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Abstract

Given an r-uniform hypergraph H = (V,E) and a weight function ω : E →
{1, . . . , w}, a coloring of vertices of H, induced by ω, is defined by c(v) =

∑
e3v w(e)

for all v ∈ V . If there exists such a coloring that is strong (that means in each edge no
color appears more than once), then we say that H is strongly w-weighted. Similarly,
if the coloring is weak (that means there is no monochromatic edge), then we say
that H is weakly w-weighted. In this paper, we show that almost all 3 or 4-uniform
hypergraphs are strongly 2-weighted (but not 1-weighted) and almost all 5-uniform
hypergraphs are either 1 or 2 strongly weighted (with a nontrivial distribution).
Furthermore, for r > 6 we show that almost all r-uniform hypergraphs are strongly
1-weighted. We complement these results by showing that almost all 3-uniform
hypergraphs are weakly 2-weighted but not 1-weighted and for r > 4 almost all r-
uniform hypergraphs are weakly 1-weighted. These results extend a previous work
of Addario-Berry, Dalal and Reed for graphs. We also prove general lower bounds
and show that there are r-uniform hypergraphs which are not strongly (r2 − r)-
weighted and not weakly 2-weighted. Finally, we show that determining whether a
particular uniform hypergraph is strongly 2-weighted is NP-complete.
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under Grant Number H98230-15-1-0172. The United States Government is authorized to reproduce and
distribute reprints notwithstanding any copyright notation hereon.
†Supported in part by NSF grant DMS1362785.
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1 Introduction

Let H = (V,E) be a hypergraph on the vertex set V and with the set of (hyper)edges E ⊆
2V . In this paper we consider r-uniform hypergraphs, meaning that each edge has size r.
Let ω : E → {1, . . . , w} be a weight function. Furthermore, let c : V → N be a vertex-
coloring induced by ω defined as c(v) =

∑
v3e ω(e) for each v ∈ V . The vertex-coloring is

weak if there is no monochromatic edge and strong if each edge is rainbow, i.e., for each
{v1, . . . , vr} ∈ E we have c(vi) 6= c(vj) for every 1 6 i < j 6 r. We say that H is weakly
w-weighted if there exists ω : E → {1, . . . , w} such that the vertex-coloring c induced by
ω is weak. Similarly, we say that H is strongly w-weighted if the corresponding coloring
is strong. Clearly each strongly w-weighted hypergraph is also weakly w-weighted. Note
that for graphs (r = 2) weak and strong colorings (and therefore weightings) are the same.

The well-known 1-2-3 Conjecture of Karoński,  Luczak and Thomason [13] asserts
that every graph without isolated edges is 3-weighted. This conjecture attracted a lot
of attention and has been studied by several researchers (see, e.g., a survey paper of
Seamone [14]). The 1-2-3 conjecture is still open but it is known due to a result of
Kalkowski, Karoński, and Pfender [11] that every graph without isolated edges is 5-
weighted. (For previous results see [1, 2, 15]).

In this paper we study an analogue of this conjecture for hypergraphs. This stream
of research was initiated by Kalkowski, Karoński, and Pfender [12] who studied weakly
weighted hypergraphs. In particular, they proved that any r-uniform hypergraph without
isolated edges is weakly (r + 1)-weighted for r > 4 and that 3-uniform hypergraphs are
weakly 5-weighted. The authors also asked whether there is an absolute constant w0 such
that every r-uniform hypergraph is weakly w0-weighted. Furthermore, they conjectured
that each 3-uniform hypergraph without isolated edges is weakly 3-weighted. We show
that for almost all uniform hypergraphs these conjectures hold.

In this paper we are interested in both strongly and weakly weighted hypergraphs.
We say that a hypergraph is nice if there is no pair of vertices u and v such that the set
of edges containing u is the same as the set of edges containing v. Note that only nice
hypergraphs can be strongly weighted.

First we provide a lower bound on w assuming that an r-uniform hypergraph is strongly
(or weakly) w-weighted.

Theorem 1.

(i) Let r > 3 be such that r − 1 is a prime power. Then, there exists a nice r-uniform
hypergraph that is not strongly (r2− r)-weighted. Furthermore, for all large r, there
exists a nice r-uniform hypergraph that is not strongly (r2 − o(r2))-weighted.

(ii) Let r > 3. Then, there exists an r-uniform hypergraph (which is not nice) that is
not weakly 2-weighted.

We say that almost all r-uniform hypergraphs on n vertices have property P if as n

tends to infinity, o
(
2(nr)

)
r-uniform hypergraphs on n vertices do not have property P . It

is easy to see that almost all uniform hypergraphs are nice. Furthermore, we prove the
following statement.
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Theorem 2.

(i) Almost all 3 or 4-uniform hypergraphs are strongly 2-weighted (but not 1-weighted).

(ii) The probability that a hypergraph chosen uniformly at random from the space of all

5-uniform hypergraphs of order n is strongly 1-weighted is e−
√

6/π + o(1) and that it

is strongly 2-weighted (but not 1-weighted) is 1− e−
√

6/π + o(1).

(iii) Let r > 6.Then, almost all r-uniform hypergraphs are strongly 1-weighted.

Part (iii) is much easier, since a hypergraph is strongly 1-weighted if and only if there
is no edge containing a pair of vertices of the same degree. Thus, the interesting parts
are (i) and (ii). In particular, the latter which gives a nontrivial distribution between 1 or
2-weightedness. Theorem 2 can be viewed as an extension of a result of Addario-Berry,
Dalal and Reed [2] who showed that almost all graphs are 2-weighted. (Our proofs are
different.)

We complement the above result with an analogous statement for weakly weightedness.

Theorem 3.

(i) Almost all 3-uniform hypergraphs are weakly 2-weighted (but not 1-weighted).

(ii) Let r > 4. Then, almost all r-uniform hypergraphs are weakly 1-weighted.

This theorem mainly follows from Theorem 2 since strong weightedness implies weak
weightedness.

We also show that determining whether a particular uniform hypergraph is strongly
2-weighted is NP-complete. Consequently, there is no simple characterization of strongly
2-weighted hypergraphs, unless P=NP. (Note that determining 1-weightedness in an r-
uniform hypergraph can be done in polynomial time, since a hypergraph is 1-weighted if
and only if all vertex degrees are distinct.) Formally, let

2-WEIGHTED(r) = {H : H is a strongly 2-weighted r-uniform hypergraph} .

Theorem 4. Let r > 3. Then 2-WEIGHTED(r) is NP-complete.

Although we were unable to provide a general upper bound for strongly weighted
hypergraphs we believe that the following holds.

Conjecture 5. For every r > 3 there is a constant w = w(r) such that each nice r-uniform
hypergraph is strongly w-weighted.

If true, then by Theorem 1 such constant w is at least r2− r+1 for infinitely many r, and
at least r2 − o(r2) for all r. For weakly weighted hypergraphs we believe that the 1-2-3
conjecture for graphs also holds for hypergraphs.

Conjecture 6. For each r > 3 every r-uniform hypergraph without isolated edges is
weakly 3-weighted.
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2 Lower bound

Here we prove Theorem 1. We start with part (i). First we recall some basic properties of
projective planes (see, e.g., [8]). A projective plane P (q) of order q is an incidence structure
on a set P of points and a set L of lines such that: any two points lie in a unique line,
and every line contains q + 1 points, and every point lies on q + 1 lines. It is known that
for every prime power q such incidence structure P (q) exists with |P | = |L| = q2 + q + 1.
In other words, P (q) is a (q + 1)-regular (q + 1)-uniform hypergraph of order q2 + q + 1.

Suppose that a projective plane (P,L) of order of q exists. We create a 2-regular
(q + 1)-uniform hypergraph H = (V,E) as follows. First we blow up each point p ∈ P
exactly q + 1 times. Formally,

V = {(p, `) : p ∈ P, ` ∈ L, p ∈ `}.

Clearly, |V | = (q + 1)(q2 + q + 1). We define two types of edges of H. Let p ∈ P
and `1, . . . , `q+1 be lines incident with p. Then, E1 consists of all edges of the form
{(p, `1), (p, `2), . . . , (p, `q+1)}, which we denote by e(p). Thus,

E1 = {e(p) = {(p, `1), . . . , (p, `q+1)} : p ∈ P and p ∈ `i for all 1 6 i 6 q + 1}.

Similarly, we define

E2 = {f(`) = {(p1, `), . . . , (pq+1, `)} : ` ∈ L and pi ∈ ` for all 1 6 i 6 q + 1}.

Set E = E1 ∪ E2. It is easy to see that H is 2-regular (q + 1)-uniform hypergraph and
nice.

We claim that H is not strongly (q2 + q)-weighted. Assume for a contradiction that
it is. Let ω : E → {1, . . . , q2 + q} be such that the vertex-coloring c induced by ω is
strong. Since |E1| = q2 + q + 1 > |ω(E)|, there are e(p1) and e(p2) in E1 such that
ω(e(p1)) = ω(e(p2)). By properties of P (q) there is a line ` incident with p1 and p2. Thus,
f(`) in E2 contains (p1, `) and (p2, `). But

c((p1, `)) = ω(e(p1)) + ω(f(`)) = ω(e(p2)) + ω(f(`)) = c((p2, `))

and so f(`) is not rainbow, a contradiction.
Set r = q + 1. Clearly, q2 + q = r2 − r. So for each r − 1 prime power there exists an

r-uniform hypergraph which is not strongly (r2 − r)-weighted.
The remaining part of (i) is very similar. It is well-known that for large x there exists

a prime number between x(1 − o(1)) and x (see, e.g., [4]). Hence, for large r there is a
prime number q such that (r − 1)(1 − o(1)) 6 q 6 r − 1. First, as above we start with
P (q) and construct a 2-regular (q + 1)-uniform hypergraph H = (V,E) by blowing up
each vertex of P (q). If q = r − 1, then we are done. Otherwise, if q < r − 1, then we
extend H to an r-uniform hypergraph I = (W,F ). Let W = V ∪ U , where |U | = r + 1.
For each e ∈ E we define a new edge in F be adding to f arbitrarily r − (q + 1) vertices
from U . Finally, we add all possible

(
r+1
r

)
edges on U . The resulting hypergraph I is
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Figure 1: A 4-uniform hypergraph which is not weakly 2-weighted.

r-uniform, nice, and not strongly (q2 + q)-weighted. Since q2 + q = r2 − o(r2), the proof
is finished.

Now we prove (ii), which actually is an easy observation. Indeed, define an r-uniform
hypergraph H = (V,E) on V = {x1, . . . , xr, y1, . . . , yr, z1, . . . , zr} with edges
e1 = {x1, . . . , xr}, e2 = {y1, . . . , yr}, e3 = {z1, . . . , zr}, f1 = {x2, . . . , xr, y1}, f2 =
{y2, . . . , yr, z1}, and f3 = {z2, . . . , zr, x1} (see Figure 1). If there is a weak coloring of
H induced by some w : E → {1, 2}, then for some i, j we must have ω(ei) = ω(ej) and
consequently edge f` ⊆ V (ei) ∪ V (ej) is monochromatic, a contradiction.

3 Tools used in the proof of Theorems 2 and 3

In order to prove Theorems 2 and 3 we will consider random hypergraphs. Let H(k)(n, p)
be an r-uniform random hypergraph such that each of

(
[n]
r

)
r-tuples is contained with prob-

ability p, independently of others. We say that an event En occurs with high probability,
or w.h.p. for brevity, if limn→∞ Pr(En) = 1. We will use some standard probabilistic
tools, which we state here for convenience (for more details see, e.g., [3, 10]).

First Moment Method. Let X be a nonnegative integral random variable. If E(X) =
o(1), then w.h.p. X = 0.

Second Moment Method. Let X be a nonnegative integral random variable. If
Var(X) = o(E(X)2), then w.h.p. X > 1.

Let Po(λ) denote the random variable with Poisson distribution with mean λ. More-
over, let (X)k := X(X − 1)(X − 2) · · · (X − k + 1) denote the factorial moment of the
random variable X.

Method of Moments. Let λ be a positive constant. Suppose that X1, X2, . . . are random
variables such that for each fixed k we have E((Xn)k)→ λk as n tends to infinity. Then,
Xn ∼ Po(λ).
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Inequalities.

(i) Markov’s bound: Let X be a nonnegative integral random variable and γ > 0. Then

Pr(X > γ) 6 E(X)/γ.

(ii) Chernoff’s bound: Let Bin(n, p) denote the random variable with binomial distri-
bution with number of trials n and probability of success p. If X ∼ Bin(n, p) and
0 < γ 6 E(X), then

Pr (|X − E(X)| > γ) 6 2 exp
(
−γ2/(3E(X))

)
.

(iii) Bernstein’s bound: Let X1, . . . , Xm be independent random variables, and X =∑m
i=1Xi. Suppose that |Xi − E(Xi)| 6 C always holds for all i, and γ > 0. Then,

Pr (|X − E(X)| > γ) 6 2 exp

(
−

1
2
γ2∑m

i=1 Var(Xj) + 1
3
Cγ

)
.

(iv) Union bound: If E1, . . . , Em are events, then

Pr
( m⋃
i=1

Ei

)
6 m ·max{Pr(Ei) : i ∈ [m]}.

Several times we will also need to estimate binomial coefficients (for more details see,
e.g., Chapter 22 in [9]).

Binomial Coefficients Approximation.

(A1) Let p > 0 and ` be functions of m (` can be negative). Assume that `2 = o(p) and
`2 = o(m− p) as m tends to infinity. Then,(

m

p+ `

)
∼
(
m

p

)(
m− p
p

)`
.

(A2) Let k > 1 be a fixed integer. Then,

m∑
i=0

(
m

i

)k
∼

(
2m
√

2

πm

)k√
πm

2k
= Θ(2kmm−(k−1)/2).

(A3) (
m

bm/2c

)
∼ 2m+1/2

√
πm

.

Throughout the next sections all logarithms are natural (base e) and all asymptotics
are taken in n.

We prove Theorem 2 in Sections 4-7 starting with the easiest case r > 6 and Theorem 3
in Sections 8-9.
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4 For any r > 6 almost all r-uniform hypergraphs are strongly
1-weighted

Let X
(r)
2 count the number of pairs of vertices {u, v} in H(r)(n, 1/2) such that deg(u) =

deg(v). Observe that

Pr(deg(u) = deg(v)) =

(n−2
r−1)∑
a=0

((n−2
r−1

)
a

)2

2−2(n−2
r−1) =

(
2
(
n−2
r−1

)(
n−2
r−1

) )2−2(n−2
r−1).

Thus, by (A3)

E(X
(r)
2 ) =

(
n

2

)(
2
(
n−2
r−1

)(
n−2
r−1

) )2−2(n−2
r−1) ∼ n2

2
· 2

2(n−2
r−1)+1/2√
π2
(
n−2
r−1

) · 2−2(n−2
r−1) ∼

√
(r − 1)!

2
√
π

n2−(r−1)/2 (1)

which is o(1) for any r > 6. Thus, the first moment method yields the statement.

5 Almost all 5-uniform hypergraphs are either 1 or 2 strongly
weighted

By (1), E(X
(5)
2 ) ∼

√
6/π. Set λ =

√
6/π. We will show by using the method of moments

that X
(5)
2 ∼ Po(λ). First we prove two auxiliary results which we will also use in the next

sections.

Lemma 7. Let r > 3. Then, w.h.p. each pair of vertices of H(r)(n, 1/2) is contained in
an edge.

Proof. The probability that a fixed pair of vertices u and v is not contained in any edge is

2−(n−2
r−2) = 2−Ω(nr−2). Thus, by the union bound we get that the probability that there exists

a pair of vertices which is not contained in any edge is at most
(
n
2

)
2−Ω(nr−2) = o(1).

Lemma 8. Let r > 3 and k1, . . . , kα > 2 be integers. Let k = k1 + · · ·+ kα. Then, w.h.p.
for each {v1,1, . . . , v1,k1 , v2,1, . . . , v2,k2 , . . . , vα,1, . . . , vα,kα} ⊆ [n] in H(r)(n, 1/2),

Pr

(
α⋂
i=1

deg(vi,1) = · · · = deg(vi,ki)

)
∼ 2−k(

n−k
r−1)

α∏
i=1

(n−kr−1)∑
a=0

((n−k
r−1

)
a

)ki
(2)

= O(n−(r−1)(k−α)/2). (3)

Proof. Let U = {v1,1, . . . , v1,k1 , v2,1, . . . , v2,k2 , . . . , vα,1, . . . , vα,kα} with k = |U |. For a fixed
S ⊆ U with 1 6 |S| 6 r, let xS be the random variable that counts the number of edges

containing S and r−|S| other vertices from [n]\U . Clearly, xS ∼ Bin
((

n−k
r−|S|

)
, 1/2

)
. The

Chernoff bound together with the union bound yield that w.h.p. for any U and S ⊆ U ,∣∣∣∣xS − ( n− k
r − |S|

)
/2

∣∣∣∣ = O(n(r−|S|)/2
√

log n) = O(n(r−1)/2
√

log n). (4)
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Let v ∈ U . Then,

deg(v) =
∑

v∈S⊆U

xS

and the expected value is
∑

16s6r

(
k−1
s−1

)(
n−k
r−s

)
/2. Thus, w.h.p. for any U and v ∈ U ,∣∣∣∣∣∣deg(v)−

∑
16s<(r+1)/2

(
k − 1

s− 1

)(
n− k
r − s

)
/2

∣∣∣∣∣∣ = O(n(r−1)/2
√

log n).

Conditioning on xS = βS for 2 6 |S| 6 r and S ⊆ U , we get that the probability that
deg(v) = a is ( (

n−k
r−1

)
a−

∑
S3v βS

)
2−(n−kr−1).

Due to (4) we may assume that βS =
(
n−k
r−|S|

)
/2 + `S and∣∣∣∣∣∣a−

∑
16s<(r+1)/2

(
k − 1

s− 1

)(
n− k
r − s

)
/2

∣∣∣∣∣∣ = O(n(r−1)/2
√

log n),

where |`S| = O(n(r−|S|)/2√log n) = O(n(r−2)/2
√

log n).
By (A1), applied with m =

(
n−k
r−1

)
, p = a−

∑
S3v
(
n−k
r−|S|

)
/2, and ` =

∑
S3v `S, we obtain

that( (
n−k
r−1

)
a−

∑
S3v βS

)
=

( (
n−k
r−1

)(
a−

∑
S3v
(
n−k
r−|S|

)
/2
)
−
∑

S3v `S

)

∼
( (

n−k
r−1

)
a−

∑
S3v
(
n−k
r−|S|

)
/2

)(n−kr−1

)
−
(
a−

∑
S3v
(
n−k
r−|S|

)
/2
)

a−
∑

S3v
(
n−k
r−|S|

)
/2


∑
S3v `S

.

Now observe that

a−
∑
S3v

(
n− k
r − |S|

)
/2 = a−

∑
26s6r

(
k − 1

s− 1

)(
n− k
r − s

)
/2

=

(
n− k
r − 1

)
/2 ± O(n(r−1)/2

√
log n).

This implies that(
n−k
r−1

)
−
(
a−

∑
S3v
(
n−k
r−|S|

)
/2
)

a−
∑

S3v
(
n−k
r−|S|

)
/2

6

(
n−k
r−1

)
/2 +O(n(r−1)/2

√
log n)(

n−k
r−1

)
/2−O(n(r−1)/2

√
log n)

= 1 +O

(√
log n

n(r−1)/2

)
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and(
n−k
r−1

)
−
(
a−

∑
S3v
(
n−k
r−|S|

)
/2
)

a−
∑

S3v
(
n−k
r−|S|

)
/2

>

(
n−k
r−1

)
/2−O(n(r−1)/2

√
log n)(

n−k
r−1

)
/2 +O(n(r−1)/2

√
log n)

= 1−O
(√

log n

n(r−1)/2

)
.

Hence, since |
∑

S3vi `S| = O(n(r−2)/2
√

log n), we get that

(n−kr−1

)
−
(
a−

∑
S3v
(
n−k
r−|S|

)
/2
)

a−
∑

S3v
(
n−k
r−|S|

)
/2


∑
S3v `S

∼ 1,

and consequently, ( (
n−k
r−1

)
a−

∑
S3v βS

)
∼
( (

n−k
r−1

)
a−

∑
S3v
(
n−k
r−|S|

)
/2

)
.

Thus, conditioning on βS’s for S ⊆ U with 2 6 |S| 6 r the probability that deg(vi,1) =
· · · = deg(vi,ki) = ai for each 1 6 i 6 α equals

2−k(
n−k
r−1) ·

α∏
i=1

ki∏
j=1

( (
n−k
r−1

)
ai −

∑
S3vi,j βS

)
= 2−k(

n−k
r−1) ·

α∏
i=1

( (
n−k
r−1

)
ai −

∑
S3vi,1 βS

)ki

∼ 2−k(
n−k
r−1) ·

α∏
i=1

( (
n−k
r−1

)
ai −

∑
S3vi,1

(
n−k
r−|S|

)
/2

)ki
and further the probability that deg(vi,1) = · · · = deg(vi,ki) for each 1 6 i 6 α (still
conditioning on βS’s) asymptotically equals

2−k(
n−k
r−1) ·

∑
a1,...,aα

( (
n−k
r−1

)
a1 −

∑
S3v1,1

(
n−k
r−|S|

)
/2

)k1
· . . . ·

( (
n−k
r−1

)
aα −

∑
S3vkα,1

(
n−k
r−|S|

)
/2

)kα
= 2−k(

n−k
r−1)

·

(∑
a1

( (
n−k
r−1

)
a1 −

∑
S3v1,1

(
n−k
r−|S|

)
/2

)k1)
· . . . ·

(∑
aα

( (
n−k
r−1

)
aα −

∑
S3vkα,1

(
n−k
r−|S|

)
/2

)kα)
,

where the summations are taken over all possible values of a1, . . . , ak satisfying |ai −∑
16s<(r+1)/2

(
k−1
s−1

)(
n−k
r−s

)
/2| = O(n(r−1)/2

√
log n). Since

∑
ai

( (
n−k
r−1

)
ai −

∑
S3vi,1

(
n−k
r−|S|

)
/2

)ki
∼

(n−kr−1)∑
a=0

((n−k
r−1

)
a

)ki
,
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we get

2−k(
n−k
r−1) ·

∑
a1,...,aα

( (
n−k
r−1

)
a1 −

∑
S3v1,1

(
n−k
r−|S|

)
/2

)k1
· . . . ·

( (
n−k
r−1

)
aα −

∑
S3vkα,1

(
n−k
r−|S|

)
/2

)kα

∼ 2−k(
n−k
r−1)

α∏
i=1

(n−kr−1)∑
a=0

((n−k
r−1

)
a

)ki
,

and finally by the law of total probability,

Pr

(
α⋂
i=1

deg(vi,1) = · · · = deg(vi,ki)

)

∼
∑
β∗S

Pr

(⋂
S

yS = βS

)
· 2−k(

n−k
r−1)

α∏
i=1

(n−kr−1)∑
a=0

((n−k
r−1

)
a

)ki
,

where β∗S denotes the summation over all possible values of βS for each 2 6 |S| 6 r
satisfying |βS −

(
n−k
r−|S|

)
/2| = O(n(r−|S|)/2√log n). This completes the proof of (2), since∑

β∗S
Pr(
⋂
S yS = βS) ∼ 1.

Now (3) easily follows from (A2). Indeed, since

2−ki(
n−k
r−1)

(n−kr−1)∑
a=0

((n−k
r−1

)
a

)ki
= O(n−(r−1)(ki−1)/2),

we obtain

2−k(
n−k
r−1)

α∏
i=1

(n−kr−1)∑
a=0

((n−k
r−1

)
a

)ki
= O

(
α∏
i=1

n−(r−1)(ki−1)/2

)
= O

(
n−(r−1)(k−α)/2

)
.

Now we use Lemma 8 to show that E((X
(5)
2 )k) → λk as n tends to infinity. Observe

that (X
(5)
2 )k consists of

(
n
2

)(
n−2

2

)
· · ·
(
n−2k+2

2

)
terms of k vertex-disjoint pairs and O(n2k−1)

remaining terms. The pairs in the remaining terms are not vertex disjoint. Let U be
the union over all vertices in such k pairs. Clearly, k 6 |U | 6 2k − 1, where the lower
bound, k, corresponds to a k-cycle. Vertices in U can be divided into α groups (each
of size ki > 2) in such a way that in each group all vertices have the same degrees.
Observe that k1 + · · · + kα = |U | and since |U | < 2k, 1 6 α < |U |/2. Due to (3) the
probability of occurrence of this degree sequence is at most O(n−2(|U |−α)) = o

(
n−|U |

)
.
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Thus, O(n|U | · n−2(|U |−α)) = o(1) and

E
(

(X
(5)
2 )k

)
∼
(
n

2

)(
n− 2

2

)
· · ·
(
n− 2k + 2

2

)
2−2k(n−2k

4 )
k∏
i=1

(n−2k
4 )∑

a=0

((n−2k
4

)
a

)2

=

(
n

2

)(
n− 2

2

)
· · ·
(
n− 2k + 2

2

)
2−2k(n−2k

4 )
(

2
(
n−2k

4

)(
n−2k

4

) )k
∼
(

E(X
(5)
2 )
)k
∼ λk,

since by (A3)

2−2(n−2
4 )
(

2
(
n−2

4

)(
n−2

4

) ) ∼ 2−2(n−2k
4 )
(

2
(
n−2k

4

)(
n−2k

4

) ).
Hence, the method of moments implies that X

(5)
2 ∼ Po(λ) and consequently

Pr(H(5)(n, 1/2) is strongly 1-weighted) = Pr(X
(5)
2 = 0) ∼ e−

√
6/π. (5)

It remains to show that w.h.p. the random hypergraph H(5)(n, 1/2) is strongly 2-weighted.

Let X
(r)
3 count the number of triples of vertices {v1, v2, v3} in H(r)(n, 1/2) such that

deg(v1) = deg(v2) = deg(v3). Then, by Lemma 8 (applied with k = k1 = 3 and α = 1)

E(X
(r)
3 ) ∼

(
n

3

)
2−3(n−3

r−1)
(n−3
r−1)∑
a=0

((n−3
r−1

)
a

)3

= Θ(n4−r), (6)

which is o(1) for r = 5.
So far we have established the following properties of H(5)(n, 1/2). By the Markov

bound, Pr(X
(5)
2 > log n) = o(1) and by (6) and the first moment method w.h.p. no three

vertices have the same degree.
Once the edges of H(5)(n, 1/2) are revealed we may assume that we have s vertex-

disjoint pairs {ui, vi} such that deg(ui) = deg(vi), where 1 6 i 6 s 6 log n. (All other
vertices have different degrees.) Let S =

⋃
i{ui, vi}. We show that there is a matching

saturating all ui’s such that each matching edge contains one vertex from S and 4 vertices
from [n]\S. One can find such matching greedily. Assume that we already chose matching
edges e1, . . . , ek with ui ∈ ei. The number of edges incident to uk+1 that are not disjoint
with e1, . . . , ek or S \ {uk+1} is at most O(n3 log n) but deg(ui) = Ω(n4). Hence, we can
extend the matching by a new edge containing uk+1.

Finally, we are ready to define a 2-weighting. First we assign to each edge weight
2. Now the colors of all vertices are even and every vertex has a different color except
the ui and vi. Next we replace the weights of matching edges by 1 so now all vertices
have different colors, since subtracting 1 from a number of vertices will not create new
equalities and all old equalities are broken up.
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6 Almost all 4-uniform hypergraphs are strongly 2-weighted
(but not 1-weighted)

First we show using the second moment method that w.h.p. H(4)(n, 1/2) is not strongly

1-weighted. By (1), E(X
(4)
2 ) = Θ(

√
n).

Now we compute the variance. Let X
(4)
2 =

∑
{i,j}⊆([n]

2 )Xi,j, where Xi,j is an indicator

random variable such that if Xi,j = 1, then deg(vi) = deg(vj). Thus,

(X
(4)
2 )2 = X

(4)
2 +

∑
{i,j,k}

Xi,jXj,k +
∑

{i,j}∩{k,`}=∅

Xi,jXk,`.

By Lemma 8 (applied with r = 4, k = k1 = 3, and α = 1),

Pr(Xi,jXj,k = 1) = Pr(deg(vi) = deg(vj) = deg(vk)) = O(n−3).

Again by Lemma 8 (applied with r = 4, k = 4, k1 = k2 = 2 and α = 2)

Pr(Xi,jXk,` = 1) = Pr(deg(vi) = deg(vj) and deg(vk) = deg(v`))

∼ 2−4(n−4
3 )

(n−4
3 )∑

a=0

((n−4
3

)
a

)2


2

= 2−4(n−4
3 )
(

2
(
n−4

3

)(
n−4

3

) )2

.

Thus, ∑
{i,j,k}

E(Xi,jXj,k) = O(n3 · n−3) = O(1)

and ∑
{i,j}∩{k,`}=∅

E(Xi,jXk,`) ∼
(
n

2

)(
n− 2

2

)
2−4(n−4

3 )
(

2
(
n−4

3

)(
n−4

3

) )2

∼ E(X
(4)
2 )2,

where the last asymptotic equality follows from (A3). Consequently,

E((X
(4)
2 )2) ∼ E(X

(4)
2 ) + E(X

(4)
2 )2

and hence Var(X
(4)
2 ) ∼ E(X

(4)
2 ) = o(E(X

(4)
2 )2). Thus, the second moment method to-

gether with Lemma 7 implies that w.h.p. there is a pair of vertices of the same degrees
which is contained in an edge (so the hypergraph is not strongly 1-weighted).

Now we show that w.h.p. H(4)(n, 1/2) is strongly 2-weighted. We already observed

that E(X
(4)
2 ) = O(

√
n). Thus, by the Markov bound Pr(X

(4)
2 >

√
n log n) = o(1). By (6),

E(X
(4)
3 ) = O(1). Thus, again the Markov bound implies that Pr(X

(4)
3 > log n) = o(1).

Lemma 8 implies that the probability that vertices v1, v2, v3 and v4 in H(4)(n, 1/2) have
the same degrees is asymptotically equal to

2−4(n−4
3 )

(n−4
3 )∑

a=0

((n−4
3

)
a

)4

= O(n−9/2).
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Hence, by the union bound (taken over all
(
n
4

)
quadruples) we get that w.h.p. there are

no such four vertices. Similarly, (with essentially the same proof as Lemma 8) we get
that w.h.p. there are no four vertices v1, v2, v3 and v4 in H(4)(n, 1/2) such that deg(v1) =
deg(v2) = deg(v3) = deg(v4)− 1.

Once the edges of H(4)(n, 1/2) are revealed we may assume that there are a vertex-
disjoint pairs {ui, vi} and b triples {xj, yj, zj} such that deg(ui) = deg(vi), deg(xj) =
deg(yj) = deg(zj), and 1 6 i 6 a 6

√
n log n and 1 6 j 6 b 6 log n. (All other vertices

have different degrees.) Let S1 =
⋃
i{ui, vi} and S2 =

⋃
j{xj, yj, zj} and T = [n]\(S1∪S2).

We show that there are edges ei, fj, f
′
j, and gj such that ui ∈ ei, {xj} = fj ∩ f ′j, yj ∈ gj

and ei, fj, f
′
j, and gj contain no other vertices from S1∪S2 and ei∩T , fj ∩T , f ′j ∩T , and

gj ∩ T are pairwise vertex-disjoint. Similarly as in the previous section one can find such
edges greedily. First assume that we already found e1, . . . , ek edges so that ui ∈ ei. The
number of edges incident to uk+1 that are not disjoint with e1, . . . , ek or S1 ∪ S2 \ {uk+1}
is at most O(n2

√
n log n) but deg(ui) = Ω(n3). Hence, we can extend e1, . . . , ek by a new

edge ek+1 that contains uk+1. Similarly we find edges fj, f
′
j, and gj.

Now we define a 2-weighting. First we assign to each edge weight 2. Now the colors
of all vertices are even and only vertices {ui, vi} ⊆ S1 and {xj, yj, zj} ⊆ S2 have the
same color. Furthermore, there is no vertex w such that for some j we have deg(xj) =
deg(yj) = deg(zj) = deg(w) − 1 or deg(xj) = deg(yj) = deg(zj) = deg(w). Next we
replace the weights of all ei, fj, f

′
j, and gj edges by 1 yielding all vertices to have different

colors.

7 Almost all 3-uniform hypergraphs are strongly 2-weighted
(but not 1-weighted)

As in Section 6 the second moment method and Lemma 7 imply that w.h.p. there is a pair
of vertices of the same degrees which is contained in an edge. Thus, w.h.p. H(3)(n, 1/2)
is not strongly 1-weighted. As a matter of fact we will see later that w.h.p. H(3)(n, 1/2)
is not even weakly 1-weighted.

Now we show that w.h.p. H(3)(n, 1/2) is strongly 2-weighted. Here our proof method
differs from our other proofs that hypergraphs are 2-weighted. Since the expected number
of pairs of vertices with the same degree is linear, we cannot simply give all edges weight
2 and then alter the weighting by flipping the weights of a few edges. We use a more
complicated argument which we will outline after some lemmas.

First we need some auxiliary results. For G = (V,E) and S ⊆ V , let N(S) denote the
neighborhood of S, i.e., the set of all vertices in V adjacent to some element of S.

Lemma 9. There exists a positive constant γ such that with probability 1 − o(1/n) the
random bipartite graph G(n, n, 1/2) contains at least γn edge disjoint perfect matchings.

This lemma is a weaker version of a more general result of Frieze and Krivelevich [7]
(where the authors obtained an optimal constant γ = 1/2 − o(1)). For the sake of
completeness we show here a simple proof.
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Proof. Let G = G(n, n, 1/2) be a random bipartite graph on the set of vertices A ∪ B,
where |A| = |B| = n. Set γ = 1/10.

First observe that since for any u, v ∈ A and u, v ∈ B we have |N(v)| ∼ Bin(n, 1/2)
and |N({u, v})| ∼ Bin(n, 3/4), the Chernoff bound yields that with probability 1−o(1/n)
for any u, v ∈ A and u, v ∈ B,

|N(v)| > n/2−O(
√
n log n) and |N({u, v})| > 3n/4−O(

√
n log n).

Assume that we already found a collection Mi = {M1, . . . ,Mi} of perfect matchings
in G. We show that Gi+1 = G \Mi also contains a perfect matching Mi+1. It suffices to
show that if i < γn, then the Hall condition holds, i.e.,

if S ⊆ A and |S| 6 n/2, then |NGi+1
(S)| > |S|, (7)

and
if T ⊆ B and |T | 6 n/2, then |NGi+1

(T )| > |T |. (8)

Indeed, if S = {v}, then

|NGi+1
(S)| = |NGi+1

(v)| = |NG(v)| − i > n/2−O(
√
n log n)− γn > 1 = |S|.

Therefore, we may assume that 2 6 |S| 6 n/2. Let {u, v} ⊆ S. Then,

|NGi+1
(S)| > |NGi+1

({u, v})| > |NG({u, v})|−2i > 3n/4−O(
√
n log n)−2γn > n/2 > |S|

and (7) holds. Similarly, (8) holds, too.

Lemma 10. Let H be a 3-partite 3-uniform random hypergraph on vertex set V1∪V2∪V3

with |V1| = |V2| = |V3| = n and probability 1/2. Then, there exists a positive constant γ
such that w.h.p. H contains at least γn2 edge disjoint perfect matchings.

Proof. Consider first a complete bipartite graph F on V1 ∪ V2. Then, since F is n-
regular bipartite graph, it can be decomposed into n edge disjoint perfect matchings, say
F = M1 ∪ · · · ∪Mn. Let Hi be a 3-partite 3-uniform hypergraph on V1 ∪ V2 ∪ V3 and the
set of edges

Ei = {e ∪ v : e ∈Mi and v ∈ V3}.

Thus, the complete 3-partite 3-uniform hypergraph on V1 ∪ V2 ∪ V3 is the edge disjoint
union of Hi’s over all 1 6 i 6 n. We generate a random 3-partite 3-uniform hypergraph
by revealing edges in each Hi. It suffices to show that the random hypergraph induced
by Hi contains with probability 1 − o(1/n) at least γn edge disjoint perfect matchings,
where γ is a constant from Lemma 9. The latter is obviously true since the random graph
induced by Hi can be viewed as G = G(n, n, 1/2) on M ∪ V3 (since |M | = |V3| = n) and
any perfect matching in G yields a perfect matching in the 3-partite hypergraph.

Now we are ready to show that w.h.p. H(3)(n, 1/2) is strongly 2-weighted.
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Proof. We start with an outline. First we consider an equipartition V1 ∪ V2 ∪ V3 of the
vertex set V = [n]. Then we reveal the random hypergraph H(3)(n, 1/2). Due to Lemma 10
(assuming that n is divisible by 3) there is w.h.p. a familyM of disjoint perfect matchings
such that M = bγn2c and each edge in each matching has one vertex in each part of the
partition. We then randomly label the vertices in V1 with real number labels in [0, 1/9],
the vertices in V2 with labels in [1/9, 2/9], and the vertices in V3 with labels in [2/9, 1/3].
Let `(v) denote the label of vertex v. We then randomly weight the edges, where any
non-matching edge {u, v, w} ∈

(
[n]
3

)
gets weight 2 with probability `(u) + `(v) + `(w), and

any matching edge gets weight 2 with probability 1
2
. We will show that

E(|{c : 0 6 c 6 n2, ∃x, y such that |c(x)− c| 6 2 and |c(y)− c| 6 2}|)

6
n2∑
c=0

E(|{{x, y} : |c(x)− c| 6 2 and |c(y)− c| 6 2}|) = O(log4 n).

We will call pairs {x, y} such that |c(x)− c| 6 2 and |c(y)− c| 6 2 for some c dangerous
and pairs such that c(x) = c(y) bad. We will also show that

E(|{c : 0 6 c 6 n2, ∃x, y, z such that |c(x)− c| 6 2, |c(y)− c| 6 2, |c(z)− c| 6 2}|)

is o(1). Finally, we will alter the weights on certain edges so that we kill all bad pairs (i.e.
after changing the weights no two vertices will have the same color) which will complete
the proof.

In this paragraph and the next we are revealing only the random hypergraph H =
H(3)(n, 1/2), and all probabilities are with respect to this distribution. The degrees of
vertices are concentrated by the Chernoff bound. More specifically, for any vertex v, and
any distinct parts Vi and Vj there are m = n2/9 + O(n) triples containing v together
with one additional vertex from Vi and one from Vj (the O(n) term is to account for the
possibility that v is in one of Vi or Vj). Each of these triples has probability 1/2 of being
an edge of H, independently, and so if we let di,j(v) denote the number of these edges
present in H, the Chernoff bound tells us that

Pr(|di,j(v)−m/2| > n log n) 6 2 exp

(
−(n log n)2

3m/2

)
= exp

(
−Ω(log2 n)

)
and so the union bound gives us that the probability there exists v, i, j such that |di,j(v)−
m/2| > n log n is at most 3n · exp

{
−Ω(log2 n)

}
= o(1). Hence, w.h.p. for every vertex v

and distinct parts Vi, Vj there are n2/18 +O(n log n) edges containing v and additionally
one vertex from each of Vi, Vj. Similarly (using the Chernoff and union bounds), w.h.p. for
any vertex v and part Vi there are n2/36 +O(n log n) edges containing v and additionally
two vertices from Vi.

Until the last paragraph of this proof will assume that n is divisible by 3. Due to
Lemma 10 there is w.h.p. a family M of disjoint perfect matchings where |M| = bγn2c
and each edge in each matching goes between the partition (i.e. has one vertex in each
Vi).
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Henceforth we assume that all the edges of H were revealed obtaining a hypergraph H
that has the degree properties mentioned in the previous paragraphs, and the family of
matchings M.

Next we reveal the vertex labels and the non-matching edge weights. The weight of
edge {x, y, z} is distributed as

w(x, y, z) =

{
1 with probability 1− `(x)− `(y)− `(z)

2 with probability `(x) + `(y) + `(z)

so
E(w(x, y, z) | `(x), `(y), `(z)) = 1 + `(x) + `(y) + `(z)

and therefore if by cH\M(x) we denote the sum of the weights of non-matching edges
containing x, and say we are given only the label `(x), and the hypergraph H with family
of matchings M, and x ∈ Vi then we have

E(cH\M(x) | `(x), H) =
∑

{x,v,w}∈E(H)\M

E(w(x, v, w) | `(x))

=
∑

{x,v,w}∈E(H)\M

(1 + `(x) + E(`(v)) + E(`(w)))

= (1 + `(x)) degH\M(x) +
∑

{x,v,w}∈E(H)\M

(E(`(v)) + E(`(w)))

= `(x)

(
1

4
− γ
)
n2 + Θ(n2),

where on the last line we have used our estimate of degH\M(x). Note that the Θ(n2) term
may depend on i (recall x ∈ Vi) but does not otherwise depend on x or `(x) (by the fact
that the degree of each vertex v into sets Vi, Vj etc. is concentrated).

Now since cH\M(x) =
∑
{x,v,w}∈E(H)\Mw(x, v, w), and the random variables w(x, v, w)

are independent (given the vertex labels), we can apply Bernstein’s inequality. For our
application we use m = degH\M(x). We can easily use C = 2, and put Var(w(x, v, w)) 6
E(w(x, v, w)2) 6 4. We will set γ = n log n. Then we get

Pr
(∣∣cH\M(x)− E

(
cH\M(x) | `(x), H

)∣∣ > n log n
)

6 2 exp

(
−

1
2
n2 log2 n

4 degH\M(x) + 1
3
· 2n log n

)
= exp

{
−Ω

(
log2 n

)}
and so by the union bound, w.h.p. for each vertex x, cH\M(x) is within n log n of its
expectation.

Now for any fixed integer a and fixed vertex x,

Pr

(∣∣∣∣`(x)

(
1

4
− γ
)
n2 − a

∣∣∣∣ 6 n log n

)
= O(log n/n),
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since this is the probability that `(x) falls within an interval of length O(log n/n). Since
the vertex labels are independent, the probability that there are log2 n many vertices x
with

∣∣`(x)
(

1
4
− γ
)
n2 − a

∣∣ 6 n log n is at most

(
n

log2 n

)
· (O(log n/n))log2 n 6

(
ne

log2 n

)log2 n

(O(log n/n))log2 n

=

(
O

(
1

log n

))log2 n

= o(n2).

Therefore, by the union bound over integers c from 0 to n2, we have that for all such c the
number of vertices x with |cH\M(x)−c| 6 n log n is at most log2 n. Henceforth we assume
that the labels and non-matching edge weights have been revealed and they satisfy this
property.

Now we reveal the matching edge weights. These are 1 or 2 with probability 1/2. We
will denote by cM(x) the sum of the weights of matching edges adjacent to x; note that
c(x) = cM(x) + cH\M(x). The key fact we will use here is that since |M| = bγn2c, cM(x)
is not likely to be any one particular value. Indeed, since cM(x)− |M| ∼ Bin(|M|, 1/2),
the mode of cM(x) occurs with probability(

|M|
b|M|/2c

)
2−|M| ∼

√
2/γπ

n
= O(1/n),

where the latter follows from (A3). Also, w.h.p. for all x we have |cM(x)− 3
2
γn2| 6 n log n.

Therefore,

n2∑
c=0

E (|{{x, y} : |c(x)− c| 6 2 and |c(y)− c| 6 2}|)

= O
(
n2 · (log2 n)2 · (1/n)2

)
= O(log4 n),

where on the last line we get the (1/n)2 in the big-O term since the probability that
c(x) = c is O(1/n), and conditioning on that event, the event that c(y) = c still has
probability O(1/n) (since revealing c(x) only reveals the weights of O(n) of the bγn2c
matching edges containing y, c(y) still essentially has the same distribution as it did
before conditioning) and similarly for the conditional probability that c(z) = c. Similarly,

E(|{c : 0 6 c 6 n2, ∃x, y, z such that |c(x)− c| 6 2, |c(y)− c| 6 2, |c(z)− c| 6 2}|)
6 O

(
n2 · (log2 n)3 · (1/n)3

)
= o(1).

Thus, by the Markov bound w.h.p. there are at most log5 n dangerous pairs, and there
is no triple x, y, z such that |c(x) − c| 6 2, |c(y) − c| 6 2, and |c(z) − c| 6 2 for any c.
Suppose there are b 6 log5 n bad pairs and let {{ui, vi} : 1 6 i 6 b} be the set of bad
pairs. For each i we will choose an edge ei such that ui ∈ ei and ei does not intersect
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any other dangerous pair and all edges ei are vertex-disjoint. As in the previous sections
this is easy since each vertex has degree Θ(n2), the number of edges containing any two
vertices is O(n), and there are at most log5 n dangerous pairs. Now for each bad pair
{ui, vi} we flip the weight of ei (from 1 to 2 or from 2 to 1). Thus ui no longer has the
same color as vi. Also note that now no two vertices in the entire hypergraph can have
the same color, since the new color of any vertex can only differ from its old color by at
most 1, the only vertices in dangerous pairs whose colors are changed are the vertices that
are in bad pairs (and they are only changed to make them not bad anymore), and there
is no triple x, y, z such that |c(x) − c| 6 2, |c(y) − c| 6 2, and |c(z) − c| 6 2 for any c.
This completes the proof assuming that 3 divides n.

If n is not divisible by 3, then we can still use an equipartition V1, V2, V3, and a family
of (not quite perfect) matchings M where |M| = γn2, each M ∈ M has size bn/3c, and
each vertex is covered by γn2 −O(n) matchings in M. It is relatively straightforward to
check that with this small change, the same proof still works.

8 For any r > 4 almost all r-uniform hypergraphs are weakly
1-weighted

Now let X
(r)
4 counts the number of quadruples of vertices {v1, v2, v3, v4} in H(r)(n, 1/2)

such that deg(v1) = deg(v2) = deg(v3) = deg(v4). Then, by Lemma 8 (applied with
k = k1 = 4 and α = 1)

E(X
(r)
4 ) ∼

(
n

4

)
2−4(n−4

r−1)
(n−4
r−1)∑
a=0

((n−4
r−1

)
a

)4

= Θ(n4−3(r−1)/2), (9)

which is o(1) for r > 4.

9 Almost all 3-uniform hypergraphs are weakly 2-weighted (but
not 1-weighted)

By Theorem 2(i) w.h.p. H(r)(n, 1/2) is strongly 2-weighted which obviously implies that
it is also weakly 2-weighted. Hence, we only need to show that w.h.p. H(r)(n, 1/2) is not
weakly 1-weighted. We do it by applying the second moment method as in Section 6.

Let X3 counts the number of edges {v1, v2, v3} in H(3)(n, 1/2) such that deg(v1) =
deg(v2) = deg(v3). By Lemma 8 we get

Pr(deg(v1) = deg(v2) = deg(v3), {v1, v2, v3} ∈ E) ∼ 1

2

(n−3
2 )∑

a=0

((n−3
2

)
a

)3

2−3(n−3
2 ) ∼ 2

π
√

3n2
,

where the latter follows from (A2) (applied with m =
(
n−3

2

)
and k = 3). Thus,

E(X3) ∼
(
n

3

)
2

π
√

3n2
,
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which goes to infinity together with n.
We show that E(X2

3 ) ∼ (E(X3))2. For e ∈
(

[n]
3

)
, let Xe be an indicator random variable

which is equal to 1 if all three vertices in e have the same degree. Thus,

X2
3 = X3 +

∑
|e∩f |=0

XeXf +
∑
|e∩f |=1

XeXf +
∑
|e∩f |=2

XeXf .

If |e ∩ f | = 2, then we may assume that e ∪ f = {v1, . . . , v4} and by Lemma 8

Pr(XeXf = 1) = Pr(deg(v1) = · · · = deg(v4) and e, f ∈ E)

∼ 1

4

∑
a

((n−4
2

)
a

)4

2−4(n−4
2 ) = O

(
1

n3

)
and consequently, ∑

|e∩f |=2

E(XeXf ) = O

(
n4 · 1

n3

)
= O(n) = o((E(X3))2).

Similarly, ∑
|e∩f |=1

E(XeXf ) = O

(
n5 · 1

n4

)
= O(n) = o((E(X3))2).

Finally, if |e∩ f | = 0, then Lemma 8 (applied with r = 3, k = 6, k1 = k2 = 3, and α = 2)
implies that

∑
|e∩f |=0

E(XeXf ) ∼
1

4

(
n

3

)(
n− 3

3

)
2−5(n−6

2 )

(∑
a

((n−6
2

)
a

)3
)2

∼ (E(X3))2.

Thus, we are done by the second moment method.

10 NP-completeness of 2-WEIGHTED(r)

Let r > 3. First note that 2-WEIGHTED(r) is clearly in NP, since for a given hypergraph
H = (V,E) and ω : E → {1, 2} one can verify in polynomial time whether a vertex-
coloring induced by ω is strong.

It is known that for graphs 2-WEIGHTED(2) is NP-complete as it was proven inde-
pendently by Dehghan, Sadeghi and Ahadi [5], and Dudek and Wajc [6].

In order to prove that 2-WEIGHTED(r) is NP-complete, we show a reduction from
2-WEIGHTED(2) to 2-WEIGHTED(r). To this end, we define a polynomial time reduc-
tion h, such that G ∈ 2-WEIGHTED(2) if and only if h(G) ∈ 2-WEIGHTED(r).

We will need an auxiliary gadget. First we define an r-partite r-uniform hypergraph
T = (V,E). Let V = V1 ∪ · · · ∪ Vr, where |Vi| = i for each 1 6 i 6 r, and E be the set of
edges consisting of all possible edges containing exactly one vertex from each Vi. Observe
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that if v ∈ Vi, then deg(v) = r!/i. Consequently T is strongly 1-weighted (and so nice).
We refer to the unique vertex v ∈ V1 as a root. Let T (k) be a union of k copies of T with
the same root which we refer as the root of T (k) (any two copies only share its roots).
Clearly, T (k) is still strongly 1-weighted and if v is its root, then degT (k)(v) = k · r!.

Now we are ready to show a reduction from 2-WEIGHTED(2) to 2-WEIGHTED(r), h,
such that G ∈ 2-WEIGHTED(2) if and only if h(G) ∈ 2-WEIGHTED(r). Let G = (V,E)
be a graph of order n. We construct a nice r-uniform hypergraph h(G) = (W,F ) as
follows. For each edge e = {x, y} in G we define an edge {x, y, v1, . . . vr−2} in h(G), where
all vi’s a different for all e and i. Now to each vi (for 1 6 i 6 r − 2) we attach a copy of
T (2in) on the new set of vertices with vi as its root.

Let us assume that G = (V,E) ∈ 2-WEIGHTED(2). Thus, there is ωG : E → {1, 2}
such that the vertex-coloring cG induced by ωG is proper. Let H = h(G) = (W,F ). We
define a weight function ωH : F → {1, 2} as follows. To each edge {x, y, v1, . . . vr−2} ∈ F
derived from {x, y} ∈ E, we assign ωG({x, y}); otherwise we assign weight 1. Now we
claim that the vertex-coloring cH : W → N induced by ωH is strong. By construction,
any edge of H which is contained in a copy of T (2in) is rainbow. We show that this also
holds for {x, y, v1, . . . vr−2} ∈ F derived from G. Observe that

cH(vi) = cG(vi) + 2in · r!,

and consequently, 2n < cH(v1) < · · · < cH(vr−2). Moreover, since cG(x) 6= cG(y) 6
2(n− 1), we get that {x, y, v1, . . . vr−2} is rainbow. Hence, h(G) ∈ 2-WEIGHTED(r).

Now suppose that G = (V,E) /∈ 2-WEIGHTED(2). We show that H = h(G) =
(W,F ) /∈ 2-WEIGHTED(r). Assume not. That means there exists a weight function
ωH : W → {1, 2} such that the vertex-coloring cH induced by ωH is strong. Now let
ωG : V → {1, 2} be such that ωG({x, y}) = ωH({x, y, v1, . . . vr−2}). Since cG(x) = cH(x)
and cH is strong, we conclude that cG is proper, a contradiction.
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