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Abstract
Let F be a set of blocks of a t-set X. A pair (X, F) is called an (w, r)-cover-free
family ((w,r)—CFF) provided that, the intersection of any w blocks in F is not
contained in the union of any other r blocks in F.

We give new asymptotic lower bounds for the number of minimum points ¢ in a
(w,7)-CFF when w < r = | F|¢ for some constant € > 1/2.
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1 Introduction

Let F be a set of blocks (subsets) of a t-set X. A pair (X, F) is called a (w, r)-cover-free
family ((w,r)—CFF) provided that, for any w blocks Ay, Ay, ..., A, € F and any other
r blocks By, By, ..., B, € F we have

4z B
i=1 j=1

Since using De Morgan, a (w,r)—CFF can be turned into (r,w)—CFF, throughout the
paper we assume that w < r. Cover-free families were first introduced in 1964 by Kautz
and Singleton [5].

Let N(n, (w,r)) denote the minimum number of points |X| in any (w, r)-CFF having
|F| = n blocks. The best known lower bound for N(n, (1,r)) is [2, 4, 7]

AKm(Lr»::Q(lﬂ kgn) (1)

ogr

when r < y/n, and, Q(n) when r > y/n. The constant of the () is asymptotically 1/2,
1/4 and 1/8, respectively. Stinson et. al, [8], proved that

N(n,(w,r)) 2 Nn—1,(w—1,7))+ N(n— 1, (w,r — 1)). (2)
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They then use it with (1) to prove two bounds. The first bound is
w—+r
+
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when r < y/n, [8, 6], and

N(n,(w,r)) = Q (L)) logn) (4)

log (w + 7

for any » < n, [8]. To the best of our knowledge (4) is the best bound known when
vn < r < n. D’yachkov et. al. breakthrough result, [3], implies that for r < /n and
T, n — 00

Y (w )
N(n,(w,r)) =0 <W log n> (5)

and for r > /n and r,n — oo

N(n,(w,r)) <O (1 L))logn) . (6)

w log (w+r

In this paper we give a new lower bound for (w,r)-CFF when r > y/n. We combine
the two techniques used in [8, 6] and [1] to give the following asymptotic lower bound.

Theorem 1. For any 2 < k < w <r < n/2 we have

]fkk' w—+1 k w1
N(”a <w7 T)) > T — Q <£ . ! IOg TL)

T 2(k+ )% (w4 1) In*r ek (w+ D!ty

for
(n+k—1-w)F <r<(n+k—w)ri
and
N(n, (w,r))z@((Z))
for

r=Q <(nlogn)w1j)rl> )
o)
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Our bound is



times greater than the previous bound in (4). In particular, when k is constant, our lower
bound improves the bound in (4) to

N(n,(w,r)) = Q ( i () ] log n> . (7)

wlogk r log (w+r
A slightly better bound can be achieved when
(n—i—k—w)k%l <r< (n+k—w)ki+11n1/(k+1)n.

For example, let w = 4. Table 1 compares our results with the previous results (asymptotic
values).

Previous Lower | Upper Our Lower
r Bounds (3), (4) | Bound [3] | Bound
r<n e | —
nl/2 <r< n2/3 4112% 5112% 7"5%
23 < < 4112% 5112% 5%%
n3/4 <r< na/s 4112% 5% 75%
n>r > (nlogn)?s | rt n? n?

Table 1: Results for w = 4.

2 First Lower Bound

In this section, we prove

Lemma 2. Let w < r <n/2. If
r = <(nlogn)#l>

then

Otherwise,

N(n, (w,r)) > Q <<m)w+l log n> . (9)

Lemma 2 follows from the following.
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Lemma 3. Let e < 1 be any constant. For w < r < n/2 we have

Voo )z min (- 0 o o). (10)

Proof. Let (X, F) be an optimal (w,r)-CFF. Let F = {Fy,..., F,},

[ X| =N = N(n, (w,r))

and assume without loss of generality that X = [N] := {1,..., N}. Define v € {0,1}",
i=1,..., N where vj(-z) = lifand only if i € Fj. Let V = {v@|i = 1,..., N}. Let 1} be

the set of v of weight wt(v®) (i.e., > vj(-i)) equal to w. Let

(w+1)nInr
wr

m =

and consider the two sets V; = {v® | w < wt(v®) < m} and Vo = {v@ | wt(v®) > m}.
Obviously, V =V, UV} U V4 is a partition of V. Suppose by contradiction that

()
w

w r
(w+ 1)2wtt In®r’

Consider W = {(j1,...,jw) | 1 < j1 < -+ < jJu < n} and W C W the set of all

) = j(lu) = 1. Obviously,

and

w w—+1

max(|Vi], [V2]) < (1 —¢)

(j1, -+ jw) where no v € Vg, i = 1,..., N, satisfies v](i

| = (Z) — Vol > (1—¢) (Z)

Fix an element v € V; and randomly and uniformly choose j = (j1,...,jw) € W’'. We
have

() _ @)

Prilv, =---=v;, =1 < < .
jEW’[ J1i Jw ] ~N |W/| (1 . 6) (:})
Therefore, the expectation of the number of v € V; for which v;, = --- = v;, = 1 is at

most

()4l 1 myw
(1—6)(3)) S 1—(—:(%) A

1 (w+1)*In"r w? rutl
.(1_6>(w+1)2w+1.1nw7’
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Therefore, there is j' = (j1,. ..

,Uji
we can choose 1 new entries 77, ...

dn &t
---=wjy =1 there is j;' such that v;y = 1.
Now randomly and uniformly choose
wr
w+1

'Uji

,j72,) € W' such that the number of v € V; that satisfies
~-=wy = lisr <r/(w+1). Since the weight of every v € V; is greater than w,
,j.,} such that for every v € V; where

o 1=
distinct kq, ...,k € [n]. Let A be the event that {ki,... .k} N {ji,...,j,} # 0. The
probability that A does not happen is
(nr—2w> N (nr—zw) _ i
(n) — 2o 2
Then
I 1 (".")
PrlAV (FveVy) vy = =wp, =0/ < 1 2—w+|V2| )
T2
1 n—m\"
e (Pon)
2w
1 mr
< 1—— 4 |Vole
2w
and
mr ww ,,,.1,U+1 (w+l)2lnr
V - n2 < 1 _ . e wr T2
[Vale ( €) (w4 12+ In"r €
w% Tw—i—l
< 1 — . ,—(w+1)Inr
(1-¢) (w+ 1)2wtt In"r ‘
w® 1
- (1—
( ) (w+ 1)2w+l In“r
- 1
2w’
Therefore,
PrlAV (3v e Vy) vpy = =, =0 < 1.
Therefore, there is {k1, ..., k., } such that {ki,..., k., {1, ..., j.,} = 0 and for every

v € Vj there is k¢ € {ky, ..., k., } where vy, = 1.

Now it is easy to see that there is no v € V' where vy = ---

Vg = 0 and vy, = -+ = v, = 0. This implies that

J
w r ro
e UryvU A
i=1 i=1 i=1
which is a contradiction.
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3 The Second Bound

In this section we prove Theorem 1.

Lemma 4. For any2 < k <w <r <n/2 and

2<r<(n+k—w)ki+1

N - kF k! rwtl QO
(m: (01) 2 ST % (g DIty ((

Proof. We prove the lemma by induction on w.

w -+ 1) n" r

From Lemma 3 the lemma holds for w = k: Now assume the bound holds for some
w and every r that satisfies r < (n+ &k — w) . We now prove the bound for w + 1 and

< (n—i—k—w—l)'ﬁl. We have

N(n,(w+1,r)) =2 Nn—-1,(w,r))+Nn—-1,(w+1,r—1))
> > Nmn—r+j—1(wj)
j=1
2 N(n_ra(wal))+
i LE jw+1
20k + 1) (w+1)!In*
> kkk' Z w41
2(k 4 1)2k(w + 1) In" r
k1.1 r
> kRE! i /:L'w+1da;
2(k+ 1)%(w+ 1) n"r Jo
kk:k! Tw+2

2(k 4+ 1)% (w4 2)! In*

(11)
(12)

(13)

Here, inequality (11) comes from [8]. Inequality (12) follows from the fact that N(n —
r+1,(w+1,1)) > N(n—r, (w,1)). Inequality (13) follows from the induction hypothesis

since

Lemma 5. Let w < r < n/2. If
r=~ ((nlogn)#l>
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then

'MWWW»ZG(GD)

Proof. Let r > ¢(nlog n)w%l for large enough constant ¢ > 2e and ¢ = ¢/ Since

w

w rw+1

1
2 (w+ 1)2e+1  In®

by Lemma 3, the result follows.
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