Now, we can assume
NG(yj) \ xj = {xp1 , . . . , xpr} with p1 < · · · < pr < j. If yp1 is not a free vertex, then
there is a vertex xp with p < p1 such that {xp, yp1} ∈ E(G). Since G is unmixed, from
Proposition 15, we obtain that {xp, yj} = ({xp, yp1} \ yp1) ∪ ({yj, xp1} \ xp1) ∈ E(G).
But p < p1, a contradiction since p1 is minimal. Consequently, degG(yp1) = 1. Also,
from Proposition 15, we have that {xk, xp1} = ({xk, xj} \ xj) ∪ ({xp1 , yj} \ yj) ∈ E(G).
Hence, we take w1 = xp1 and w2 = yp1 , and we have that ep1 = {w1, w2}. Now, we
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assume that z = xk and NG(xk) \ yk = {yj1 , . . . , yjt} with k < j1 < · · · < jt. We suppose
that degG(xjt) > 2. If there is a vertex yr such that {xjt , yr} ∈ E(G), then r > jt.
Since G is unmixed, {xk, yr} = ({xk, yjt} \ yjt) ∪ ({yr, xjt} \ xjt) ∈ E(G), a contradiction
since jt is maximal. Thus, there exists a vertex xp such that {xjt , xp} ∈ E(G). But,
since G is unmixed, then {xk, xp} = ({xk, yjt} \ yjt) ∪ ({xp, xjt} \ xjt) ∈ E(G). This is a
contradiction since NG(xk) \ yk = {yj1 , . . . , yit}. Consequently, degG(xjt) = 1. Therefore,
we take w1 = yjt and w2 = xjt , with ejt = {w1, w2}.

Finally, we assume that z = yk, since yk is not a free vertex, then NG(yk) \ xk =
{xj1 , . . . , xjr} with j1 < · · · < jr < k. If yj1 is not a free vertex, then there is a vertex
xq such that {xq, yj1} ∈ E(G) with q < j1. This implies {xq, yk} = ({xq, yj1} \ yj1) ∪
({xj1 , yk} \ xj1) ∈ E(G). But q < j1, a contradiction. Therefore, degG(yj1) = 1 and we
take w1 = xj1 and w2 = yj1 . Hence, ej1 = {w1, w2}.

(b) Since e1, . . . , eg is a perfect matching, then there exists i ∈ {1, . . . , g} such that
ei = {z, z′}. Since G is connected, z is a free vertex and g > 2, then degG(z′) > 2. Thus,
by (a) there exist w′1, w

′
2 ∈ V (G) such that {z′, w′1}, {w′1, w′2} ∈ E(G) where degG(w′2) = 1

and {w′1, w′2} = ej for some j ∈ {1, . . . , g}. Therefore, we take w1 = z′, w2 = w′1, w3 = w′2.
Consequently, ei = {z, w1} and ej = {w2, w3}.

Remark 31. If Cn is a n-cycle, then Cn is vertex decomposable, shellable or sequentially
Cohen-Macaulay if and only if n = 3 or 5 (see [9] and [22]). Furthermore, a chordal graph,
which is a graph whose induced cycles are 3-cycles, is vertex decomposable (see Corollary
7 in [22]). In particular trees are vertex decomposable.

Theorem 32. Let G be a graph without 3-cycles and 5-cycles. If G1, . . . , Gk are the
connected components of G, then the following conditions are equivalent:

(a) G is unmixed vertex decomposable.

(b) G is pure shellable.

(c) G is Cohen-Macaulay

(d) G is unmixed and if Gi is not an isolated vertex, then Gi has a perfect matching
e1, . . . , eg of König type without 4-cycles with two e′is.

Proof. (a) ⇒ (b) ⇒ (c) (see [16], [20], [22]).

(d) ⇒ (a) Since each component Gi is König, then G is König. Therefore, from
Proposition 28, G is unmixed vertex decomposable.

(c)⇒ (d) Since G is Cohen-Macaulay, then G is unmixed. We proceed by induction on
|V (G)|. We take x ∈ V (G) such that degG(x) is minimal and we suppose that NG(x) =
{z1, . . . , zr}. By Remark 26, G′ = G \ NG[x] is a Cohen-Macaulay graph. We take
G′1, . . . , G

′
s, the connected components of G′. We can assume that V (G′i) = {yi} for

i ∈ {1, . . . , s′}. Since degG(x) is minimal, this implies {yi, zj} ∈ E(G) for all i ∈ {1, . . . , s′}
and j ∈ {1, . . . , r}. Since G does not contain 3-cycles, we have that NG(x) is a stable
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set. If s′ = s, then the only maximal stable sets of G are {y1, . . . , ys′ , x} and {z1, . . . , zr}.
Thus, G is a bipartite graph. So, G is König. Hence, by Proposition 28, G satisfies (d).
Consequently, we can assume s > s′, implying that there is a component G′i with an edge
e = {w,w′}.

Now, we suppose that r > 2. Since degG(x) is minimal there exist a, b ∈ V (G) such
that {a, w}, {b, w′} ∈ E(G). If a = b, then (a, w,w′) is a 3-cycle in G. Hence, a 6= b.
If a, b ∈ NG(x), then (x, a, w, w′, b) is a 5-cycle in G. Thus, |{w,w′, a, b} ∩ V (G′i)| > 3.
By induction hypothesis, G′ satisfies (d). So, G′i has a perfect matching and τ(G′i) > 2.
Furthermore, by Corollary 29, G′i has a free vertex a′. Then, by Lemma 30 (b), there
exist edges {a′, w1}, {w1, w2}, {w2, b

′} ∈ E(G′i) such that degG′
i
(a′) = degG′

i
(b′) = 1. By

the minimality of degG(x) we have that a′ and b′ are adjacent with at least r−1 neighbor
vertices of x. If r > 3, then there exists zj such that zj ∈ NG(a′) ∩NG(b′). This implies
that (a′, w1, w2, b

′, zj) is a 5-cycle of G. But G does not have 5-cycles, consequently, r = 2.
We can assume that {a′, z1}, {b′, z2} ∈ E(G), implying C = (x, z1, a

′, w1, w2, b
′, z2) is a

7-cycle with degG(a′) = degG(b′) = degG(x) = 2. Hence, by Proposition 24, C is a c-minor
of G. Thus, by Remark 26, C is Cohen-Macaulay. This is a contradiction by Remark 31.
Therefore, degG(x) = r 6 1.

If r = 0, then the result is clear. Now, if r = 1 we can assume that G1, . . . , Gk are the
connected components of G and z1 ∈ V (G1). Consequently, the connected components
of G \ NG[x] are F1, . . . , Fl, G2, . . . , Gk where F1, . . . , Fl are the connected components
of G1 \ NG1 [x]. By induction hypothesis G2, . . . , Gk satisfy (d). If Fj = {dj}, then
NG(z1) has two free vertices, dj and x, a contradiction by Lemma 22. Hence, |V (Fi)| > 2
for i ∈ {1, . . . , l}. By induction hypothesis, we have that Fi has a perfect matching
Mi = {ei1, . . . , eigi} of König type. Thus, {e}∪(

⋃l
i=1Mi) is a perfect matching of G1, where

e = {x, z1}. Also, {z1} ∪ (
⋃l

i=1 Xi) is a vertex cover of G1, where Xi is a minimal vertex

cover of Fi. Consequently, ν(G1) > 1 +
∑l

i=1 |Mi| = 1 +
∑l

i=1 gi = 1 +
∑l

i=1 |Xi| > τ(G1).
This implies that G1 is König. Furthermore, by Remark 26, we have that G1 is Cohen-
Macaulay. Therefore, by Proposition 28, G1 satisfies (d).

Corollary 33. Let G be a connected graph without 3-cycles and 5-cycles. If G is Cohen-
Macaulay, then G has at least one extendable vertex x adjacent to a free vertex.

Proof. From Theorem 32, G is König. Thus, by Corollary 29 there exists a free vertex x.
If NG(x) = {y}, then by Remark 7, y is a shedding vertex. Therefore, from Corollary 13,
y is an extendable vertex, since G is unmixed.

Definition 34. G is called whisker graph if there exists an induced subgraph H of G
such that V (H) = {x1, . . . , xs}, V (G) = V (H) ∪ {y1, . . . , ys} and E(G) = E(H) ∪W (H)
where W (H) = {{x1, y1}, . . . , {xs, ys}}. The edges of W (H) are called whiskers and they
form a perfect matching.

Definition 35. The girth of G is the length of the smallest cycle or infinite if G is a
forest.
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Corollary 36. Let G be a connected graph of girth 6 or more. If G is not an isolated
vertex, then the following conditions are equivalent:

(i) G is unmixed vertex decomposable.

(ii) ∆G is pure shellable.

(iii) R/I(G) is Cohen-Macaulay.

(iv) G is an unmixed König graph.

(v) G is very well-covered.

(vi) G is unmixed with G 6= C7.

(vii) G is a whisker graph.

Proof. (i)⇒ (ii)⇒ (iii) (see [16], [20], [22]). (iii)⇒ (iv) G is unmixed and from Theorem
32, G is König. (iv) ⇒ (v) From Lemma 17. (v) ⇒ (vi) It is clear, since C7 is not very
well-covered.

(vi) ⇒ (vii) By ([8], Corollary 5), the pendant edges {x1, y1}, . . . , {xg, yg} of G form
a perfect matching. Since {xi, yi} is a pendant edge, we can assume that degG(yi) = 1
for each 1 6 i 6 g. We take H = G[x1, . . . , xn]. Therefore, G is a whisker graph with
W (H) = {{x1, y1}, . . . , {xg, yg}}.

(vii) ⇒ (i) By ([6], Theorem 4.4).

5 Vertex decomposable and shellable properties in graphs with-
out 3-cycles and 5-cycles

Definition 37. A 5-cycle C of G is called basic if C does not contain two adjacent vertices
of degree three or more in G.

Lemma 38. If G is a graph, then any vertex of degree at least 3 in a basic 5-cycle is a
shedding vertex.

Proof. Let C = (x1, x2, x3, x4, x5) be a basic 5-cycle. We suppose that degG(x1) > 3,
since C is a basic 5-cycle, then degG(x2) = degG(x5) = 2. Also, we can assume that
degG(x3) = 2. We take a stable set S of G \ NG[x1]. Since {x3, x4} ∈ E(G), then
|S ∩ {x3, x4}| 6 1. Hence, x3 /∈ S or x4 /∈ S. Consequently, S ∪ {x2} or S ∪ {x5} is a
stable set of G \ x1. Therefore, x1 is a shedding vertex.

Remark 39. If G has a shedding vertex v where G \ v and G \ NG[v] are shellable
with shelling F1, . . . , Fk and G1, . . . , Gq, respectively, then G is shellable with shelling
F1, . . . , Fk, G1 ∪ {v}, . . . , Gq ∪ {v} (see Lemma 6 in [21]).
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Theorem 40. Let G be a connected graph with a basic 5-cycle C. G is a shellable graph
if and only if there is a shedding vertex x ∈ V (C) such that G \ x and G \ NG[x] are
shellable graphs.

Proof. ⇒) We can suppose that C = (x1, x2, x3, x4, x5). If G = C, then G is shellable. By
Remark 9, each vertex is a shedding vertex. Furthermore, G \ x1 is a path with shelling
{x2, x4}, {x2, x5}, {x3, x5} and G \ NG[x1] is an edge. Therefore, G \ x1 and G \ NG[x1]
are shellable graphs. Now, we suppose G 6= C. We can assume that degG(x1) > 3. Since
C is a basic 5-cycle, then degG(x2) = degG(x5) = 2. Also, we can suppose degG(x3) = 2
and degG(x4) > 2. By Lemma 38, x1 is a shedding vertex. Furthermore by Remark
26, we have that G \ NG[x1] is a shellable graph. Now, we will prove that G1 = G \ x1

is shellable. Since G is shellable and since shellability is closed under c-minors, then
G2 = G \ NG[x2] is shellable. We assume that F1, . . . , Fr is a shelling of ∆G2 . Also,
G3 = G \ NG[x3, x5] is shellable. We suppose that H1, H2, . . . , Hk is shelling of ∆G3 .
We take F ∈ F(∆G1). If x2 ∈ F , then F \ x2 ∈ F(∆G2) and there exists Fi such
that F = Fi ∪ {x2}. If x2 /∈ F , then x3 ∈ F and x4 /∈ F . Thus, x5 ∈ F . Hence,
F \ {x3, x5} ∈ F(∆G3), then there exists Hj such that F = Hj ∪ {x3, x5}. This implies,
F(∆G1) = {F1 ∪ {x2}, . . . , Fr ∪ {x2}, H1 ∪ {x3, x5}, . . . , Hk ∪ {x3, x5}}. Furthermore,
F1∪{x2}, . . . , Fr∪{x2} and H1∪{x3, x5}, . . . , Hk∪{x3, x5} are shellings. Now, x3 ∈ (Hj∪
{x3, x5})\(Fi∪{x2}) and Hj is a stable set of G without vertices of C. So, Hj∪{x2, x5} is
a maximal stable set of G1 since NG(x2, x5) = V (C) and {x2, x5} /∈ E(G). Consequently,
Hj ∪{x2, x5} = Fl ∪{x2} for some l ∈ {1, . . . , r} and (Hj ∪{x3, x5}) \ (Fl ∪{x2}) = {x3}.
Therefore, G1 is a shellable graph.

⇐) By Remark 39.

Definition 41. A cut vertex of a graph is one whose removal increases the number of
connected components. A block of a graph is a maximal subgraph without cut vertices.
A connected graph without cut vertices with at least three vertices is called 2-connected
graph.

In the following result P is a property closed under c-minors.

Theorem 42. Let G be a graph without 3-cycles and 5-cycles with a 2-connected block
B. If G satisfies the property P and B does not satisfy P , then there exists x ∈ D1(B)
such that degG(x) = 1.

Proof. By contradiction, we assume that if x ∈ D1(B), then |NG(x)| > 1. Thus, there
exist a, b ∈ NG(x) with a 6= b. We can suppose that a ∈ V (B). If b ∈ V (B), then
G[{x}∪V (B)] is 2-connected. But B ( G[{x}∪V (B)]. This is a contradiction since B is a
block. Consequently, V (B)∩NG(x) = {a}. Now, we suppose that b ∈ D1(B). Since there
is no 3-cycle in G, then a /∈ NG(b). Hence, there exists c ∈ NG(b)∩V (B) such that c 6= a.
This implies G[{x, b}∪V (B)] is 2-connected. But B ( G[{x, b}∪V (B)], a contradiction.
Then D1(B) ∩NG(x) = ∅. Thus, NG(x) ∩ (V (B) ∪D1(B)) = {a} and b ∈ D2(B). Now,
if D1(B) = {x1, . . . , xr}, then there exists an ai such that V (B) ∩ NG(xi) = {ai}. Also,
there exists bi such that bi ∈ NG(xi) ∩ D2(B). We can suppose that L = {b1, . . . , bs} =
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{b1, . . . , br} with bi 6= bj for 1 6 i < j 6 s. We will prove that L is a stable set.
Suppose that {bi, bj} ∈ E(G), if ai = aj, then (ai, xi, bi, bj, xj, ai) is a 5-cycle in G, this is
a contradiction. Consequently ai 6= aj and the induced subgraph G[{xi, bi, bj, xj}∪V (B)]
is 2-connected. But B is a block, then {bi, bj} /∈ E(G). Therefore, L is a stable set.
Furthermore, G′ = G \ NG[L] is a c-minor of G, implying that G′ satisfies the property
P . Since D1(B) ⊂ NG(L), we have that B is a connected component of G′. But, B does
not satisfy P . This is a contradiction since each connected component of G is a c-minor.
Therefore, there exists a free vertex in D1(B).

Corollary 43. Let G be a graph without 3-cycles and 5-cycles and B a 2-connected
block. If G is shellable (unmixed, Cohen-Macaulay, sequentially Cohen-Macaulay or vertex
decomposable) and B is not shellable (unmixed, Cohen - Macaulay, sequentially Cohen-
Macaulay or vertex decomposable), then there exists x ∈ D1(B) such that degG(x) = 1.

Proof. From Remark 20, Remark 26 and Theorem 42.

Corollary 44. Let G be a bipartite graph and B a 2-connected block. If G is shellable,
then there exists x ∈ D1(B) such that degG(x) = 1.

Proof. Since G is bipartite, then B is bipartite. If H is a shellable bipartite graph, then
H has a free vertex (see [18], Lemma 2.8), and so H is not 2-connected. Hence, B is not
shellable. Therefore, by Corollary 43, there exists x ∈ D1(B) such that degG(x) = 1.

Lemma 45. Let G be a graph without 3-cycles and 5-cycles. If G is vertex decomposable,
then G has a free vertex.

Proof. Since G is vertex decomposable, then there is a shedding vertex x. Furthermore,
there are no 5-cycles in G. Hence, by Theorem 5, there exists y ∈ NG(x) such that
NG[y] ⊆ NG[x]. If z ∈ NG(y) \ x, then (x, y, z) is a 3-cycle. This is a contradiction.
Therefore, NG(y) = {x}, implying that y is a free vertex.

Theorem 46. Let G be a graph without 3-cycles and 5-cycles. G is vertex decomposable
if and only if there exists a free vertex x with NG(x) = {y} such that G1 = G \NG[x] and
G2 = G \NG[y] are vertex decomposable.

Proof. ⇒) By Lemma 45 there exists a free vertex x. Furthermore, by Remark 26, G1

and G2 are vertex decomposable.

⇐) By Remark 7, y is a shedding vertex. Moreover, G \ y = G1 ∪ {x}. Furthermore,
since G1 is vertex decomposable, then G\y is also it. Therefore, G is vertex decomposable,
since G2 is vertex decomposable.

Corollary 47. If G is a 2-connected graph without 3-cycles and 5-cycles, then G is not
a vertex decomposable.

Proof. Since G is 2-connected, then G does not have a free vertex. Therefore, by Lemma
45, G is not vertex decomposable.
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Theorem 48. Let G be a vertex decomposable graph without 3-cycles and 5-cycles. If B
is a 2-connected block of G, then D1(B) has a free vertex.

Proof. By Corollary 47, B is not vertex decomposable. Therefore, by Theorem 42, D1(B)
has a free vertex.

Definition 49. Let G1, G2 be graphs. If K = G1∩G2 is a complete graph with |V (K)| =
k, then G = G1 ∪G2 is called the k-clique-sum (or clique-sum) of G1 and G2 in K.

Corollary 50. If G is the 2-clique-sum of the cycles C1 and C2 with |V (C1)| = r1 6 r2 =
|V (C2)|, then G is vertex decomposable if and only if r1 = 3 or r1 = r2 = 5.

Proof. ⇐) First, we suppose that r1 = 3. Consequently, we can assume C1 = (x1, x2, x3)
and x2, x3 ∈ V (C1) ∩ V (C2). Thus, x1 is a simplicial vertex. Hence, by Remark 7, x2

is a shedding vertex. Furthermore, G \ x2 and G \ NG[x2] are trees. Consequently, by
Remark 31, G\x2 and G\NG[x2] are vertex decomposable graphs. Therefore, G is vertex
decomposable.

Now, we assume that r1 = r2 = 5 with C1 = (x1, x2, x3, x4, x5) and C2 = (y1, x2, x3, y4,
y5). We take a stable set S in G \ NG[x5]. If x2 ∈ S, then S ∪ {x4} is a stable set in
G1 = G \ x5. If x2 /∈ S, then S ∪ {x1} is a stable set in G1. Consequently, by Lemma
2, x5 is a shedding vertex. Since x2 is a neighbor of a free vertex in G1, then x2 is a
shedding vertex in G1. Furthermore, since G1 \ x2 and G1 \ NG1 [x2] are forests, then
they are vertex decomposable graphs, by Remark 31. Thus, G1 is vertex decomposable.
Snce G \ NG[x5] = C2, it is vertex decomposable by Remark 31. Therefore, G is vertex
decomposable.

⇒) By Corollary 47, we have that {r1, r2} ∩ {3, 5} 6= ∅. We suppose r1 6= 3.
So r1 = 5 or r2 = 5. Consequently, we can assume that {C1, C2} = {C,C ′} where
C = (x1, x2, x3, x4, x5) and x2, x3 ∈ V (C) ∩ V (C ′). Thus, G \ NG[x5] = C ′ is vertex
decomposable. Hence, from Remark 31, |V (C ′)| ∈ {3, 5}. But r1 6= 3, then |V (C ′)| = 5
and r1 = r2 = 5. Therefore, r1 = 3 or r1 = r2 = 5.

Lemma 51. Let G be a 2-connected graph with girth at least 11. Then G is not shellable.

Proof. Since G is 2-connected, then G is not a forest. Consequently, if r is the girth of G,
then there exists a cycle C = (x1, x2, . . . , xr). If G = C, then G is not shellable. Hence,
G 6= C implying D1(C) 6= ∅. We take y ∈ D1(C), without loss of generality we can
assume that {x1, y} ∈ E(G). If {xi, y} ∈ E(G) for some i ∈ {2, . . . , r}, then we take
the cycles C1 = (y, x1, x2, . . . , xi) and C2 = (y, x1, xr, xr−1, . . . , xi). Thus, |V (C1)| = i+ 1
and |V (C2)| = r − i + 3. Since r is the girth of G, then i + 1 > r and r − i + 3 > r.
Consequently, 3 > i implies 4 > r. But r > 11, this is a contradiction. This implies that
|NG(y)∩V (C)| = 1. Now, we suppose that there exist y1, y2 ∈ D1(C) such that {y1, y2} ∈
E(G). We can assume that {x1, y1}, {xi, y2} ∈ E(G). Since r > 11, then there are no
3-cycles in G. In particular, x1 6= xi. Now, we take the cycles C ′ = (y1, x1, . . . , xi, y2)
and C ′′ = (y1, x1, xr, xr−1, . . . , xi, y2). So, |V (C ′)| = i + 2 and |V (C ′′)| = r − i + 4.
Since r is the girth, we have that i + 2 > r and r − i + 4 > r. Hence, 4 > i and
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6 > r, this is a contradiction. Then D1(C) is a stable set. Now, since G is 2-connected,
then for each y ∈ D1(C) there exists z ∈ NG(y) ∩ D2(C). If there exist z1, z2 ∈ D2(C)
such that {z1, z2} ∈ E(G), then there exist y1, yj ∈ D1(C) such that {z1, y1}, {z2, yj} ∈
E(G). Since there are no 3-cycles in G, we have that y1 6= yj. We can assume that
{x1, y1}, {xi, yj} ∈ E(G). Since there are no 5-cycles, then i 6= 1. Consequently, there
exist cycles C ′1 = (x1, . . . , xi, yj, z2, z1, y1) and C ′2 = (xi, . . . , xr, x1, y1, z1, z2, yj). This
implies r 6 |V (C ′1)| = i+ 4 and r 6 |V (C ′2)| = r− i+ 6. Hence, i 6 6 and r 6 10, this is
a contradiction. Then D2(C) is a stable set. Furthermore, C is a connected component of
G \NG[D2(C)]. But C is not shellable, therefore G is not shellable, from Remark 26.

Theorem 52. If G has girth at least 11, then G is shellable if and only if there exists
x ∈ V (G) with NG(x) = {y} such that G \NG[x] and G \NG[y] are shellable.

Proof. ⇐) By ([18], Theorem 2.9).

⇒) By Remark 26, shellability is closed under c-minors. Consequently, it is only
necessary to prove that G has a free vertex. If every block of G is an edge or a vertex,
then G is a forest and there exists x ∈ V (G) with degG(x) = 1. Hence, we can assume
that there exists a 2-connected block B of G. The girth of B is at least 11, since B is an
induced subgraph of G. Thus, by Lemma 51, B is not shellable. Therefore, by Theorem
42, there exists x ∈ D1(B) such that degG(x) = 1.
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