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Abstract

Let F be a set of blocks of a t-set X. A pair (X,F) is called an (w, r)-cover-free
family ((w, r)−CFF) provided that, the intersection of any w blocks in F is not
contained in the union of any other r blocks in F .

We give new asymptotic lower bounds for the number of minimum points t in a
(w, r)-CFF when w 6 r = |F|ε for some constant ε > 1/2.
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1 Introduction

Let F be a set of blocks (subsets) of a t-set X. A pair (X,F) is called a (w, r)-cover-free
family ((w, r)−CFF) provided that, for any w blocks A1, A2, . . . , Aw ∈ F and any other
r blocks B1, B2, . . . , Br ∈ F we have

w⋂
i=1

Ai 6⊆
r⋃
j=1

Bj.

Since using De Morgan, a (w, r)−CFF can be turned into (r, w)−CFF, throughout the
paper we assume that w 6 r. Cover-free families were first introduced in 1964 by Kautz
and Singleton [5].

Let N(n, (w, r)) denote the minimum number of points |X| in any (w, r)-CFF having
|F| = n blocks. The best known lower bound for N(n, (1, r)) is [2, 4, 7]

N(n, (1, r)) = Ω

(
r2

log r
log n

)
(1)

when r 6
√
n, and, Ω(n) when r >

√
n. The constant of the Ω() is asymptotically 1/2,

1/4 and 1/8, respectively. Stinson et. al, [8], proved that

N(n, (w, r)) > N(n− 1, (w − 1, r)) +N(n− 1, (w, r − 1)). (2)
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They then use it with (1) to prove two bounds. The first bound is

N(n, (w, r)) > Ω

((
w+r
w

)
(w + r)

log
(
w+r
w

) log n

)
(3)

when r 6
√
n, [8, 6], and

N(n, (w, r)) > Ω

( (
w+r
w

)
log (w + r)

log n

)
(4)

for any r 6 n, [8]. To the best of our knowledge (4) is the best bound known when√
n 6 r 6 n. D’yachkov et. al. breakthrough result, [3], implies that for r 6

√
n and

r, n→∞

N(n, (w, r)) = Θ

((
w+r
w

)
(w + r)

log
(
w+r
w

) log n

)
(5)

and for r >
√
n and r, n→∞

N(n, (w, r)) 6 O

(
r

w
·

(
w+r
w

)
log (w + r)

log n

)
. (6)

In this paper we give a new lower bound for (w, r)-CFF when r >
√
n. We combine

the two techniques used in [8, 6] and [1] to give the following asymptotic lower bound.

Theorem 1. For any 2 6 k 6 w < r 6 n/2 we have

N(n, (w, r)) >
kkk!

2(k + 1)2k
rw+1

(w + 1)! lnk r
= Ω

(√
k

ek
· rw+1

(w + 1)! lnk+1 r
log n

)

for

(n+ k − 1− w)
k−1
k 6 r 6 (n+ k − w)

k
k+1

and

N(n, (w, r)) = Θ

((
n

w

))
for

r = Ω
(

(n log n)
w

w+1

)
.

Our bound is

Θ

( √
k · r

w(e ln r)k

)
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times greater than the previous bound in (4). In particular, when k is constant, our lower
bound improves the bound in (4) to

N(n, (w, r)) > Ω

(
r

w logk r
·

(
w+r
w

)
log (w + r)

log n

)
. (7)

A slightly better bound can be achieved when

(n+ k − w)
k

k+1 6 r 6 (n+ k − w)
k

k+1 ln1/(k+1) n.

For example, let w = 4. Table 1 compares our results with the previous results (asymptotic
values).

Previous Lower Upper Our Lower
r Bounds (3), (4) Bound [3] Bound

r 6 n1/2 r5 logn
log r

r5 logn
log r

—–

n1/2 6 r 6 n2/3 r4 logn
log r

r5 logn
log r

r5 logn
log3 r

n2/3 6 r 6 n3/4 r4 logn
log r

r5 logn
log r

r5 logn
log4 r

n3/4 6 r 6 n4/5 r4 logn
log r

r5 logn
log r

r5 logn
log5 r

n > r > (n log n)4/5 r4 n4 n4

Table 1: Results for w = 4.

2 First Lower Bound

In this section, we prove

Lemma 2. Let w 6 r 6 n/2. If

r = Ω
(

(n log n)
w

w+1

)
then

N(n, (w, r)) = Θ

((
n

w

))
. (8)

Otherwise,

N(n, (w, r)) > Ω

((
r

(w + 1) ln r

)w+1

log n

)
. (9)

Lemma 2 follows from the following.
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Lemma 3. Let ε < 1 be any constant. For w 6 r 6 n/2 we have

N(n, (w, r)) > min

(
(1− ε) ww

(w + 1)2w+1
· r

w+1

lnw r
, ε

(
n

w

))
. (10)

Proof. Let (X,F) be an optimal (w, r)-CFF. Let F = {F1, . . . , Fn},

|X| = N = N(n, (w, r))

and assume without loss of generality that X = [N ] := {1, . . . , N}. Define v(i) ∈ {0, 1}n,

i = 1, . . . , N where v
(i)
j = 1 if and only if i ∈ Fj. Let V = {v(i)|i = 1, . . . , N}. Let V0 be

the set of v(i) of weight wt(v(i)) (i.e.,
∑

j v
(i)
j ) equal to w. Let

m =
(w + 1)2n ln r

wr

and consider the two sets V1 = {v(i) | w < wt(v(i)) < m} and V2 = {v(i) | wt(v(i)) > m}.
Obviously, V = V0 ∪ V1 ∪ V2 is a partition of V . Suppose by contradiction that

|V0| 6 ε

(
n

w

)
and

max(|V1|, |V2|) 6 (1− ε) ww

(w + 1)2w+1
· r

w+1

lnw r
.

Consider W = {(j1, . . . , jw) | 1 6 j1 < · · · < jw 6 n} and W ′ ⊂ W the set of all

(j1, . . . , jw) where no v(i) ∈ V0, i = 1, . . . , N , satisfies v
(i)
j1

= · · · = v
(i)
jw

= 1. Obviously,

|W ′| =
(
n

w

)
− |V0| > (1− ε)

(
n

w

)
.

Fix an element v ∈ V1 and randomly and uniformly choose j = (j1, . . . , jw) ∈ W ′. We
have

Pr
j∈W ′

[vj1 = · · · = vjw = 1] 6

(
wt(v)
w

)
|W ′|

6

(
m
w

)
(1− ε)

(
n
w

) .
Therefore, the expectation of the number of v ∈ V1 for which vj1 = · · · = vjw = 1 is at
most (

m
w

)
|V1|

(1− ε)
(
n
w

) 6
1

1− ε

(m
n

)w
|V1|

6
1

1− ε
(w + 1)2w lnw r

wwrw
· (1− ε) ww

(w + 1)2w+1
· r

w+1

lnw r

=
r

w + 1
.
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Therefore, there is j′ = (j′1, . . . , j
′
w) ∈ W ′ such that the number of v ∈ V1 that satisfies

vj′1 = · · · = vj′w = 1 is r1 6 r/(w + 1). Since the weight of every v ∈ V1 is greater than w,
we can choose r1 new entries j′′1 , . . . , j

′′
r1
6∈ {j′1, . . . , j′w} such that for every v ∈ V1 where

vj′1 = · · · = vj′w = 1 there is j′′` such that vj′′` = 1.
Now randomly and uniformly choose

r2 :=

⌈
wr

w + 1

⌉
distinct k1, . . . , kr2 ∈ [n]. Let A be the event that {k1, . . . , kr2} ∩ {j′1, . . . , j′w} 6= ∅. The
probability that A does not happen is(

n−w
r2

)(
n
r2

) >

(
n−w
r2

)
2w
(
n−w
r2

) =
1

2w
.

Then

Pr[A ∨ (∃v ∈ V2) vk1 = · · · = vkr2 = 0] 6 1− 1

2w
+ |V2|

(
n−m
r2

)(
n
r2

)
6 1− 1

2w
+ |V2|

(
n−m
n

)r2
6 1− 1

2w
+ |V2|e−

mr2
n

and

|V2|e−
mr2
n 6 (1− ε) ww

(w + 1)2w+1
· r

w+1

lnw r
· e−

(w+1)2 ln r
wr

r2

6 (1− ε) ww

(w + 1)2w+1
· r

w+1

lnw r
· e−(w+1) ln r

= (1− ε) ww

(w + 1)2w+1
· 1

lnw r

<
1

2w
.

Therefore,

Pr[A ∨ (∃v ∈ V2) vk1 = · · · = vkr2 = 0] < 1.

Therefore, there is {k1, . . . , kr2} such that {k1, . . . , kr2}∩{j′1, . . . , j′w} = ∅ and for every
v ∈ V2 there is k` ∈ {k1, . . . , kr2} where vk` = 1.

Now it is easy to see that there is no v ∈ V where vj′1 = · · · = vj′w = 1, vj′′1 = · · · =
vj′′r1 = 0 and vk1 = · · · = vkr2 = 0. This implies that

w⋂
i=1

Fj′i ⊆
r1⋃
i=1

Fj′′i ∪
r2⋃
i=1

Fki ,

which is a contradiction.
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3 The Second Bound

In this section we prove Theorem 1.

Lemma 4. For any 2 6 k 6 w 6 r 6 n/2 and

2 6 r 6 (n+ k − w)
k

k+1

N(n, (w, r)) >
kkk!

2(k + 1)2k
rw+1

(w + 1)! lnk r
= Ω

(
rw+1

(w + 1)! lnk r

)
.

Proof. We prove the lemma by induction on w.
From Lemma 3 the lemma holds for w = k. Now assume the bound holds for some

w and every r that satisfies r 6 (n+ k − w)
k

k+1 . We now prove the bound for w + 1 and

r 6 (n+ k − w − 1)
k

k+1 . We have

N(n, (w + 1, r)) > N(n− 1, (w, r))) +N(n− 1, (w + 1, r − 1)) (11)

>
r∑
j=1

N(n− r + j − 1, (w, j)) (12)

> N(n− r, (w, 1)) +
r∑
j=2

kkk!

2(k + 1)2k
jw+1

(w + 1)! lnk j
(13)

>
kkk!

2(k + 1)2k(w + 1)! lnk r

r∑
j=1

jw+1

>
kkk!

2(k + 1)2k(w + 1)! lnk r

∫ r

0

xw+1 dx

>
kkk!

2(k + 1)2k
rw+2

(w + 2)! lnk r
.

Here, inequality (11) comes from [8]. Inequality (12) follows from the fact that N(n−
r+ 1, (w+ 1, 1)) > N(n− r, (w, 1)). Inequality (13) follows from the induction hypothesis
since

j = r − (r − j)

6 (n+ k − w − 1)
k

k+1 − (r − j)

6 (n+ k − w − 1− (r − j))
k

k+1

= ((n− r + j − 1) + k − w)
k

k+1 .

Lemma 5. Let w 6 r 6 n/2. If

r = Ω
(

(n log n)
w

w+1

)
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then

N(n, (w, r)) = Θ

((
n

w

))
.

Proof. Let r > c(n log n)
w

w+1 for large enough constant c > 2e and c′ = c(w+1)/w. Since

1

2

ww

(w + 1)2w+1
· r

w+1

lnw r
>

1

2

ww

(w + 1)2w+1
· cw+1nw logw n(

w
w+1

)w
lnw(c′n log n)

>
1

2

1

(w + 1)
(
1 + 1

w

)w · cw+1nw lnw n

ww lnw(n2)

>
c

2e

1

(w + 1)

( c
2e

)w
·
(en
w

)w
>

c

2e

1

(w + 1)

( c
2e

)w
·
(
n

w

)
>

(
n

w

)
,

by Lemma 3, the result follows.
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