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Abstract

Let G be a simple graph with vertex set V(G). A set S C V(G) is independent
if no two vertices from S are adjacent. For X C V/(G), the difference of X is
d(X) = |X| —|N(X)| and an independent set A is critical if d(A) = max{d(X) :
X C V(G) is an independent set} (possibly A = )). Let nucleus(G) and diadem(QG)
be the intersection and union, respectively, of all maximum size critical independent
sets in G. In this paper, we will give two new characterizations of Konig-Egervary
graphs involving nucleus(G) and diadem(G). We also prove a related lower bound
for the independence number of a graph. This work answers several conjectures
posed by Jarden, Levit, and Mandrescu.

Keywords: maximum independent set; maximum critical independent set; Konig-
Egervary graph; maximum matching; core; corona; ker; diadem; nucleus.

1 Introduction

In this paper G is a simple graph with vertex set V(G), |V(G)| = n, and edge set E(G).
The set of neighbors of a vertex v is Ng(v) or simply N (v) if there is no possibility of
ambiguity. If X C V(G), then the set of neighbors of X is N(X) = UuexN(u), G[X]
is the subgraph induced by X, and X¢ is the complement of the subset X. For sets
A, B C V(G), we use A\ B to denote the vertices belonging to A but not B. For such
disjoint A and B we let (A, B) denote the set of edges such that each edge is incident to
both a vertex in A and a vertex in B.

A matching M is a set of pairwise non-incident edges of G. A matching of maxi-
mum cardinality is a mazimum matching and p(G) is the cardinality of such a maximum
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matching. For a set A C V(@) and matching M, we say A is saturated by M if every
vertex of A is incident to an edge in M. For two disjoint sets A, B C V(G), we say there
is a matching M of A into B if M is a matching of G such that every edge of M belongs to
(A, B) and each vertex of A is saturated. An M -alternating path is a path that alternates
between edges in M and those not in M. An M-augmenting path is an M-alternating
path which begins and ends with vertices not saturated by M.

A set S C V(G) is independent if no two vertices from S are adjacent. An independent
set of maximum cardinality is a mazimum independent set and a(G) is the cardinality of
such a maximum independent set. For a graph G, let Q(G) denote the family of all its
maximum independent sets, let

core(G) = ﬂ{S :S€QG)}, and corona(G) = U{S : S € QG)}

See [1,15] for background and properties of core(G) and corona(G).

For a graph G and a set X C V(G), the difference of X is d(X) = |X| — |N(X)|
and the critical difference d(G) is max{d(X) : X C V(G)}. Zhang [24] showed that
max{d(X) : X CV(G)} = max{d(S) : S C V(G) is an independent set}. The set X is a
critical set if d(X) = d(G). The set S C V(G) a critical independent set if S is both a
critical set and independent. A critical independent set of maximum cardinality is called
a mazimum critical independent set. Note that for some graphs the empty set is the only
critical independent set, for example odd cycles or complete graphs. See [2,12,13,24] for
more background and properties of critical independent sets.

Finding a maximum independent set is a well-known NP-hard problem. Zhang [24]
first showed that a critical independent set can be found in polynomial time. Butenko
and Trukhanov [2] showed that every critical independent set is contained in a maximum
independent set, thereby directly connecting the problem of finding a critical independent
set to that of finding a maximum independent set.

For a graph G the inequality a(G) + u(G) < n always holds. A graph G is a Kdnig-
Egervary graph if a(G) + u(G) = n. According to the classical result of Kénig [10] and
Egervédry [4], all bipartite graphs are Konig-Egervary graphs. There are non-bipartite
graphs which are Konig-Egervary as well, see Figure 2 for an example. We adopt the
convention that the empty graph K, without vertices, is a Konig-Egervary graph.

Deming [3] and Sterboul [22] were the first to give characterizations of Kénig-Egervéry
graphs. A matching M of a graph is perfect if every vertex of the graph is saturated by
M. With respect to a matching M, a blossom is an odd cycle where half of one less than
the number of edges in the cycle belong to M. The unique vertex of the blossom not
saturated by M is called the blossom tip. A blossom pair is a pair of blossoms whose tips
are joined by an M-alternating path with an odd number of edges that begins and ends
with edges in M. Deming proved that if GG is a graph with a perfect matching M, then
G is a Konig-Egervary graph if, and only if, G contains no blossom pair. Sterboul gave
an equivalent characterization.

Gavril [7] introduced red /blue-split graphs, a generalization of Kénig-Egervéry graphs
and split graphs. A graph is a red/blue-split graph if its edges can be colored using
red, blue, or both colors such that the vertices can be partitioned into a red and blue
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independent set (where red or blue independent set is an independent set in the graph
made of red or blue edges, respectively). Gavril [6] also proved that given a maximum
matching of a graph G, the problem of determining whether G is a Konig-Egervéry graph
has complexity O(n + |E(G)|).

Korach et al. [11] described red/blue-split graphs in terms of certain forbidden con-
figurations. This led them to a characterization of Konig-Egervary graphs in terms of
certain forbidden subgraphs with respect to a maximum matching. Lovész [20] gave a
characterization of Konig-Egervary graphs having a perfect matching, in terms of certain
forbidden subgraphs with respect to a particular perfect matching.

Larson and Pepper [14] gave a partial characterization of Konig-Egervary graphs
involving the annihilation number of a graph. For a graph G with degree sequence
dy < dy < ... < d,, the annihilation number a = a(G) is the largest index such that
Yot di < |E(G)|. An annihilating set A is a subset of the vertices such that the sum of
the degrees of the vertices in A does not exceed |E(G)|. We say that A is a mazimum
annihilating set if |A| = a(G). Larson and Pepper proved that if G' is a graph with
a(G) > 3, then a(G) = o(G) if, and only if, G is a Kénig-Egervary graph and every
maximum independent set is also a maximum annihilating set.

Larson [13] also showed that Konig-Egervary graphs are closely related to critical
independent sets.

Theorem 1. [13] A graph G is Kénig-Egervdry if, and only if, every mazimum indepen-
dent set in G is critical.

Theorem 2. [13] For any graph G, there is a unique set X C V(G) such that all of the
following hold:

(1) a(G) = a(G[X]) + a(G[X),

(i1) G[X] is a Kdnig-Egervary graph,

(i73) for every non-empty independent set S in G[X¢], |N(S)| > |S|, and

(1v) for every mazimum critical independent set I of G, X =1 UN(I).

Larson [12] proved that a maximum critical independent set can be found in polynomial
time. So the decomposition in Theorem 2 of a graph G into X and X¢ is also computable
in polynomial time. Figure 1 gives an example of this decomposition, where both the
sets X and X¢ are non-empty. Recall, for some graphs the empty set is the only critical
independent set, so for such graphs the set X would be empty. If a graph G is a Konig-
Egervary graph, then the set X¢ would be empty. We adopt the convention that if Kj is
empty graph, then o(Ky) = 0.
In [9,17] the following concepts were introduced: for a graph G,

ker(G) = ﬂ{S : S is a critical independent set in G},
diadem(G) = U{S : S is a critical independent set in G}, and
nucleus(G) = ﬂ{S : S is a maximum critical independent set in G}.
However, the following result due to Larson allows us to use a more suitable definition for

diadem(G).
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Figure 1: G has maximum critical independent set I = {a,b,c}. Theorem 2 gives that
X ={a,b,c,d,e} and X ={f,qg,h,i,j}.

Theorem 3. [12] Fach critical independent set is contained in some mazximum critical

independent set.

For the remainder of this paper we define
diadem(G) = U{S : S is a maximum critical independent set in G'}.

Note that if G is a graph where the empty set is the only critical indepedent set (including
the case G = K, the empty graph), then ker(G),diadem(G), and nucleus(G) are all
empty. See Figure 2 for examples of the sets ker(G), diadem(G), and nucleus(G).

a
€
b
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C
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Figure 2: G is a Konig-Egervary graph with ker(Gy) = {a,b} C core(Gy) =
nucleus(Gy) = {a,b,d} and diadem(G;) = corona(G;) = {a,b,c,d, f}. G is not a
Konig-Egervary graph and has ker(Gy) = core(Gz) = {a,b} C nucleus(Gz) = {a,b,d}
and diadem(Gy) = {a,b,c,d, f} C corona(G) = {a,b,c,d, f,g,h,i,j}.

In [8,9], the following necessary conditions for Konig-Egervéry graphs were given:

Theorem 4. [8] If G is a Kdnig-Egervdry graph, then
(1) diadem(G) = corona(G), and
(17) | ker(G)| + | diadem(G)| < 2a(G).

Theorem 5. [9] If G is a Konig-Egervary graph, then |nucleus(G)| + | diadem(G)| =
2a(G).

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(2) (2016), #P2.43 4



In [8] it was conjectured that condition (i) of Theorem 4 is sufficient for Konig-Egervary
graphs and in [9] it was conjectured the necessary condition in Theorem 5 is also sufficient.
The purpose of this paper is to affirm these conjectures by proving the following new
characterizations of Konig-Egervary graphs.

Theorem 6. For a graph G, the following are equivalent:
(1) G is a Kdnig-Egervdry graph,
(i7) diadem(G) = corona(G), and
(i73) | diadem(G)| + | nucleus(G)| = 2a(G).

The paper [8] gives an upper bound for a(G) in terms of unions and intersections of
maximum independent sets, proving

20(G) < | core(G)| + | corona(G)|

for any graph G. It is natural to ask whether a similar lower bound for a(G) can be
formulated in terms of unions and intersections of critical independent sets. Jarden,
Levit, and Mandrescu in [8] conjectured that for any graph G, the inequality | ker(G)| +
| diadem(G)| < 2a(G) always holds. We will prove a slightly stronger statement. By
Theorem 3 we see that ker(G) C nucleus(G) holds implying that | ker(G)|+| diadem(G)| <
| nucleus(G)| + | diadem(G)|. In section 4 we will prove the following statement, resolving
the cited conjecture:

Theorem 7. For any graph G,
| nucleus(G)| + | diadem(G)| < 2a(G).

It would be interesting to know whether the sets nucleus(G) and diadem(G), or their
sizes, can be computed in polynomial time.

2 Some structural lemmas

Here we prove several crucial lemmas which will be needed in our proofs. Our results
hinge upon the structure of the set X as described in Theorem 2.

Lemma 8. Let I be a mazimum critical independent set in G and set X = I U N(I).
Then diadem(G) U N (diadem(G)) = X.

Proof. By Theorem 2 the set X is unique in G, that is, for any maximum critical in-
dependent set S, X = S U N(S). Then diadem(G) U N(diadem(G)) = X follows by
definition. 0

Lemma 9. Let I be a mazimum critical independent set in G and set X = I U N(I).
Then diadem(G) C diadem(G[X]) and nucleus(G[X]) C nucleus(G).
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Proof. Let S be a maximum critical independent set in G. Using Theorem 2 we see that
S is a maximum independent set in G[X] and also G[X] is a Kénig-Egervéry graph. Then
Theorem 1 gives that S must also be critical in G[X], which implies that diadem(G) C
diadem(G[X]).

Now let v € nucleus(G[X]). Then v belongs to every maximum critical indepedent set
in G[X]. As remarked above, since every maximum critical independent set in G is also
a maximum critical independent set in G[X], then v belongs to every maximum critical
independent set in G. This shows that v € nucleus(G) and nucleus(G[X]) C nucleus(G)
follows. [l

Lemma 10. Suppose I is a non-empty maximum critical independent set in G, set X =
T'UN(I), let A =nucleus(G) \ nucleus(G[X]), and let S be a mazimum independent set
in G| X]. For S" C SN N(A), if there exists A' C A such that N(A') NS C S, then
15 = |A'].

Proof. For S C SN N(A) suppose such an A’ exists. For sake of contradiction, suppose
that |S’| < |A'|. Since A" C nucleus(G), then A’ is an independent set. Also since
A" C nucleus(G) C diadem(G), by Lemma 8 we have A” C X. Furthermore, since
NA)YNS C 5" then AU (S \ S) is an independent set in G[X]. Now by assumption
|S7| < JA'|, so AU (S\ S’) is an independent set in G[X] larger than S, which cannot
happen. Therefore we must have |S’| > |A’| as desired. O

Lemma 11. Let I be a mazimum critical independent set in G and set X = 1 U N(I).
Then
| nucleus(G)| + | diadem(G)| < | nucleus(G[X])| + | diadem(G[X])|.

Proof. First note that if the set X is empty, then by Lemma 8 both sides of the inequality
are zero. So let us assume that X is non-empty. Now consider the set A = nucleus(G) \
nucleus(G[X]). If this independent set is empty, then nucleus(G) = nucleus(G[X]) and
there is nothing to prove since diadem(G) C diadem(G|[X]) holds by Lemma 9. If A is
non-empty, for each v € A there is some maximum independent set S of G[X] which
doesn’t contain v. Since S is a maximum independent set there exists u € N(v) N S.
Since v € nucleus(G), then u does not belong to any maximum critical independent
set in G. Recall by Theorem 2 (i1) G[X] is a Konig-Egervary graph, so Theorem
1 gives that S is a maximum critical independent set in G[X]. It follows that u €
diadem(G[X]) \ diadem(G), which shows each vertex in A is adjacent to at least one
vertex in diadem(G[X]) \ diadem(G).

Now we will show there is a maximum matching from A into diadem(G[X])\diadem(G)
with size |A|. For sake of contradiction, suppose such a matching M has less than |A|
edges. Then there exists some vertex v € A not saturated by M. By the above, v is
adjacent to some vertex u € diadem(G[X]) \ diadem(G). Since M is maximum, u is
matched to some vertex w € A under M. Now let S be a maximum independent set
of G[X] containing u. We now restrict ourselves to the subgraph induced by the edges
(ANN(S), SNN(A)), noting this subgraph is bipartite since both ANN(S) and SNN(A)
are independent. In this subgraph, consider the set P of all M-alternating paths starting
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with the edge vu. Note that all such paths must start with the vertices v, u, then w. Also,
such paths must end at either a matched vertex in AN N(S) or an unmatched vertex in
SNN(A).

We wish to show that there is some alternating path ending at an unmatched vertex
in SN N(A). For sake of contradiction, suppose all alternating paths end at a matched
vertex in AN N(S) and let V(P) denote the union of all vertices belonging to such an
alternating path. We aim to show this scenario contradicts Lemma 10. Now clearly we
must have N(V(P)NA)NS C V(P)NS, else we could extend an alternating path to any
vertex in (N(V(P)NA)NS)\ (V(P)NS). Also, since all paths in P end at a matched
vertex in A N N(S), then every vertex of V(P) N S is matched under M, and such a
situation should look as in Figure 3.

Figure 3: What the M-alternating paths could look like between V(P)N A and V(P)N S,
where solid lines represent matched edges in M and dotted lines represent the unmatched
edges.

From this it follows that [V(P) N S| < |[V(P) N A|. The previous statements exactly
contradict Lemma 10, so there is some alternating path P ending at an unmatched vertex
x € SN N(A). This means that P is an M-augmenting path. A well-known theorem
in graph theory states that a matching is maximum in G if, and only if, there is no
augmenting path [23]. So P being an M-augmenting path contradicts our assumption
that M is a maximum matching.

Therefore there is a matching M from A into diadem(G[X])\ diadem(G). This match-
ing implies that | nucleus(G) \ nucleus(G[X])| < | diadem(G[X]) \ diadem(G)|. Since both
nucleus(G[X]) C nucleus(G) and diadem(G) C diadem(G[X]) by Lemma 9, the lemma
follows. O

3 New characterizations of Konig-Egervary graphs

Proof (of Theorem 6). First we prove (ii) = (i). Suppose that diadem(G) = corona(G)
holds and let I be a maximum critical independent set with X = I U N(I). We will use
the decomposition in Theorem 2 to show that X¢ must be empty and hence, G = G[X]|
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is a Konig-Egervary graph. By Lemma 8 we have corona(G) = diadem(G) C X, in
other words every maximum independent set in GG is contained in X. This implies that
|I| = a(G[X]) = a(G). Now by Theorem 2 (i), a(G) = a(G[X]) + a(G[X¢]) showing that
we must have a(G[X¢]) = 0. Now clearly the result follows, since a(G[X¢]) = 0 implies
that X¢ must be empty.

To prove (iii) = (i), again we will use the decomposition in Theorem 2 to show
that X° must be empty and hence, G is a Konig-Egervary graph. So suppose that
| diadem(G)| + | nucleus(G)| = 2a(G) and let I be a maximum critical independent set in
G with X =T UN(I). Lemma 11 implies that

2a(G) = | diadem(G)| + | nucleus(G)| < | diadem(G[X])| + | nucleus(G[X])|.
Theorem 2(ii) gives that G[X] is Konig-Egervary , so by Corollary 5 we have
| diadem(G[X])| + | nucleus(G[X])| = 2a(G[X])

implying that a(G) < a(G[X]). It follows by Theorem 2(i) we must have a(G) =
a(G[X]), so again we know that a(G[X¢]) = 0 which finishes this part of the proof.

The implications (i) = (i7) and (i) = (4i7) are given in Theorem 4 and in Theorem 5.

0

4 A bound on a(G)

Proof (of Theorem 7). Let I be a maximum critical independent set in G and X = [ U
N(I). By Theorem 2 (ii), G[X] is a Konig-Egervary graph so by Theorem 5 we have

| nucleus(G[X])| + | diadem(G[X])| = 2a(G[X]) < 2a(G).
Now by Lemma 11 we must have
| nucleus(G)| + | diadem(G)| < | nucleus(G[X])| + | diadem(G[X])|
and the theorem follows. O

Combining Theorem 7 and the inequality 2a(G) < | core(G)| + | corona(G)| proven in
8], the following corollary is immediate.

Corollary 12. For any graph G,
| nucleus(G)| + | diadem(G)| < 2a(G) < | core(G)| + | corona(G)|.

These upper and lower bounds are quite interesting. The fact that every critical indepen-
dent set is contained in a maximum independent set implies that diadem(G) C corona(G)
for all graphs G. However, the graph G, in Figure 2 has core(Gs) C nucleus(Gy) while
the graph G in Figure 1 has nucleus(G) = {a, b, ¢} C core(G) = {a,b, c, h}.
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