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Abstract

We solve a problem of Petrova, finalizing the classification of letter patterns
avoidable by ternary square-free words; we show that there is a ternary square-free
word avoiding letter pattern xyzxzyx. In fact, we

• characterize all the (two-way) infinite ternary square-free words avoiding letter
pattern xyzxzyx

• characterize the lexicographically least (one-way) infinite ternary square-free
word avoiding letter pattern xyzxzyx

• show that the number of ternary square-free words of length n avoiding letter
pattern xyzxzyx grows exponentially with n.

1 Introduction

A theme in combinatorics on words is pattern avoidance. A word w encounters word
p if f(p) is a factor of w for some non-erasing morphism f . Otherwise w avoids p. A
standard question is whether there are infinitely many words over a given finite alphabet
Σ, none of which encounters a given pattern p. Equivalently, one asks whether an ω-word
over Σ avoids p.

The first problems of this sort were studied by Thue [11, 12] who showed that there
are infinitely many words over {a, b, c} which are square-free – i.e., do not encounter
xx. He also showed that over {a, b} there are infinitely many overlap-free words –
which simultaneously avoid xxx and xyxyx. Thue also introduced a variation on pattern
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avoidance by asking whether one could simultaneously avoid squares xx and factors from
a finite set. For example, Thue showed that infinitely many words over {a, b, c} avoid
squares, and also have no factors aba or cbc.

In combinatorics, once an existence problem has been solved, it is natural to con-
sider stronger questions: characterizations, enumeration problems and extremal problems.
Since Thue, progressively stronger questions about pattern-avoiding sequences have been
asked and answered:

• Gottschalk and Hedlund [3] characterized the doubly infinite binary words avoiding
overlaps.

• How many square-free words of length n are there over {a, b, c}? The number of
such words was shown to grow exponentially by Brandenburg [2].

• Let w be the lexicographically least square-free ω-word over {a, b, c}. As the author
[1] has pointed out, the method of Shelton [8] allows one to test whether a given
finite word over {a, b, c} is a prefix of w.

Interest in words avoiding patterns continues, and a recent paper by Petrova [7] studied
letter pattern avoidance by ternary square-free words. A word w over {1, 2, 3} avoids
the letter pattern P ∈ {x, y, z}∗ if no factor of w is an image of P under a bijection from
{x, y, z} to {1, 2, 3}. For example, to avoid the letter pattern xyzxzyx, a word w cannot
contain any of the factors 1231321, 1321231, 2132312, 2312132, 3123213 and 3213123.

Petrova gives an almost complete classification of the letter patterns over {x, y, z}
which can be avoided by ternary square-free words. To do this, she uses the notion of
‘codewalks’, developed by Shur [9] as a generalization of the encodings introduced by
Pansiot [6]. In addition to her classification, Petrova also gives upper and lower bounds
on the critical exponents of ternary square-free words avoiding letter patterns xyxzx,
xyzxy, and xyxzyz.

Regarding the particular letter pattern xyzxzyx, Petrova remarks at the end of her pa-
per that ‘(p)roving its avoidance will finalize the classification of letter patterns avoidable
by ternary square-free words.’

In this note, we show that there is a ternary square-free word avoiding letter pattern
xyzxzyx. In fact, we

• characterize all the (two-way) infinite ternary square-free words avoiding letter pat-
tern xyzxzyx (Theorems 1 and 2)

• characterize the lexicographically least (one-way) infinite ternary square-free word
avoiding letter pattern xyzxzyx (Theorem 3)

• show that the number of ternary square-free words of length n avoiding letter pattern
xyzxzyx grows exponentially with n (Theorem 4).
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2 Preliminaries

We will use several standard notations from combinatorics on words. An alphabet is a
finite set whose elements are called letters. For an alphabet Σ, we denote by Σ∗, the
set of all finite words over Σ; more formally, Σ∗ is the free semigroup over Σ, written
multiplicatively, with identity element ε. We refer to ε as the empty word. By a
morphism, we mean a semigroup homomorphism.

If w = uvz, with u, v, z ∈ Σ∗, we refer to u, v and z as a prefix, factor, and suffix
of w, respectively. A word w over Σ is square-free if it has no non-empty factor of the
form xx.

By Σω, we denote the ω-words over Σ, which are infinite to the right; more formally,
an ω-word w over Σ is a function w : N→ Σ, where N denotes the set of positive integers.
By ΣZ we denote the Z-words over Σ, which are doubly infinite. Depending on context,
a ‘word’ over Σ may refer to a finite word, an ω-word or a Z-word.

Let S = {1, 2, 3}, T = {a, b, c, d} and U = {a, c, d}. We put natural orders on
alphabets S, T and U :

1 < 2 < 3 and a < b < c < d.

These induce lexicographic orders on words over these alphabets; the definition is recur-
sive: if w is a word and x, y are letters, then wx < wy if and only if x < y. For more
background on combinatorics on words, see the books by Lothaire [4, 5].

Call a word over S factor-good if it has no factor of the form xyzxzyx where
{x, y, z} = S; i.e., the factors 1231321, 1321231, 2132312, 2312132, 3123213, 3213123
are forbidden. Call a word over S good if it is square-free and factor-good. Petrova’s
question is whether there are infinitely many good words.

3 Results on good words

Theorem 1 and Theorem 2 below characterize good Z-words. These turn out to be in
2-to-1 correspondence with square-free Z-words over U .

Let π be the morphism on S∗ generated by

π(1) = 1, π(2) = 3, π(3) = 2;

thus, this morphism π relabels 2’s as 3’s and vice versa.
Let f :T ∗ → S∗ be the morphism given by

f(a) = 1213, f(b) = 123, f(c) = 1323, f(d) = 1232.

Let g:U∗ → T ∗ be the map where g(u) is obtained from a word u ∈ {a, c, d}∗ by
replacing each factor ac of u by abc, each factor da of u by dba and each factor dc of u by
dbc.

Theorem 1. There is a Z-word over S which is good. In particular, if u ∈ UZ is square-
free then f(g(u))is good.
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Theorem 2. Let w ∈ SZ be good. Exactly one of the following is true:

1. There is a square-free word u ∈ UZ such that w = f(g(u)).

2. There is a square-free word u ∈ UZ such that w = π(f(g(u))).

We can also characterize the lexicographically least good ω-word:

Theorem 3. The lexicographically least good ω-word is f(g(u)), where u is the lexico-
graphically least square-free ω-word over U .

There are ‘many’ finite good words, in the sense that the number of words grows
exponentially with length. For each non-negative integer n, let G(n) be the number of
good words of length n.

Theorem 4. The number of good words of length n grows exponentially with n. In
particular, there are positive constants A, B and C > 1 such that

n∑
i=0

G(i) > A+B(Cn).

4 Proof of Theorem 2

The proof of Theorem 2 proceeds via a series of lemmas.

Lemma 5. Suppose u ∈ U∗. Then f(g(u)) is factor-good.

Lemma 6. The map f ◦ g : U∗ → S∗ is square-free: Suppose u ∈ U∗ is square-free. Then
so is f(g(u)).

Suppose that w ∈ ΣZ is good. Since w is square-free,

w ∈ {12, 123, 1232, 13, 132, 1323}Z.

These are just the square-free words over {1, 2, 3} which begin with 1 and contain exactly
a single 1; evidently we can partition w into such blocks.

Proof.

Lemma 7. Let w be a good word. Then either |w|1231 = 0 or |w|1321 = 0.

Proof. If the lemma is false, then either

• w contains a finite factor with prefix 1231 and suffix 1321 or

• w contains a factor with prefix 1321 and suffix 1231.
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Without loss of generality up to relabeling, suppose that w contains a factor with prefix
1231 and suffix 1321. Since it is good, w cannot have 1231321 as a factor. Consider then
a shortest factor 1231v1321 of w; thus |1231v1321|1231 = 1.

Exhaustively listing good words 1231u with |1231u|1231 = 1, we find that there are
only finitely many, and exactly three which are maximal with respect to right extension:
12312131232123, 123132312131232123, 12313231232123. It follows that one of these is a
right extension of 1231v1321; however, none of the three has 1321 as a factor. This is a
contradiction.

Interchanging 2’s and 3’s if necessary, suppose that w1321 = 0. Thus

w ∈ {12, 123, 1232, 13, 1323}Z.

Lemma 8. Suppose t ∈ 1213{12, 123, 1232, 13, 1323}ω is good. Then

t ∈ {1213, 123, 1232, 1323}ω.

Proof. We prove this via a series of claims:

Claim 9. Neither of 132313 and 21232 is a factor of t.

Proof of Claim. Since t ∈ 1213{12, 123, 1232, 13, 1323}ω, if 132313 is a factor of t, then
so is one of 1323131 and 13231323, both of which end in squares. This is impossible, since
t is good. Similarly, if 21232 is a factor of t, so is one of 121232 and 12321232, both of
which begin with squares.

Claim 10. Suppose that t12uv is a factor of t, where t, u, v ∈ {12, 123, 1232, 13, 1323}.
Then u = 13.

Proof of Claim. Word u must be 13 or 1323; otherwise, 12u begins with the square 1212.
Suppose u = 1323. By the previous claim, v must have prefix 12. But then 2uv has prefix
2132312 = xyzxzyx, where x = 2, y = 1, z = 3; this is impossible. Thus u = 13.

Claim 11. Suppose that tu13v is a factor of t, where t, u, v ∈ {12, 123, 1232, 13, 1323}.
Then u = 12.

Proof of Claim. Word u must end with 2; otherwise, u13v contains the square 3131. Thus
u must be 12 or 1232. Suppose u = 1232. By the first claim, t must have suffix 3. But
then tu13 has suffix 3123213 = xyzxzyx, where x = 3, y = 1, z = 2; this is impossible.
Thus u = 12.

We have proved that 12 and 13 only appear in t in the context 1213. It follows that
t ∈ {1213, 123, 1232, 1323}.

Corollary 12. Word w ∈ {1213, 123, 1232, 1323}Z.
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Figure 1: Directed graph D
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Proof. We know that w ∈ {12, 123, 1232, 13, 1323}Z. If neither of 121 and 131 is a factor
of w, then w is concatenated from copies of A = 1323, B = 1232 and C = 123. However,
CB and AC1 contain squares, while BA12 contains 2132312, which cannot be a factor
of a good word. This implies that A, B and C always occur in w in the cyclical order
A → B → C → A, and w contains the square ABCABC, which is impossible. We
conclude that one of 121 and 131 is a factor of w. However, as in the proof of Claims 10
and 11, factors 12 and 13 can only occur in w in the context 1213, so the result follows.

By Corollary 12, f−1(w) exists. Let v ∈ f−1(w).

Lemma 13. None of ac, aba, bd, cb, da and dc is a factor of v.

Proof. One checks that f(ac), f(aba), f(bd), f(cb)1, f(da) contain squares, and thus
cannot be factors of w. It follows that ac, aba, cb, da and dc are not factors of v. On
the other hand, as in the proof of the previous lemma, f(d) = 1232 only appears in w in
the context 123213. It follows that if cd is a factor of v, then f(cd)13 = 1323123213 is a
factor of w. However, this has the suffix 3123213 = xyzxzyx where x = 3, y = 1, z = 2.
This is impossible.

Remark 14. It follows that v can be walked on the directed graph D of Figure 1.

Let h : {a, b, c, d}∗ → {a, c, d}∗ be the morphism generated by h(a) = a, h(b) = ε,
h(c) = c, h(d) = d. Thus h(w) is obtained by deleting all occurrences of b in a word w.
Suppose that w is a factor of v. If w does not begin or end with b, then

w = g(h(w)).

Let u = h(v) ∈ UZ. It follows that v = g(u), so that

w = f(g(u)).
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Word u must be square-free; otherwise its image w contains a square. Thus the first
alternative in Theorem 2 holds.

The other situation occurs if we decide, after Lemma 7, that w1231 = 0. As we remarked
at that point in our argument, this amounts to interchanging 2’s and 3’s, i.e., applying π.
In such a case, we find that

w = π(f(g(u))).

This completes the proof of Theorem 2.

5 Proof of Theorem 1

Proof of Lemma 5. Let w = f(g(u)). Each length 7 factor of w is a factor of f(g(u′)),
some factor u′ ∈ U3. A finite check establishes that f(u′) is factor-good for each u ∈
U3.

Proof of Lemma 6. Suppose for the sake of getting a contradiction, that XX is a non-
empty square in w = f(v). If |X| 6 2, then XX is a factor of f(v′), some factor v′ of v
with |v′| = 2. However, only need to consider

v′ ∈ {ab, ad, ba, bc, ca, cd, db}.

(As per Remark 14, we can walk v′ on D.) In each case, we check that f(v′) is
square-free. From now on, then, suppose that |X| > 3; in this case we can write

XX = qf(v1v2 · · · vn−1)p = qf(vn+1vn+2 · · · v2n−1)p,

where v0v1 · · · vn−1vnvn+1vn+2 · · · v2n−1v2n is a factor of v, q is a suffix of f(v0), p is a
prefix of f(v2n), f(vn) = pq, and the vi ∈ T . It follows that vi = vn+i, 1 6 i 6 n− 1.

If v0 = vn, then v contains the square (v0v1v2 · · · vn−1)2; similarly, if vn = v2n, then v
contains the square (v1v2v3 · · · vn)2. Since v is square-free, we deduce that vn 6= v0, v2n.
From the condition that f(vn) is concatenated from a prefix of v2n and a suffix of v0,
where vn 6= v0, v2n, we deduce that vn = b.

From the definition of g and the fact that vn = b, we have vn−1vnv1 ∈ {abc, dba, dbc}.
If vn−1 = d, the definition of g would force vn = v2n = b, contradicting v2n 6= vn. We
conclude that vn−1vnv1 = abc. However, if v1 = c, the definition of g forces vn = v0 = b,
contradicting v0 6= vn.

6 Proof of Theorem 3

Let u be the lexicographically least square-free ω-word over U = {a, c, d}, and let t =
f(g(u)). It follows that u has prefix ac, so that t has prefix p = f(g(ac)) = f(abc) =
12131231323. A finite search shows that p is the lexicographically least good word of
length 11. It will therefore suffice to show that t is the lexicographically least good
ω-word with prefix p.
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Suppose that t1 is a good ω-word with prefix p. By Lemma 7, it follows that |t1|1321 =
0, and from the proof of Theorem 2, we conclude that t1 = f(g(u1)), for some square-free
word u1. It remains to show that u1 is lexicographically greater than or equal to u.
Suppose not.

Since t1 has prefix p, word ac must be a prefix of u1, and u, u1 agree on a prefix of
length at least 2. Let qrs and qrt be prefixes of u1 and u, respectively, where r, s, t ∈
{a, c, d}, and s is lexicographically less than t.

• If r = a, then we cannot have s = a, since u1 is square-free. We therefore must
have s = c and t = d. It follows that t1 has prefix f(g(qa)bc) = f(g(qa))1231323,
and t has prefix f(g(qa)d) = f(g(qa))1232, and we see that t1 is lexicographically
less than t. This contradicts the minimality of t.

• If r = c, then we must have s = a and t = d. It follows that t1 has prefix
f(g(qca)) = f(g(qc))1213, and t has prefix f(g(qcd)) = f(g(qc))1232, and again t1
is lexicographically less than t, giving a contradiction.

• If r = d, then we must have s = a and t = c. It follows that t1 has prefix
f(g(qd)ba) = f(g(qd))1231213, and t has prefix f(g(qd)bc) = f(g(qc))1231323, and
again t1 is lexicographically less than t.

We conclude that u1 is lexicographically greater than or equal to u, and u is the lexico-
graphically least square-free ω-word over U , as claimed.

7 Proof of Theorem 4

Let C(n) be the number of length n square-free words over U . As shown by Brandenburg
[2], for n > 2, C(n) > 6

(
2

n
21

)
. The map f ◦g is injective. Since g simply adds b’s between

some pairs of letters, |u| 6 |g(u)| < 2|u|; also, 3|u| 6 |f(u)| 6 4|u|. Let u ∈ U∗ be square-
free. By the Lemmas 5 and 6, f(g(u)) is good. Also, 3|u| 6 |f(g(u))| < 8|u|. We deduce
that distinct square-free words over U of lengths between 3 and (n + 1)/8 correspond to
distinct good words of lengths between 9 and n. It follows that

b(n+1)/8c∑
i=3

6
(
2

n
22

)
6

n∑
i=9

G(i),

and the theorem follows with A =
∑8

i=0G(i), B = 6 and C = 2
1
22 .

Remark 15. The growth rate of ternary square-free words is now very well understood,
because of the sharp analysis by Shur [10]. One could definitely tighten the bounds of the
above proof; perhaps sharp bounds could be given building on Shur’s work.
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