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Abstract

We consider the following definition of connectedness in k-uniform hypergraphs:
two j-sets (sets of j vertices) are j-connected if there is a walk of edges between them
such that two consecutive edges intersect in at least j vertices. The hypergraph is j-
connected if all j-sets are pairwise j-connected. We determine the threshold at which
the random k-uniform hypergraph with edge probability p becomes j-connected with
high probability. We also deduce a hitting time result for the random hypergraph
process – the hypergraph becomes j-connected at exactly the moment when the
last isolated j-set disappears. This generalises the classical hitting time result of
Bollobás and Thomason for graphs.

Keywords: random hypergraphs; connectedness; hitting time

1 Introduction

1.1 Preliminaries and main results

In the study of random graphs, one of the most well-known results concerns the hitting
time for connectedness. More precisely, if we add randomly chosen edges one by one
to an initially empty graph on n vertices, then with high probability at the moment
the last isolated vertex gains its first edge, the whole graph will also become connected
(this classical result was first proved by Bollobás and Thomason in [3]). This interplay
between local and global properties is an example of the common phenomenon relating
graph properties with their smallest obstruction; the graph can certainly not be connected
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while an isolated vertex still exists, but this smallest obstruction is also the critical one
which is last to disappear.

In this paper we generalise the result of Bollobás and Thomason to random k-uniform
hypergraphs. For an integer k > 2, a k-uniform hypergraph consists of a set V of vertices
together with a set E of (hyper-)edges, each consisting of k vertices. (A 2-uniform hyper-
graph is simply a graph.) We need to define the notion of connectedness, for which there
is a whole family of possible definitions. For any 1 6 j 6 k − 1, we say that two j-sets
(sets of j vertices) J1, J2 are j-connected if there is a sequence of edges E1, . . . , Em such
that

• J1 ⊂ E1 and J2 ⊂ Em;

• |Ei ∩ Ei+1| > j for all 1 6 i 6 m− 1.

In other words, we may walk from J1 to J2 using edges which consecutively intersect
in at least j vertices. A j-component is a maximal set of pairwise j-connected j-sets.
A k-uniform hypergraph is j-connected if there is one j-component which contains all
j-sets.1

Note that in the case k = 2, j = 1 this is simply the usual definition of connectedness
for graphs. More generally, for arbitrary k > 2 the case j = 1 is by far the most well-
studied. The definition for general j is also entirely natural, albeit harder to visualise
and often requires more complex analysis. In this paper we will be interested in arbitrary
1 6 j 6 k − 1 and k > 3.

There is also more than one model for random hypergraphs. We first define the
uniform model, the counterpart of the uniform model of Erdős and Rényi for graphs:
given any natural numbers k,M, n such that M 6

(
n
k

)
, the random hypergraph Hk(n,M)

is a hypergraph chosen uniformly at random from all k-uniform hypergraphs on vertex set
{1, . . . , n} which have M edges. This is closely related to the random hypergraph process
{Hk(n,M)}M which is defined as follows:

• Hk(n, 0) is the hypergraph on vertex set {1, . . . , n} with no edges;

• For 1 6 M 6
(
n
k

)
, Hk(n,M) is obtained from Hk(n,M − 1) by adding an edge

chosen uniformly at random from among those k-sets which do not already form an
edge.

Note that the distribution of the random hypergraph obtained in the M -th step of the
process is the same as in the uniform model Hk(n,M), so the notation is consistent.

We consider asymptotic properties of random hypergraphs and throughout this paper
any asymptotics are as n → ∞. In particular we say with high probability (or whp) to
mean with probability tending to 1 as n→∞.

1We remark that j-connectedness of a k-uniform hypergraph H is equivalent to vertex-connectedness
of the auxiliary

(
k
j

)
-uniform hypergraph H ′ whose vertices are the j-sets of H and with an edge joining(

k
j

)
such j-sets if they lie in a common edge of H.
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We say that a j-set is isolated if it is not contained in any edges. It is trivial to see
that if a hypergraph contains isolated j-sets, then it is not j-connected (assuming it has
more than j vertices). Our main result is that this trivial smallest obstruction is also the
critical one in a random hypergraph.

Let τc = τc(n, j, k) denote the time step in the hypergraph process {Hk(n,M)}M at
which the hypergraph becomes j-connected. Similarly, let τi denote the time at which the
last isolated j-set disappears. Note that the properties of being j-connected or of having
no isolated j-set are certainly monotone increasing properties, so these two variables are
well-defined. Furthermore, as noted above, τi 6 τc deterministically.

Theorem 1. For any 1 6 j 6 k − 1 and k > 3, with high probability in the random
hypergraph process {Hk(n,M)}M we have τc = τi.

The case j = 1 of this theorem was already proved by Poole as a special case of the
results in [7]. The case j = k − 1 was previously proved by Kahle and Pittel in [6]. For
all other j, this result was previously unknown.

The uniform model and the associated hypergraph process allow us to formulate exact
hitting time results such as Theorem 1. However, the drawback is that the analysis of
the model can become tricky due to the fact that the presence of different edges is not
independent (the total number is fixed). For this reason, it is often easier to analyse
the binomial model : Hk(n, p) is a random k-uniform hypergraph on vertex set {1, . . . , n}
in which each k-set is an edge with probability p independently of all other k-sets. In
Section 2 we will show that if p = M/

(
n
k

)
, then the two models are very similar and we

can transfer results from one model to the other.
For the proof of Theorem 1 we will also make use of the following result (Theorem 2),

which is interesting in itself and is therefore stated in a significantly more general form
than we need for Theorem 1. For integer valued random variables Z and Z ′ we denote
their total variation distance by dTV (Z,Z ′), i.e.

dTV (Z,Z ′) =
1

2

∑
i∈Z

|P (Z = i)− P (Z ′ = i)| .

For integer-valued random variables Xn and Y , we say Xn converges in distribution to Y ,

denoted by Xn
d−→ Y , if for every integer i we have P(Xn = i)→ P(Y = i).

Theorem 2. For any k > 3 and 1 6 j 6 k − 1 and for any integer s > 0, let

ps = ps(n, k, j) =
j log n+ s log log n+ cn(

n
k−j

) ,

where cn = o(log n), and let Ds be the number of j-sets of degree precisely s in Hk(n, ps)
(i.e. which lie in s edges). Then we have

dTV (Ds,Po (E (Ds))) = O(n−j(log n)s+1). (1)

In particular
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(i) Ds = 0 whp if cn →∞;

(ii) Ds
d−→ Po

(
jse−c

j!s!

)
if cn → c for any c ∈ R;

(iii) Ds →∞ whp if cn → −∞.

These two theorems together give the following corollary.

Theorem 3. Let k > 3 and 1 6 j 6 k − 1, and let p0 = j logn+cn

( n
k−j)

.

1. If cn → −∞, then with high probability Hk(n, p) contains isolated j-sets (and is
therefore not j-connected).

2. If cn →∞, then with high probability Hk(n, p) is j-connected (and therefore contains
no isolated j-sets).

In other words, the properties of being j-connected and having no isolated j-sets both
undergo a (sharp) phase transition at threshold pconn, defined as

pconn =
j log n(

n
k−j

) .
1.2 Methods

The main contribution of this paper is to deduce Theorem 1 from Theorem 2. Attempting
to prove this directly using standard techniques generalised from the graph case does not
work because j-components in a hypergraph may be strangely and non-intuitively dis-
tributed. To overcome this problem we quote a powerful result from [4], which guarantees
one component with a large subset which is in some sense smoothly distributed. We then
show that whp all non-trivial components are connected to this smooth subset.

1.3 Notation and definitions

We introduce a few more definitions before we proceed with the proofs. We fix k > 3
and 1 6 j 6 k − 1 for the remainder of the paper. The order |H| of a hypergraph H is
the number of vertices it contains, while its size e(H) is the number of edges. Since a
j-component consists of j-sets of vertices, we may view it as a j-uniform hypergraph in
which the edges are the j-sets in the component. In particular, the size of a j-component
is the number of j-sets it contains. In the remainder of the paper we will use component
to mean j-component.

We will sometimes need to relate the j-sets of a component to the edges of the hy-
pergraph which connect them. To allow us to do this, for a k-uniform hypergraph H we
define the j-size of H to be the number of j-sets contained in edges of H.

We ignore floors and ceilings whenever this does not significantly affect the argument.
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2 Contiguity of Hk(n,M) and Hk(n, p)

We need to know that Hk(n, p) and Hk(n,M) are roughly equivalent, which is a general-
isation of a standard fact about the corresponding graph models (see [2, 5]). In fact, [5]
considers a more general setting than we require here, but what we state is an immediate
corollary of the results there (see [5], Corollary 1.16). Let N =

(
n
k

)
and to ease notation,

for some property Q we will denote by PM(Q) the probability that Hk(n,M) has property
Q. Pp(Q) is defined similarly.

Lemma 4. Let Q be some monotone increasing property of k-uniform hypergraphs and
let M = Np→∞. Then

1. Pp(Q)→ 1 implies PM(Q)→ 1;

2. Pp(Q)→ 0 implies PM(Q)→ 0.

This lemma allows us to transfer properties from Hk(n, p) to Hk(n,M) (transferring
in the other direction is also possible, with some small modifications, but we will not need
to do this here). However, this only works for monotonically increasing properties. This
is fine for the properties of being j-connected or of having no isolated j-sets, but in the
proof of Theorem 1 we will need to consider the probability of having a component of size
r, for various fixed r. This property is not even convex (and nor is its complement) and
so for this case we will need some more careful arguments.

The following standard argument allows us to transfer high probability events from
the binomial to the uniform model provided that the failure probability is small enough.

Lemma 5. Let Q be an arbitrary property. Suppose M →∞ and p = M/N → 0. Then

PM(Q) 6
Pp(Q)

P(e(Hk(n, p)) = M)
= Θ(M1/2)Pp(Q).

Proof. The inequality follows from the fact that

Pp(Q) =
N∑

m=0

Pm(Q)P(e(Hk(n, p)) = m)

> PM(Q)P(e(Hk(n, p)) = M).

For the equality we use Stirling’s approximation to deduce that

P(e(Hk(n, p)) = M) =

(
N

M

)
pM(1− p)N−M

= Θ(1)

√
N

M(N −M)

NN

MM(N −M)N−M
pM(1− p)N−M

= Θ(M−1/2).
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3 Proof of Theorem 2

Let C =
(
k
j

)
− 1. Fix an integer s > 0 and suppose p = ps = j logn+s log logn+cn

( n
k−j)

, where

cn = o(log n). Then the expected number of j-sets of degree s in Hk(n, p) satisfies

E(Ds) =

(
n

j

)((n−j
k−j

)
s

)
ps(1− p)(

n−j
k−j)−s

= (1 + o(1))
nj

j!

(
nk−j

(k−j)!

)s
s!

ps exp

(
−p
(

n

k − j

))
= (1 + o(1))

1

j!s!
es(k−j) logn−s log((k−j)!)+s log p−s log logn−cn

= (1 + o(1))
js

j!s!
e−cn , (2)

since

log p = −(k − j) log n+ log log n+ log(j(k − j)!) +O

(
log log n+ |cn|

log n
+

1

n

)
.

For the Poisson-approximation we use the Chen-Stein method (see [1]). For any j-set
J we denote its degree in Hk(n, p) by deg(J) and analyse how Ds changes by conditioning
on the event {deg(J0) = s} for an arbitrary j-set J0.

First we construct Hk(n, p) and denote by E0 the set of edges containing J0, then we
distinguish three cases:

(a) If deg(J0) < s, add s − deg(J0) distinct k-sets chosen uniformly at random from{
K ∈

(
V
k

) ∣∣ J0 ⊂ K
}
\ E0 to the hypergraph;

(b) If deg(J0) = s, do nothing;

(c) If deg(J0) > s, delete a set of deg(J0)− s edges chosen uniformly at random from E0.

We denote the resulting hypergraph by H∗ = H∗(J0). For any j-set J we write deg∗(J)
for its degree in H∗ and D∗s(J0) for the number of j-sets J 6= J0 such that deg∗(J) = s.
Furthermore observe that this construction provides a coupling of Hk(n, p) and H∗ such
that removing all edges containing J0 in either one of them yields the same random
hypergraph H− = H−(J0). For any j-set J we write deg−(J) for its degree in H−.

We use the following form of the Chen-Stein approximation given by Theorem 1.B
in [1].

Theorem 6 (Chen-Stein approximation [1]). Given a finite index set I and a random
variable W =

∑
i∈I Zi, where Zi is a Bernoulli random variable with parameter pi ∈ [0, 1],

denote by λ =
∑

i∈I pi the expectation of W . Assume that for each i ∈ I there is a pair
of coupled random variables (Ui, Vi) such that Ui has the distribution of W and Vi + 1 has
the distribution of W conditioned on {Zi = 1}. Then we have

dTV

(
W,Po(λ)

)
6 min{1, λ−1}

∑
i∈I

piE (|Ui − Vi|) .
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For the proof of Theorem 2, we let I be the set of all j-sets and for all J let
ZJ = 1[deg(J)=S], pJ = P (deg(J) = s), UJ = W = Ds and VJ = D∗s(J0). We observe
that H∗ has the same distribution as H conditioned on the event {deg(J0) = s}, so VJ
has the same distribution as W conditioned on {ZJ0 = 1}.

Now applying Thoerem 6 and using the upper bound min
{

1, 1
E(Ds)

}
6 1

E(Ds)
, we

obtain

dTV

(
Ds,Po(E(Ds))

)
6

∑
J P (deg(J) = s)E (|Ds −D∗s(J0)|)

E (Ds)
= E (|Ds −D∗s(J0)|) . (3)

Hence it suffices to estimate the random variable |Ds −D∗s(J0)| . We first observe that

|Ds −D∗s(J0)| = 1[deg(J0)=s] +
∑
J 6=J0

|1[deg(J)=s] − 1[deg∗(J)=s]|

6 1[deg(J0)=s] +
s∑

t=1

∑
J 6=J0

deg∗(J)>deg(J)

1[deg(J0)=s−t]

+

(n−j
k−j)−s∑
t=1

∑
J 6=J0

deg∗(J)<deg(J)
deg−(J)6s

1[deg(J0)=s+t].

To justify the inequality, first note that if deg(J0) = s, then H = H∗ and only the first
term contributes. Furthermore, if deg(J0) < s, say deg(J0) = s−t for some t ∈ [1, s], then
the only contribution to |Ds −D∗s(J0)| comes from j-sets J 6= J0 whose degree increased,
i.e. deg∗(J) > deg(J). Similarly, if deg(J0) = s+t for some t ∈

[
1,
(
n−j
k−j

)
−s
]
, observe that

for a j-set J to contribute it is necessary to have either deg(J) = s or deg∗(J) = s. Note
that these cannot hold unless deg−(J) 6 s, and we will simply bound the probability of
this (more likely) event.

Moreover, each inner sum has at most Ct terms, since we certainly only sum over
j-sets J whose degree has changed, and adding or deleting an edge influences the degree
of at most C j-sets (other than J0).

Note also that deg−(J) has distribution

Bin

((
n− j
k − j

)
−
(
n− |J0 ∪ J |
k − |J0 ∪ J |

)
, p

)
,

independently of deg(J0), and the probability that deg−(J) 6 s is maximised when |J0∪J |
is minimised. Hence for an upper bound we will assume that |J0 ∪ J | = j + 1. This
motivates the definition

q = P
(

Bin
(
Ñ , p

)
6 s
)
,
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where Ñ =
(
n−j
k−j

)
−
(
n−j−1
k−j−1

)
= (1 + o(1))

(
n

k−j

)
. Combining these two arguments we obtain

the upper bound

|Ds −D∗s(J0)| 6 1[deg(J0)=s] +
s∑

t=1

1[deg(J0)=s−t] Ct+

(n−j
k−j)−s∑
t=1

1[deg(J0)=s+t]Bin(Ct, q).

Therefore, using the notation x+ = max{x, 0} for any x ∈ R, we have

E (|Ds −D∗s(J0)|) 6 P (deg(J0) = s) + CE
(
(s− deg(J0))+)+ CqE

(
(deg(J0)− s)+) . (4)

We can estimate both probabilities in (4) using

P (deg(J0) = s) 6 q =
s∑

i=0

(
Ñ

i

)
pi(1− p)Ñ−i

6 O(1)
(
Ñp
)s

exp
(
− Ñp

)
= O((log n)sn−j),

where the second and third lines follow because s is bounded. Moreover, we have

E (s− deg(J0))+ 6 sP (deg(J0) 6 s) 6 sq = O((log n)sn−j)

and furthermore

E (deg(J0)− s)+ 6 E(deg(J0)) + s = O(log n).

Therefore (3) and (4) provide (1), i.e.

dTV (Ds,Po (E (Ds))) = O(n−j(log n)s+1). (5)

Now assume limn→∞ cn = c. By (2) we know that E (Ds) → jse−c

j!s!
and by the continuity

in λ of the function P(Po(λ) = i) for each i

Po (E (Ds))
d−→ Po

(
jse−c

j!s!

)
,

hence by the triangle inequality and (1), case (ii) in the second claim follows. Cases (i)
and (iii) can be easily deduced from case (ii).

4 Proof of Theorem 1

The proof which we present is largely elementary except for the use of Theorem 2, which
relies on Theorem 6, and one powerful result from [4] (Lemma 7 below). This result is
stated for a much smaller probability than we have in this setting, which is therefore not
the optimal range for its application, but nevertheless it will turn out to be strong enough.

We first collect two preliminary results which we will need later (Corollary 8 and
Proposition 9 below).
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4.1 Smooth subset

The following result from [4] will be key.

Lemma 7. Suppose n−1/3 � ε � 1 and let p∗ = 1+ε

((k
j)−1)( n

k−j)
. Then whp there is a

j-component of Hk(n, p∗) with a subset S of at least ε3nj j-sets satisfying the following
property:

Every (j− 1)-set of vertices in Hk(n, p∗) is contained in

(1± o(1)) |S|
(n
j)
n j-sets of S.

In other words, we can find a reasonably large subset S of a component which is
smooth in the sense that all (j − 1)-sets are in about the “right” number of j-sets of S.
More precisely, we say that a set S of j-sets is smooth if every (j − 1)-set is contained in

(1± o(1)) |S|
(n
j)
n j-sets of S.

We note that Lemma 7 is not stated explicitly in this form in [4], but is implicit in
the proof. We therefore give a brief outline of how it can be deduced from the results in
that paper. The casual reader who is unfamiliar with [4] may skip the following proof.

Proof. Starting from some j-set J , we explore the j-component containing J using a
breadth-first search process BFS(J). This partitions the j-sets of the j-component into
generations, which can be numbered according to the order they were discovered in.

We fix a starting j-set J which lies in the largest component of Hk(n, p), let ∂Cg

denote the g-th generation of this search process BFS(J), and Cg = ∪g′6g∂Cg′ . Then
there are generations g0 and g1 such that the following statements hold whp.

1. Either |∂Cg1 | > ε3nj or |Cg1| > ε3/2nj;

2. |Cg0| = o(|Cg1|) (and in particular g0 < g1);

3. Every generation ∂Cg with g0 6 g 6 g1 is smooth.

We set g0 = i1(j − 1), where i1(j − 1) is defined immediately before Lemma 16 in [4],
and set g1 = i1, where i1 is defined in [4] to be the generation at which one of three
stopping conditions (S1), (S2) or (S3) is invoked (see Section 5.4 of [4]). These stopping
conditions contain a parameter λ, which we choose to be λ = ε3/2.

Property (1) follows from these stopping conditions. We use here the fact that J is in
the largest component of Hk(n, p), which is a giant component whp by Theorem 2 of [4],
therefore whp either (S2) or (S3) is invoked at time i1 (as (S2) would be invoked before
(S1)).

Property (2) follows from Lemmas 10, 24 and 25 in [4]. More precisely, whp g0 =
i1(j − 1) = i0(j − 1) + O(log n), while g1 = i1 > i0(j − 1) + Ω(ε−1 log n) by Lemma 25
of [4]. Furthermore, whp |Ci0(j−1)| = o(ε3/2nj) by Lemma 24 of [4] applied with ` = 0.
Finally, by Lemma 10 of [4], whp the generations between g0 and g1 are at least as large
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as those between i0(j − 1) and g0, and there are significantly more of them (Ω(ε−1 log n)
compared to O(log n)).

Finally, Property (3) is given by Lemma 16 in [4] (with ` = j − 1 and using the fact
that i1 > i1(j − 1)).

We now use these three properties to prove the existence of the set S. We make a case
distinction based on Property (1). If |∂Cg1| > ε3nj, then we simply set S = ∂Cg1 , and S
is smooth by (3).

On the other hand, if |Cg1| > ε3/2nj, then we let S = Cg1 \ Cg0−1. Then since every
generation from g0 to g1 is smooth, and since a union of smooth sets is also smooth, we
have that S is smooth. Furthermore, |S| = (1− o(1))|Cg1| > ε3nj.

Lemma 7 has the following corollary which we will apply later.

Corollary 8. Suppose n−1/3 � ε � 1 and p > 1+ε

((k
j)−1)( n

k−j)
. Then Hk(n, p) has a j-

component containing a set S of size at least ε3nj such that every (j− 1)-set is contained

in (1± o(1)) |S|
(n
j)
n j-sets of S.

Proof. We set p∗ = 1+ε

((k
j)−1)( n

k−j)
and p′ = p−p∗

1−p∗ and let H1 = H(n, p∗) and H2 = H(n, p′)

independently. Observe that we may couple in such a way that Hk(n, p) = H1 ∪ H2.
Furthermore, by Lemma 7, whp H1 has a component containing a smooth set S of the
appropriate size. In Hk(n, p) this component may be bigger than in H1, but certainly still
contains S.

4.2 Well-constructed hypergraphs

We will also use the following proposition. We say that a hypergraph is well-constructed
if it can be generated from an initial j-set via a search process, i.e. by successively adding
edges such that each edge contains at least one previously discovered j-set and also con-
tains at least one previously undiscovered j-set.

Proposition 9. Up to isomorphism, the number of well-constructed k-uniform hyper-
graphs of j-size s is at most 2ks2.

Proof. We explore the hypergraph by adding the edges one by one in the order in which it
is well-constructed. The resulting hypergraph is uniquely determined, up to isomorphism,
by the intersection of each edge with the previous vertices (though we will multiple count
the isomorphism classes, this is permissible for an upper bound). When adding the i-th
edge, we certainly have at most (i − 1)k vertices so far, and so the number of possible
intersections is at most 2(i−1)k. Multiplying over all edges, of which there are certainly
at most s (each edge gives at least one new j-set), we have that the number of such
hypergraphs is at most 2

∑s
i=1(i−1)k 6 2ks2 .
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4.3 Hitting time

We now proceed with the proof of Theorem 1. Let us consider any p,M satisfying

j log n− ω(
n

k−j

) 6 p = M/N 6
j log n+ ω(

n
k−j

)
where ω = log log n. We apply Theorem 2 (with s = 0 and cn = ±ω) and Lemma 4 to
observe that in bothHk(n, p) andHk(n,M), whp there are isolated j-sets at the lower end
of this range but not at the upper end. We will now prove that other than these isolated
j-sets, there is just one very large component whp. We certainly know by Corollary 8
that there is a component containing a large smooth set S. For the rest of the proof we
fix this component and the set S.

We consider the possibility that there is a second non-trivial component containing r
j-sets, and make a case distinction on the size of r. Note that for any j-component of size
r in a k-uniform hypergraph, there is a well-constructed subhypergraph of every (up to a
constant

(
k
j

)
error) j-size up to r. (More precisely, for any integer r′ 6 r there exists an

integer r′′ with |r′′ − r′| 6
(
k
j

)
and a well-constructed subhypergraph of j-size r′′.)

Let us set r0 = log log n.

Case 1: 2 6 r 6 r0. We first observe that in a component of size r > 2 we must have
at least one edge, and therefore at least

(
k
j

)
> k > 3 j-sets, i.e. we automatically have

r > 3.
We show that the expected number of components of size r is very small and apply

Markov’s inequality. Any component of size r can be associated with a well-constructed
hypergraph H of j-size r which is isolated from the remaining j-sets of Hk(n, p). Then
e(H) 6 r and furthermore |H| 6 j + (k − j)e(H), since each new edge of H gives at
most k− j new vertices. For each j-set of H, we have at least

(
n−j
k−j

)
− r
(
n−j−1
k−j−1

)
non-edges

(any k-set containing this j-set but no other j-sets of H). Thus the expected number of
isolated copies of H in Hk(n, p) satisfies

E(XH) 6 nj+(k−j)e(H)pe(H)(1− p)r((
n−j
k−j)−r(

n−j−1
k−j−1)) (6)

and so

log(E(XH)) 6 (j + (k − j)e(H)) log n+O(r log log n)

− (k − j)e(H) log n− (1−O(r/n)−O(ω/ log n))rj log n

= (1− r + o(1))j log n 6 (−3rj/5) log n.

Note that this bound does not depend on the specific structure of H, only on the number
of j-sets r. Let Xr be the number of components of size r. Then by Proposition 9 we
have

E(Xr) 6 2kr2n−3rj/5 6 n−4rj/7

where for the last inequality we use the fact that r 6 r0 = o(log n).

the electronic journal of combinatorics 23(2) (2016), #P.48 11



By taking a union bound over all 3 6 r 6 r0, we conclude that with probability at
least 1− 2n−12j/7 there are no j-components of this size.

Case 2: r > r0.
In this case, rather than looking at the full component we look at a well-constructed

subgraph H of j-size r0. Such a subgraph certainly exists up to an additive
(
k
j

)
error term

in the j-size, which will not affect calculations significantly. Most of the calculations which
lead to (6) are still valid, replacing r by r0. However, since we are no longer considering
a full component, we must be more careful about the number of non-edges.

At this point we make use of the set S of j-sets guaranteed by Corollary 8, which lie
in a different component to H. For each of the r0 j-sets of H, pick an arbitrary (j−1)-set
within it and by Corollary 8, this (j− 1)-set is contained in (1± o(1))ε3n j-sets of S. For
each such pair of j-sets intersecting in j − 1 vertices, there are

(
n−j−1
k−j−1

)
k-sets containing

both of them, all of which must be non-edges, since the j-sets lie in different components.
It may be that we multiple count the non-edges in this way. However, each k-set may

only be counted from a pair of j-sets it contains, and therefore the number of times it is
counted is certainly at most

(
k
j

)
(k− j). Thus in total the number of non-edges is at least

r0ε
3n

2
(
k
j

)
(k − j)

(
n

k − j − 1

)
= Θ

(
r0ε

3nk−j) .
We may thus calculate the expected number of such structures H (cf. (6)):

E(XH) 6 nj+(k−j)e(H)pe(H)(1− p)Θ(r0ε3nk−j)

and so, letting Y be the number of such well-constructed hypergraphs of j-size r0 which
are not in the same component as S, we have

log(E(Y )) 6 kr2
0 log 2 + j log n+O (r0 log log n)−Θ

(
r0ε

3 log n
)
.

Now observe that in Corollary 8 we may choose any n−1/3 � ε � 1. Choosing ε3 =
1

log log logn
, we have r0ε

3 → ∞ and the last term in the above inequality dominates, and

we have log(E(Y )) 6 −C log n for any constant C. In particular, choosing C = 12j/7, we
have E(Y ) 6 n−12j/7. By Markov’s inequality, this implies that with probability at least
1− n−12j/7 we have Y = 0 and therefore no further components of size r.

Combining the two cases, this tells us that with probability at least 1 − 3n−12j/7,
Hk(n, p) only has one non-trivial component.

Finally note that M = pN = Θ(nj log n). Thus by Lemma 5 we conclude that with
probability at least 1−3n−12j/7

√
M = 1−o(n−8j/7),Hk(n,M) also has only one non-trivial

j-component.
We now take a union bound over all possible M , of which there are at most 2ω

( n
k−j)

(
n
k

)
=

O(ωnj), and deduce that the probability that there is ever a second non-trivial within
this time period is at most

O(ωnj)n−8j/7 = O(ωn−j/7) = o(1)

as required.
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5 Proof of Theorem 3

Theorem 3 follows almost immediately from Theorems 1 and 2. In order to apply Theo-
rem 1 in the binomial model, we apply the standard trick of birth times: to each k-tuple
we assign a number (the birth time) between 0 and 1 uniformly at random and indepen-
dently of all other k-tuples. Then the hypergraph process {Hk(n,M)}M can be obtained
by adding edges in increasing order of birth time (with probability 1 no two edges have
the same birth time), while the hypergraph obtained by taking all edges with birth time
at most p is distributed as Hk(n, p).

Theorem 6 (with s = 0) tells us that if cn →∞, then whp there are no isolated j-sets,
and therefore Theorem 1 tells us that whp the hypergraph is j-connected. This proves
part (2). Part (1) is simply an application of Theorem 2 with s = 0.

6 Concluding remark

In [7], it is determined for the case j = 1 that the hitting time for d-strong 1-connectedness,
i.e. the time at which the hypergraph first has the property that deleting any set of less
than d vertices still leaves a 1-connected hypergraph, is the same as the hitting time for
having no vertices of degree less than d whp. It would be interesting to generalise this
result to d-strong j-connectedness (removing fewer than d j-sets still leaves a j-connected
hypergraph), which is presumably attained whp when every j-set has degree at least d.
However, this would present significant additional difficulties, not least that Lemma 7
would no longer give the substructure which we require.
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