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Abstract

A permutation class is splittable if it is contained in the merge of two of its proper
subclasses. We characterise the unsplittable subclasses of the class of separable
permutations both structurally and in terms of their bases.

1 Introduction

In recent years one of the main areas of investigation within the study of pattern-avoiding
permutations, or permutation classes has been to develop structural characterisations for
some classes in terms of simpler ones. Such a characterisation can have many useful
consequences including: exact or approximate enumerations, determination of the type
(e.g., rational, algebraic) of the generating function of a class, and algorithms for testing
membership in such classes. The survey articles of Vatter [13] and Brignall [7] are perhaps
the best introduction to this endeavour.

Among the constructions used to build new classes from old one of the most natural
to consider is that of merging permutations (or permutation classes). We delay formal
definitions to the next section but briefly a permutation π is a merge of two permutations
σ and τ if its elements can be partitioned into two sets which are isomorphic (in the sense
of relative ordering of corresponding pairs of points) to σ and τ respectively. However, this
construction has been relatively ignored in the literature. Merges been used in [4, 5, 8]
to establish bounds on the growth rates of certain permutation classes. A restricted
version of the construction was used in [2] to show that certain collections of classes have
equal growth rates. Those classes which are obtained by merging the classes consisting of
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monotone increasing or monotone decreasing permutations were all shown to be finitely
based in [12] and also played a role in [1] (as evidence for a conjecture concerning the
lengths of longest pattern avoiding subsequences in random permutations). Apparently
the first paper where merging and its dual, splitting, played a central role was [11].

Call a class splittable if it is contained in the merge of two of its proper subclasses.
Then a natural question to ask is: what are the essential building blocks with respect to
this notion? That is, can we characterise unsplittable classes? The previously mentioned
paper [11] began the study of this and related notions and this paper continues it in a
somewhat more limited context. Namely, aside from some initial general observations, we
work within the class Sep of separable permutations. This class of permutations is the
natural analog of the graph class consisting of the cographs – those graphs constructible
from the one vertex graph by complementation and disjoint union. As a tool to help char-
acterise the unsplittable subclasses of Sep we investigate an interesting monoid structure
on the so-called representable subclasses of Sep – this structure is key to showing that the
representable classes and the unsplittable ones coincide.

We view this work as representing the first steps of the investigation of splittability
within well-behaved classes.

2 Terminology, notation and basic observations

For a non-negative integer n, let [n] = {1, 2, . . . , n}. A permutation (of [n]) is a bijective
map π : [n] → [n]. The set of all permutations of [n] is denoted Sn and the set of all
permutations is denoted S. If π ∈ Sn then we say that the size of π is n and write
|π| = n. We frequently represent permutations in one line notation as the sequence of
their values π1π2 · · · πn (where πi = π(i)). Since a permutation is also a set of points in the
plane, i.e., the set of points (i, πi) for i ∈ [n], we can speak of relationships among these
points in the horizontal direction thought of as position (using words like before, after,
to the left of, or to the right of), or in the vertical direction thought of as value (using
words like above, below, greater or lesser). For instance, the set of elements lying above
the leftmost point in π consists of the subset (or subsequence in the one line version) of
all those points (j, πj) with π1 < πj.

The geometric viewpoint of permutations as sets of points in the plane makes it clear
that there are eight symmetries corresponding to the symmetries of the square that can
be applied to permutations. In one line notation, these are generated by reversal, comple-
mentation (which, for π ∈ Sn replaces each value i by n+ 1− i), and ordinary functional
inverse. All of our results respect these symmetries which frequently reduces the number
of cases that need to be considered.

Given π ∈ Sn and a k-element subset, Σ, of the permutation π there is a unique
permutation σ ∈ Sk such that there exists a correspondence between Σ and σ that pre-
serves both the left to right, or positional, ordering, and also the bottom to top, or value,
ordering. We say that σ is the pattern of the elements Σ. For instance, the pattern of the
elements of 256143 occurring in the first, third and sixth positions (i.e., corresponding to
the subsequence 263) is the permutation 132. If σ ∈ Sk is the pattern of some subset of
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Figure 1: The sum and skew sum operations.
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Figure 2: 479832156 is an inflation of 2413, specifically 2413[1, 132, 321, 12].

π then we say that σ is contained in π and write σ 6 π. This relationship is clearly a
partial order on permutations. When we wish to draw attention to a particular subset of
π whose pattern is σ we sometimes say that σ is a subpermutation of π.

A permutation class or class of permutations, C, is a set of permutations hereditarily
closed downwards with respect to containment. That is, if π ∈ C and σ 6 π then σ ∈ C.
Note that our definition permits empty permutations, and the empty permutation belongs
to every non-empty permutation class. One way to characterise a permutation class is
through a set of forbidden permutations or obstructions. Given a set F of permutations
we can define the permutation class of permutations avoiding F :

Av(F ) = {π ∈ S : ∀σ ∈ F σ 66 π}.

For any permutation class C we define the basis of C, Ba(C), to be the set of minimal
elements of S \ C (with respect to 6). Then C = Av(Ba(C)) and also if F is an antichain
in the ordering on permutations, then F = Ba(Av(F )).

There are various operations that apply to permutations and by extension to permu-
tation classes. The sum, π⊕ σ, of two permutations π and σ is the permutation obtained
by placing a copy of σ above and to the right of a copy of π. Formally, if π ∈ Sn and
σ ∈ Sk, then π⊕σ ∈ Sn+k and (π⊕σ)(i) = π(i) for i 6 n, while (π⊕σ)(i) = n+σ(i−n)
for i > n. The skew-sum π 	 σ is similarly defined, except σ is placed below and to the
right of π. See Figure 1. If a permutation, π, can be written as a sum of two non-empty
permutations then we say that π is sum-decomposable. If not, then of course we say
that π is sum-indecomposable. Skew-decomposable and skew-indecomposable are defined
similarly. Clearly, sum and skew-sum are associative (but not commutative) operations
on permutations, and every permutation can be uniquely represented as a sum of one or
more sum-indecomposable permutations or as a skew-sum of skew-indecomposable per-
mutations. A permutation can be both sum- and skew-indecomposable (for instance 2413)
but every sum-decomposable permutation is skew-indecomposable and vice versa.

If C and D are permutation classes then C ⊕ D (resp. C 	 D) is defined to be the set
of all permutations which are the sum (skew-sum) of a permutation in C with one in D.
It is routine to verify that C ⊕ D (C 	 D) is also a permutation class.
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Sums and skew-sums are a particular case of a more general operation called inflation.
An interval in a permutation is a contiguous set of positions on which the values also form
a contiguous set. We say that an interval is proper if it is not the whole permutation,
and non-trivial if it is not a singleton. A permutation whose only proper intervals are
singletons is called simple. For instance, in the permutation 2756143 the second through
fourth elements form an interval (positions from 2 to 4, and values from 5 to 7), and the
last two elements also form an interval. On the other hand, the permutation 2753164 is
simple.

Given σ ∈ Sk and permutations τ1, τ2, . . . , τk the inflation, π = σ[τ1, τ2, . . . , τk] is a
permutation of size

∑k
i=1 |τi| obtained from σ by replacing each element σi by an interval

whose pattern is τi where the relationships by position and value between the intervals
corresponding to σi and σj are the same as those between σi and σj themselves. For
instance 2756143 = 2413[1, 312, 1, 21], and see also Figure 2. Observe that σ⊕τ = 12[σ, τ ]
while σ 	 τ = 21[σ, τ ]. For permutation classes C and D we define C[D] to be the set of
all permutations obtained by inflating a permutation from C with permutations from D.
Again it is clear that C[D] is a permutation class.

Some particular permutation classes that we will be using repeatedly are:

• 1, which contains only the permutation 1 (and the empty permutation - we omit to
mention this in what follows),

• I, which contains only the increasing permutations,

• D, which contains only the decreasing permutations,

• 132 = Av(132), together with its symmetries 213 = Av(213), 231 = Av(231) and
312 = Av(312).

• L, the class of layered permutations, which is the closure of D under ⊕.

Note that 1 = Av(12, 21), I = Av(21), D = Av(12) and L = Av(231, 312) = I[D].
A permutation class, C, is said to be sum-closed if for all σ, τ ∈ C we have σ ⊕ τ ∈ C.

Skew-closed is defined similarly.

Observation 1. A class C is sum-closed if and only if C = I[C] and skew-closed if and
only if C = D[C].

The following trivial observation can be surprisingly useful in practice:

Observation 2. Let C be a permutation class and D a non-empty subclass of C. Then
C = C[D] if and only if no basis element of C belongs to C[D], and C = D[C] if and only
if no basis element of C belongs to D[C].

Some of the consequences of this observation are:

• C is ⊕-closed, i.e., C = I[C] if and only if all the basis elements of C are sum-
indecomposable.
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• C = C[C] if and only if all the basis elements of C are simple.

• C = C[I] if and only if no basis element of C has a non-trivial interval in I (such
permutations are sometimes called plus-irreducible).

2.1 Separable permutations

Permutation classes whose bases consist only of simple permutations are closed under
inflation. We have already encountered three such classes: 1, I and D. Any other class of
this type must contain both 12 and 21, and if we begin from the class {∅, 1, 12, 21} and
then form its closure under inflation we obtain the class Sep of separable permutations.
Sep is perhaps most naturally defined recursively as the smallest non-empty class having
the property that if σ, τ ∈ Sep, then both σ ⊕ τ, σ 	 τ ∈ Sep. Every non-singleton
permutation in Sep is either sum- or skew-decomposable and its basis is {2413, 3142}
(this is easily verified but see Bose et al. [6]).

To every permutation π ∈ Sep we associate a decomposition tree T (π). The leaves of
T (π) correspond to the elements of π and there are two types of internal nodes: ⊕-nodes
and 	-nodes. The (obvious) correspondence between trees and permutations may be
defined recursively: the singleton permutation is represented by a tree consisting of a single
leaf. If π is a sum-decomposable permutation of the form π = π1 ⊕ π2 ⊕ · · · ⊕ πk with πi
being sum-indecomposable, then T (π) has a root which is a ⊕-node with k children, whose
subtrees are T (π1), . . . , T (πk). Skew-decomposable permutations are handled analogously.
Note that in a decomposition tree every child of a ⊕-node is a 	-node or a leaf, and every
child of a 	-node is a ⊕-node or a leaf.

The depth of a node w in a tree T is the number of edges on the path from w to the
root. The depth of T is then the maximum of the depths of the leaves of T . A bottom leaf
of T is a leaf whose depth is equal to the depth of T . The depth of a separable permutation
is the depth of its decomposition tree. The least common ancestor of two distinct leaves
in a tree T is the unique internal node of maximum depth which is a common ancestor
of the two leaves.

We say that a tree T is slim if each of its internal nodes has exactly two children and
at least one of these children is a leaf. Note that in a slim tree T of depth d, there is
exactly one internal node of depth i for any i ∈ {0, . . . , d − 1}. A slim permutation is a
separable permutation whose decomposition tree is slim.

2.2 Merging permutations and splitting classes

The last construction we need to introduce for permutations is the merge. Given two
permutations σ and τ of sizes k and ` respectively the merges of σ and τ are those
permutations of size k + ` whose elements can be partitioned into a set of k elements
whose pattern is σ and a set of ` elements whose pattern is τ . For example, all five non-
decreasing permutations of size 3 are merges of 12 with 1, and all permutations of size 4
except 1234, 2143, 3412, and 4321 are merges of 12 with 21. We write the set of merges
of σ with τ as σ� τ , and use the same notation for permutation classes. Again it is clear
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that the merge of two permutation classes is itself a permutation class. At the level of
permutation classes, � is an associative and commutative operation. We frequently think
of the partition corresponding to a merge as being given by a red-blue colouring of the
elements of a permutation. In that context, to prove π 6∈ C � D requires showing that
for every red-blue colouring of π either the red elements do not belong to C (i.e., contain
a basis element of C) or the blue elements do not belong to D. No proper permutation
class is closed under the merge operation since by merging n copies of 1 we can produce
every permutation in Sn.

We say that a permutation class C is splittable, if there is a sequence (Ci)ki=1 of proper
subclasses of C such that C ⊆ �k

i=1Ci. If X is a set of permutation classes, we say that C
is X-splittable and write C ∈ Split(X) if there is a finite sequence (Ci)ki=1 of classes each
belonging to X such that C is (Ci)ki=1-splittable. In the case where X is a singleton, say
X = {D} then we often simply say that C is D-splittable.

A class is called atomic if it is not the union of a finite collection (hence two) of
its proper subclasses. Every non-atomic class is splittable since if C is contained in the
union of two of its proper subclasses then it is also contained in the merge of those same
subclasses as X � Y always contains X ∪ Y . Equivalently, every unsplittable class must
be atomic. The main property of atomic classes that we need is contained in the following
observation (due in a more general context to Fräıssé [9]) that atomic classes satisfy the
joint embedding property.

Lemma 3. A class C is atomic if and only if for all π, σ ∈ C there exists τ ∈ C with
π, σ 6 τ .

Proof. Suppose that there exist π, σ ∈ C having no common extension in C. Let D =
C∩Av(π) and E = C∩Av(σ). Then both D and E are proper subclasses of C but C = D∪E
so C is not atomic. Conversely, if C is not atomic, say C = D ∪ E where D and E are
proper subclasses of C then we choose π ∈ C \ D and σ ∈ C \ E . Any common extension
of π and σ belongs to neither D nor E , hence not to C either.

The following lemma provides us with a convenient characterisation of splittability:

Lemma 4. A class C is splittable if and only if there exist permutations π, π′ ∈ C such
that every σ ∈ C has a red-blue colouring whose red part avoids π and whose blue part
avoids π′.

Proof. Suppose that C is splittable and choose a finite sequence (Ci)ki=1 of proper subclasses
of C of minimum possible length such that C ⊆ C1 � C2 � · · · � Ck. Then k = 2 since if
k > 2 we could take D = C ∩ (C2� · · · � Ck) a proper subclass of C (by the assumption of
minimality) but then C ⊆ C1 �D. So C ⊆ D � E for some proper subclasses D and E of
C. Now we can simply choose π ∈ C \ D and π′ ∈ C \ E .

Conversely, suppose that such π and π′ exist and set D = C∩Av(π) and E = C∩Av(π′).
Then D and E are proper subclasses of C and, by the given condition, C ⊆ D � E , hence
C is splittable.

Now we can provide a supply of unsplittable classes.
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Lemma 5. If C = C[C], i.e., C is closed under inflation, then C is unsplittable.

Proof. Let π and π′ be any two permutations in C and set τ = π[π′, . . . , π′]. Any red-blue
colouring of τ contains either an entirely blue interval of pattern π′ or a red point in each
such interval, and hence its red elements contain π. So C cannot be splittable.

Lemma 6. If X and Y are unsplittable classes, then so is X [Y ].

Proof. Suppose that X [Y ] is splittable. That means there are permutations π, π′ ∈ X [Y ]
such that each element of X [Y ] has a red-blue coloring with no red π and no blue π′.

Since π is in X [Y ], it can be expressed as π = σ[τ1, . . . , τk] for some σ ∈ X and
τ1, . . . , τk ∈ Y . Since Y is unsplittable and therefore atomic, there is a permutation τ ∈ Y
which contains all the τ1, . . . , τk. So π 6 σ[τ, τ, . . . , τ ]. Therefore, any red-blue colouring
of an element of X [Y ] that has no red π also has no red σ[τ, τ, . . . , τ ] and so we may
assume without loss of generality that π is of the form σ[τ, τ, . . . , τ ]. Similarly, we may
assume that π′ is of the form σ′[τ ′, τ ′, . . . , τ ′] for some σ′ ∈ X and τ ′ ∈ Y .

Since X is unsplittable, it contains a permutation σ+ whose every red-blue coloring
has a red copy of σ or a blue copy of σ′. Likewise, Y has a permutation τ+ containing a
red τ or a blue τ ′ in any red-blue coloring.

Consider the permutation π+ = σ+[τ+, τ+, . . . , τ+] ∈ X [Y ]. We claim that any red-
blue coloring of π+ has a red π or a blue π′. Fix a red-blue coloring c of π+. Use the
coloring c to define a red-blue coloring d of σ+ as follows: an element σ+

i is red in d if the
τ+-copy in π+ obtained by inflating σ+

i has a red copy of τ in the coloring c; similarly,
σ+
i is blue in d if the corresponding τ+-copy has a blue copy of τ ′. The coloring d of σ+

has either a red copy of σ or a blue copy of σ′. In the first case, we find a red copy of
σ[τ, . . . , τ ] = π in π+, while in the other case we find a blue π′.

Observation 7. Let X be a permutation class, and let Y be a class which is {Y1, . . . ,Yk}-
splittable for some Y1, . . . ,Yk. Then X [Y ] is {X [Y1], . . . ,X [Yk]}-splittable, and Y [X ] is
{Y1[X ], . . . ,Yk[X ]}-splittable.

We need two results from [11], whose proofs we omit.

Lemma 8 ([11, Proposition 3.2]). For any three permutations α, β, γ,

Av(α⊕ β ⊕ γ) ⊆ Av(α⊕ β)� Av(β ⊕ γ).

Lemma 9 ([11, Theorem 3.15]). Let π be a sum-indecomposable permutation. If Av(π)
is {Av(π1),Av(π2), . . . ,Av(πk)}-splittable for a set {π1, . . . , πk} of sum-indecomposable
permutations, then Av(1⊕ π) is {Av(1⊕ π1),Av(1⊕ π2), . . . ,Av(1⊕ πk)}-splittable.

These results allow us to show that, when avoiding separable permutations, in order
to obtain an unsplittable class all the basis elements must be slim.

Lemma 10. Let π be a separable sum-decomposable permutation of depth d. Then Av(π)
is splittable over the set of classes Av(σ) where σ ranges over the slim sum-decomposable
subpermutations of π.
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Proof. Proceed by induction on d. The case d = 0 is trivial, as the only permutation of
depth 0 is the singleton permutation. Suppose π has depth d > 1. We may write π as

π = σ1 ⊕ σ2 ⊕ · · · ⊕ σm

where the σi are sum-indecomposable permutations of depth at most d − 1. Applying
Lemma 8 repeatedly we get

Av(π) = Av(σ1 ⊕ σ2 ⊕ · · · ⊕ σm)

⊆ Av(σ1 ⊕ 1⊕ σ2 ⊕ 1⊕ · · · ⊕ 1⊕ σm)

∈ Split(Av(σ1 ⊕ 1),Av(1⊕ σ2),Av(σ2 ⊕ 1), . . . ,Av(1⊕ σm)).

Choose any σ ∈ {σ1, . . . , σm}. By induction we have

Av(σ) ∈ Split(Av(τ1), . . . ,Av(τ`)),

where τ1, . . . , τ` are the slim skew-decomposable subpermutations of σ. By Lemma 9, we
then get

Av(1⊕ σ) ∈ Split(Av(1⊕ τ1), . . . ,Av(1⊕ τ`)), and

Av(σ ⊕ 1) ∈ Split(Av(τ1 ⊕ 1), . . . ,Av(τ` ⊕ 1)).

The permutations 1 ⊕ τi are slim subpermutations of π except perhaps when σ = σ1 in
which case we do not need to split Av(1⊕ σ). An analogous claim holds for τi ⊕ 1. This
completes the proof.

Of course an analogous statement to Lemma 10 holds for skew-decomposables as well
by symmetry.

3 Representable subclasses of Sep

Our goal is to describe all the unsplittable subclasses of Sep. We will show that they are
precisely the classes obtained by iterated inflations of I, D, 213 , 312 , 132 , and 231 (recall that
213 denotes the class Av(213) with 312 , 132 and 231 its corresponding symmetries).

We will use XY as a shorthand for X [Y ]. Note that X [1] = 1[X ] = X for any class X .
Note also that X (YZ) = (XY)Z for any three classes X , Y and Z. Thus, permutation
classes form a monoid with respect to the inflation operation, and 1 is its unit element.
By Lemma 6 the unsplittable proper subclasses of Sep form a submonoid of this monoid,
which will be denoted by US.

Consider now the alphabet A = {I,D, 213 , 312 , 132 , 231 }. Let A∗ be the set of words over A.
Each word w ∈ A∗ can be seen as a description of an iterated inflation of a sequence of
permutation classes, and in particular, each word represents a permutation class from US.
Thus, for example, the word ID represents the class L of layered permutations. We take the
empty word λ ∈ A∗ to represent the class 1. The subclasses of Sep that can be represented
in this way will be called representable and again by Lemma 6 form a submonoid of US
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which we will denote by R. Before proceeding to the main result in the next section (that
US = R) we will investigate the structure of and relations between representable classes
more closely.

The interpretation of a word w ∈ A∗ as an element of R defines a monoid homomor-
phism from A∗ to R. We will frequently blur the distinction between A∗ and R as the
appropriate interpretation will generally be clear by context. When the distinction needs
to be made explicit, we shall write cl(w) for the class corresponding to w ∈ A∗. The
first thing to note is that the map cl : A∗ → R is not an isomorphism. Specifically, using
Observations 1 and 2 (and symmetry):

Observation 11. The following identities hold in the monoid R:

II = I, I312 = 312 , 312 D = 312 ,

DD = D, I231 , = 231 , 231 D = 231 ,

D132 = 132 , 132 I = 132 ,

D213 = 213 , 213 I = 213 .

Let ∼ denote the congruence on A∗ generated by these identities. Specifically, ∼ is
the transitive closure of the relation defined between two words in A∗ if the second can
be obtained from the first by replacing either two consecutive symbols from the left hand
side of one of the identities by the one on the right, or vice versa. Considering only the
process of replacing pairs of symbols by single ones we can interpret the identities as a
family of rewrite rules (such as I231 → 231 ) whose iterated application will allow us to
produce a reduced word (one which allows no further applications of such rules) in each
∼-equivalence class. In fact it is easily seen that there is a unique reduced word in each
such class since the rewrite rules are locally confluent. That is, if we begin with a word
w ∈ A∗ and apply two different rewrite rules to obtain w′ and w′′, then either w′ = w′′ or
there is a rewrite rule that applies to w′ and another one that applies to w′′, both leading
to the same word w′′′. This is obvious if the rules that produced w′ and w′′ share no
common character in w (since then in some sense the other application is still available).
If they do share a common character then sometimes they produce the same word, as for
instance x312D132 y → x312 132 y either by rewriting 312D→ 312 or by rewriting D132 → 132 , or
the other rule is still available as in

x I231D y → x 231D y → x 231 y or x I231D y → x I231 y → x 231 y.

We wish to show that two distinct reduced words from A∗ represent distinct permu-
tation classes. In fact, we prove a more general result, showing that set inclusion among
permutation classes corresponds to a natural order relation on words.

Observation 12. The following inclusions hold among permutation classes:

ID ⊆ 231 , DI ⊆ 132 ,

ID ⊆ 312 , DI ⊆ 213 .
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Let us say that a word x ∈ A∗ is dominated by a word y ∈ A∗ if x can be obtained
from y by a (possibly empty) sequence of steps where in each step we either

• erase an arbitrary letter,

• replace an occurrence of the letter 231 or 312 by two consecutive letters ID, or

• replace an occurrence of the letter 132 or 213 by two consecutive letters DI.

Domination is a partial order on A∗. This is clear since it is transitive by definition, and
it contains no cycles since each single step either reduces the number of characters from
the set {132 , 213 , 231 , 312 } in a word or leaves that the same but reduces the total length of
the word. We will show that the restriction of domination to reduced words corresponds
to the inclusion order of representable permutation classes. Before we prove this, we
will need several auxiliary claims dealing with the structure of inflations of permutation
classes.

Lemma 13. Let X = cl(x) be a permutation class represented by a nonempty reduced
word x and let x1 ∈ A be the first symbol of x. Then the class X is sum-closed if and only
if x1 is one of I, 312 or 231 , i.e., x1 is itself sum-closed. Symmetrically, X is skew-closed if
and only if x1 is one of D, 132 or 213 .

Proof. If x1 is equal to I, 231 or 312 then Ix ∼ x so cl(Ix) = cl(x) = X , i.e., X is sum
closed. Correspondingly if x1 is equal to D, 132 or 213 then X is skew-closed. The converse
follows in each case because no proper subclass of Sep other than 1 can be both sum- and
skew-closed.

Lemma 14. Let X = cl(x) be a permutation class represented by a nonempty reduced
word x and let x1 ∈ A be the first symbol of x. If x1 6= I then for every permutation π ∈ X
there is a sum-indecomposable permutation σ ∈ X containing π.

Proof. Let x = x1x
− and suppose first that x1 = 312 , and π ∈ X . Write π = σ[ρ1, ρ2, . . . , ρk]

for some σ ∈ 312 and ρ1, ρ2, . . . , ρk ∈ cl(x−). Then π	 1 = (σ	 1)[ρ1, ρ2, . . . , ρk, 1] is in X
since σ	 1 ∈ 312 . If x1 is neither I nor 312 , a similar argument shows that for every π ∈ X
we also have 1	 π ∈ X .

Lemma 15. Let X be a permutation class represented by a nonempty reduced word x =
Ix−. Let X−= cl(x−). A permutation π belongs to X− if and only if π is contained in a
sum-indecomposable permutation σ belonging to X .

Proof. The result is trivial if x− is the empty word. Otherwise, since x is reduced we
know that the first character of x− is not equal to I.

Suppose that π belongs to X−. Then, applying Lemma 14 to the class X−, we conclude
that π is contained in a sum-indecomposable permutation σ belonging to X− (and hence
also to X ).

Conversely, suppose π is contained in a sum-indecomposable permutation σ ∈ X .
Since X is the sum closure of X− the sum-indecomposable permutations of X all belong
to X−, so σ ∈ X− and hence π ∈ X−.
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Lemma 16. Let X be a permutation class represented by a nonempty reduced word x =
213 x−. Let X−= cl(x−). A permutation π belongs to X− if and only if π is contained in
a sum-indecomposable permutation σ such that σ ⊕ 1 ∈ X .

Proof. The result is trivial if x− is the empty word. Otherwise, since x is reduced, the
first character of x− is not equal to I.

Suppose that π belongs to X−. By Lemma 14, there is a sum-indecomposable permu-
tation σ ∈ X− containing π, and then clearly σ ⊕ 1 = 12[σ, 1] belongs to X .

Conversely, suppose that π is contained in a sum-indecomposable permutation σ such
that σ⊕1 belongs to X . We claim that σ, and hence also π, belongs to X−. Since σ⊕1 is
in X = 213X−, it can be obtained by inflating a 213-avoiding permutation ρ by elements
of X−. As σ ⊕ 1 ends with its maximum element, so must ρ, and as ρ ∈ 213 , ρ must
be increasing. But σ is sum-indecomposable, so the only possibility is that ρ = 12 and
σ ⊕ 1 = 12[σ, 1]. Hence σ ∈ X− as claimed.

Theorem 17. Let x, y ∈ A∗ be two reduced words. Then x is dominated by y if and only
if cl(x) is a subclass of cl(y).

Proof. Clearly, if x is dominated by y, then cl(x) is a subclass of cl(y).
Let us prove the converse. Let X = cl(x) and Y = cl(y) be the permutation classes

represented by x and y, and suppose that X ⊆ Y . Our goal is to show that x is dominated
by y.

Let x1x2 · · ·xn be the sequence of symbols of x, and y1y2 · · · ym the sequence of symbols
of y. We proceed by induction on m+n. Note that if x or y is the empty word, the proof
is trivial, so let us assume that both x and y are nonempty.

Let x− be the word x2 · · ·xn, let y− be the word y2 · · · ym, let X− be the class cl(x−)
and Y− the class cl(y−). Note that we clearly have X− ⊆ X and Y− ⊆ Y .

We now distinguish several cases, based on the symbols x1 and y1. We will restrict
ourselves to the situations when y1 is equal to I or to 213 , as the remaining cases are
symmetric to these two.

Case 1: x1 = I and y1 = I. By Lemma 15, π ∈ X− if and only if π is contained
in some sum-indecomposable element of X . But then since X ⊆ Y , π is contained in a
sum indecomposable element of Y and hence, by the same lemma, π belongs to Y−. So
X− ⊆ Y−. Therefore, by induction, x− is dominated by y− and hence x is dominated by
y.

Case 2: x1 6= I and y1 = I. In this case, we claim that X ⊆ Y−. To see this, choose
π ∈ X . By Lemma 14, there is a sum-indecomposable permutation σ ∈ X containing π.
Consequently, σ belongs to Y as well, and by Lemma 15, π belongs to Y−. By induction,
y− dominates x and therefore y dominates x as well.

Case 3: x1 = 213 and y1 = 213 . Applying Lemma 16 to X and Y , we conclude that
X− ⊆ Y−. Hence x− is dominated by y−, and x is dominated by y.

Case 4: x1 = D, x2 6= I and y1 = 213 . If x has length 1, then clearly x is dominated
by y, so assume that x− is nonempty. Since x is reduced, either x2 = 231 or x2 = 312 , and
in particular X− is sum-closed. We wish to show that X− ⊆ Y−. Let π ∈ X−. By
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Lemma 14 there is a sum-indecomposable permutation σ ∈ X− that contains π. Since
X− is sum-closed, σ ⊕ 1 belongs to X− and therefore also to Y , and so by Lemma 16, π
belongs to Y−. By induction, x− is dominated by y−, hence x is dominated by y.

Case 5: x1 = D, x2 = I and y1 = 213 . If x has length two we are done, so assume
this is not the case. Consider the word x−− = x3 · · ·xn and the class X−− = cl(x−−).
Since x is reduced, X−− is skew-closed. Let us prove that X−− ⊆ Y−. Let π ∈ X−−. The
permutation σ = π 	 1 is in X−−, since X−− is skew-closed. Therefore, σ ⊕ 1 ∈ X−, and
hence σ ⊕ 1 ∈ Y . By Lemma 16, X−− ⊆ Y−, hence x−− is dominated by y−, and x is
dominated by y.

Case 6: x1 = I and y1 = 213 . In this case, we may consider the class X+ = DX .
Since Y is skew-closed, X+ is a subclass of Y , and by the argument from the previous
case, we obtain that x− is dominated by y−, and x by y (the inductive hypothesis still
applies since in the previous case it was applied to x−− which is two characters shorter
than x).

Case 7: x1 ∈ {231 , 312 , 132 } and y1 = 213 . We show that X ⊆ Y−. Let π ∈ X . By
Lemma 14, there is a sum-indecomposable permutation σ ∈ X containing π. Moreover,
our assumptions on x1 guarantee that σ ⊕ 1 is also in X , and therefore in Y . By Lemma
16 π ∈ Y−, hence x is dominated by y−, and therefore also by y.

This completes the proof of the theorem.

Corollary 18. If X and Y are permutation classes represented by reduced words x and
y, respectively, then X = Y if and only if x = y.

Proof. If X = Y , then by Theorem 17 x is dominated by y and y is dominated by x,
hence x = y. The other direction is trivial.

3.1 Bases of representable classes

We can determine the basis of a representable class easily from the reduced word that
represents it. Though we do not require this result for the remainder of the paper, we
record the procedure for doing so here.

For a set F of permutations (generally always a subset of Sep) let AvS(F ) be the
set of F -avoiding separable permutations. Equivalently AvS(F ) = Av(F ∪ {2413, 3142}).
For a subclass X of separable permutations, let BaS(X ) denote the minimal separable
permutations not belonging to X . With this notation we always have X = AvS(BaS(X )).
We call the elements of BaS(X ) the minimal separable obstructions for X .

We will prove several general lemmas that will allow us to determine the minimal
separable obstructions of any representable permutation class. For a set of permutations
F , let F⊕1 denote the set {π⊕1; π ∈ F}, with 1⊕F , 1	F and F	1 defined analogously.

Note that each of the following results has a number of symmetric variations that we
do not explicitly specify.

Lemma 19. Let F be a set of skew-decomposable permutations, and let X = AvS(F ).
Then 213X = AvS(F ⊕ 1).

the electronic journal of combinatorics 23(2) (2016), #P2.49 12



Proof. Since the elements of F are skew-decomposable, the class X is sum-closed. No
permutation in F ⊕ 1 can belong to 213X since then F would belong to X by Lemma 16.
Therefore 213X ⊆ AvS(F ⊕ 1). To prove the opposite inclusion let π ∈ AvS(F ⊕ 1) and
proceed by induction on |π| to show that π ∈ 213X. For π = 1 this is clear. Suppose that
π is a skew sum of the form π = π1 	 π2. Then by induction both π1 and π2 are in 213X ,
and since 213X is skew-closed we are done. Finally suppose that π = π1 ⊕ π2. Then π1
is in AvS(F ) = X , and π2 is an inflation of a permutation ρ ∈ 213 by elements of X by
induction. It follows that π is an inflation of 1⊕ ρ ∈ 213 by elements of X as claimed.

Corollary 20. If X is a sum-closed permutation class, then BaS(213X ) = BaS(X ) ⊕ 1.
If X is an arbitrary permutation class (not necessarily sum-closed), then BaS(213X ) =
BaS(213 IX ) = BaS(IX )⊕ 1.

Lemma 21. Let F be a set of skew-decomposable permutations, and let X = AvS(F ).
Then DX = AvS ((F ⊕ 1) ∪ (1⊕ F )).

Proof. We again easily see that the elements of DX must avoid all the permutations in
1⊕ F and F ⊕ 1.

Let π ∈ AvS((F ⊕ 1)∪ (1⊕F )), and write π as a skew sum π = π1	 π2	 · · · 	 πk for
k > 1, where each πi is either equal to 1 or sum-decomposable. We claim that each πi is
in X : indeed, if πi is sum-decomposable, each of its summands must avoid F , and since
X is sum-closed, we get πi ∈ X = AvS(F ). Thus, we obtain π ∈ DX as claimed.

Corollary 22. If X is a sum-closed permutation class, then BaS(DX ) = (BaS(X )⊕ 1)∪
(1⊕ BaS(X )).

The results above are sufficient to characterise the minimal obstructions of a repre-
sentable class, simply by working through the reduced word for a class from right to left
(and using the known obstructions for the basic case). For example, consider the class
C = 213D231 .

BaS(231 ) = {231},
BaS(D231 ) = {1342, 2314} (Lemma 21),

BaS(213D231 ) = BaS(ID231 )⊕ 1 (Corollary 20),

BaS(ID231 ) = (BaS(D231 )	 1) ∪ (1	 BaS(D231 )) (Symmetry of Lemma 21),

= {51342, 12453, 52314, 13425},
BaS(213D231 ) = {513426, 124536, 523146, 134256}.

Corollary 23. Let X be a representable class. Then the elements of BaS(X ) are slim
separable permutations, all of the same size.

Corollary 24. For every slim permutation π, the permutation class AvS(π) is repre-
sentable. Moreover, if π has size at least 3, AvS(π) has a representation all of whose
symbols belong to {213 , 132 , 312 , 231 }. Conversely, for every representable class, C = cl(c),
defined by a word, c, over the alphabet {213 , 132 , 312 , 231 }, BaS(C) is a single slim permutation
whose length is two more than the number of characters in c.
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4 Unsplittable subclasses of the separable permutations

By Proposition 2.7 of [11] and its symmetries, the classes 132 , 213 , 231 , and 312 are all
unsplittable. Combined with Lemma 6 this implies that all the representable classes are
unsplittable. The aim of this section is to prove the converse - that any non-representable
class is splittable. The only proper subclasses of D and I are finite and hence splittable
so the first non-trivial result of this type is considered in the next lemma. Recall that
L = ID is the class of layered permutations.

Lemma 25. Every proper subclass of 231 is L-splittable.

Proof. Suppose to the contrary that there exist proper subclasses of 231 which are not L-
splittable. It is well known (see Atkinson et al. [3, Corollary 2.6]) that the ordering of Sep
under permutation containment is a well quasi-order and, as a consequence the contain-
ment relation between subclasses of Sep is well-founded. So, among the non L-splittable
proper subclasses of 231 we may choose one, C, minimal with respect to containment.

Choose a minimal permutation σ ∈ 231 \ C (i.e., a basis element of C relative to 231 ). If
σ is not slim, then C is splittable, and since all proper subclasses of C are L-splittable, so
is C, a contradiction.

Suppose that σ = ρ⊕ 1, and let π ∈ C. The elements of π less than its final element
avoid ρ, while those greater than or equal to its final element are decreasing (since π ∈ 231 ).
Hence π ∈ D�Av(ρ) so C is {D,Av(ρ)}-splittable, and once again we have a contradiction.
Similarly, if σ = 1⊕ρ then the elements up to and including π’s minimum are decreasing,
and those after avoid ρ, so again we have {D,Av(ρ)}-splittability and a contradiction.

If σ = ρ 	 1 then, because σ ∈ 231 and σ is slim, σ = 21 and C ⊆ I, clearly a
contradiction.

Finally suppose that σ = 1 	 ρ, where ρ = 1 ⊕ τ or ρ = τ ⊕ 1. Let π ∈ C be
sum-indecomposable. Then, since π ∈ 231 , π begins with its maximum element. The
remainder of π avoids ρ so, by the previous argument, it belongs to D�Av(τ). Therefore,
π ∈ D�Av(τ) as well. An arbitrary permutation in C is the sum of its sum-indecomposable
parts and is therefore in L � IAv(τ). But C 6⊆ IAv(τ) since 1 	 τ ∈ C. Therefore, by
assumption C ∩ IAv(τ) is L-splittable and hence so is C our final contradiction.

The plan from here is to continue essentially inductively. To proceed we need another
technical lemma.

Lemma 26. Let X and Y be permutation classes. Then (DX ) ∩ (DY) = D(X ∩ Y) and
(213X ) ∩ (213Y) = 213 (X ∩ Y).

Proof. Clearly, if π is a permutation from D(X ∩Y), then π belongs to both DX and DY .
To prove the converse, let π ∈ (DX ) ∩ (DY). Write π as π = π1 	 π2 	 · · · 	 πk, where
each πi is a skew-indecomposable permutation. Then each πi must belong to X ∩Y , and
so π is in D(X ∩ Y), as claimed. This proves the first identity.

To prove the second one, we again easily observe that 213 (X ∩ Y) is a subclass of
(213X ) ∩ (213Y).
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We now proceed by induction on the length of a permutation π ∈ (213X ) ∩ (213Y) to
show that it belongs to 213 (X ∩ Y). The case π = 1 is trivial. Moreover, if π is neither
sum-decomposable nor skew-decomposable, then it belongs to X ∩ Y and we are done.
Suppose that π = π1 	 π2, for some π1 and π2. By induction, both π1 and π2 belong to
213 (X ∩ Y), and so does π itself, since 213 (X ∩ Y) is skew-closed.

Finally, suppose that π has the form π1 ⊕ π2 where π1 is sum-indecomposable. Since
π is in 213X , it was obtained by inflating a permutation ρ ∈ 213 by elements of X . Note
that the permutation π1 was obtained by inflating a single element of ρ, since otherwise
ρ would contain the pattern 213. In particular, π1 belongs to X , and by an analogous
argument, it belongs to Y as well. By induction, π2 is in 213 (X ∩ Y), and in particular it
can be obtained by inflating a permutation τ ∈ 213 by elements of X ∩ Y . Then π itself
can be obtained by inflating the permutation 1⊕ τ ∈ 213 by elements of X ∩ Y , and so π
belongs to 213 (X ∩ Y), as claimed.

The essential part of the remainder of the proof is to show that any proper subclass
of a representable class Y has a splitting into representable proper subclasses of Y . The
key step of the proof is presented below as a lemma.

Lemma 27. Let Y be a representable class represented by the reduced word y = y1y2 · · · yn,
and let σ ∈ Y be a slim permutation. Let X be the class Y ∩ AvS(σ). Then there
exist representable classes Y1, . . . ,Yk that are proper subclasses of Y, and such that X is
{Y1, . . . ,Yk}-splittable.

Proof. We proceed by induction, firstly over the possible values of n, i.e., the length of y,
and secondly for a given n, over the size of σ. Note that the case of n 6 1 is already
handled by Lemma 25 and the preceding remark. Also the case |σ| = 2 is trivial for any
n.

Suppose now that n > 2 and |σ| > 3. Since σ is slim it has one of the four possible
forms 1⊕ ρ, ρ⊕ 1, 1	 ρ or ρ	 1 for a slim permutation ρ.

Let Y− = cl(y2 · · · yn). By symmetry, we may assume that y1 is either D or 213 . We
will treat the two cases separately.

First, suppose that y1 = D. Since y is reduced, we know that Y− is sum-closed. By
Corollary 22, we know that the minimal separable obstructions of Y are precisely the
permutations of the form 1 ⊕ τ and τ ⊕ 1 where τ is a minimal separable obstruction
of Y−.

Our first goal will be to give a splitting of X into classes X1,X2, . . . ,Xm where each
Xi is of one of four types:

(1) the class 1,

(2) the class Y−,

(3) the class Y ∩ AvS(ρ), or

(4) a class of the form DZ, where Z is a proper subclass of Y−.

the electronic journal of combinatorics 23(2) (2016), #P2.49 15



To obtain such splitting, let a permutation π ∈ X be given and distinguish cases based
on the structure of σ.

If σ is of the form 1 	 ρ, we split π into three parts as follows: the first part is the
singleton permutation consisting of the leftmost element π1 of π, the second part consists
of all those elements lying above π1, and the third part consists of all the elements lying
below π1.

Observe that the second part forms a permutation from Y− – indeed, if the second
part contained any minimal separable obstruction τ of Y−, then π would contain 1 ⊕ τ ,
which is an obstruction of Y , contradicting the assumption π ∈ X ⊆ Y .

Similarly, the third part of the splitting avoids the permutation ρ, since π avoids σ =
1 	 ρ. Thus we can merge any permutation in X from 1, Y− and Y ∩ AvS(ρ) which are
classes of types (1), (2) and (3), respectively.

An analogous argument can be made in the case when σ has the form ρ	 1. Fix the
index i such that πi = 1 and split π into three parts: the first part is the singleton πi,
the second part is formed by the elements to the left of πi, and the third part are the
remaining elements. We again see that the second part avoids ρ, and the third part is
in Y−.

Suppose now that σ has the form 1 ⊕ ρ or ρ ⊕ 1. Then σ belongs not just to Y but
actually also to Y−. Therefore, X is a subclass of D(Y− ∩ AvS(σ)), and in particular, X
itself is a class of type (4).

We now need to argue that the classes of types (1) through (4) can be split into
representable subclasses of Y . For types (1) and (2), this is obvious, and for the class of
type (3), it follows by induction since ρ is shorter than σ.

Consider now a class of type (4), that is, a class equal to DZ with Z a proper subclass
of Y−. We may assume, without loss of generality, that Z is equal to Y− ∩ AvS(τ) for
some τ ∈ Y−. Since the word y− is shorter than y, we know by the inductive hypothesis
that Z is {Y−1 , . . . ,Y−k }-splittable, with Y−1 , . . . ,Y−k being representable proper subclasses
of Y−. By Observation 7, DZ is {DY−1 , . . . ,DY−k }-splittable. Moreover, since the word
y− strictly dominates the reduced representation of any of the classes Y−i , we see that y
strictly dominates the reduced representation of DY−i , and therefore all the classes DY−i
are proper subclasses of Y by Theorem 17. We thus conclude that any subclass of Y of
type (4) has a splitting into representable proper subclasses of Y .

This completes the induction step for the case when y1 = D. Let us deal with the case
of y1 = 213 . The proof of this case follows the same basic structure as the proof of the
case y1 = D. By Corollary 20, BaS(Y) = BaS(IY−)⊕ 1.

This time, we will first show that the class X is {X1,X2, . . . ,Xm}-splittable where each
Xi is of one of these four types:

(1) the singleton class 1,

(2) the class DIY−,

(3) the class Y ∩ AvS(ρ), or

(4) a class of the form 213Z, where Z is a proper subclass of Y−.

the electronic journal of combinatorics 23(2) (2016), #P2.49 16



To see this, let π ∈ X and distinguish cases based on the structure of σ.
If σ is of the form 1 	 ρ, we let πi be the largest element of π, and split π into three

parts: the elements to the left of πi, the element πi itself, and the elements to the right
of πi. The first part then belongs to IY−, the second to 1, and the third to Y ∩ AvS(ρ).

Similarly, if σ equals ρ	1, we split π into the elements less than the rightmost element,
the rightmost element itself, and the elements greater than the rightmost element. The
three parts then belong to IY−, 1 and Y ∩ AvS(ρ), respectively.

Suppose that σ equals 1⊕ ρ. Write π as π = π1 	 π2 	 · · · 	 π`, where all the πi are
skew-indecomposable. Since σ (and hence also ρ) is slim, we know that ρ has one of the
two forms ρ = 1	η or ρ = η	1, for a skew-indecomposable permutation η. Suppose that
ρ equals η 	 1, the other case being analogous. We can then partition each permutation
πi into three parts: the elements smaller than the rightmost one (which belong to IY−),
the rightmost element itself, and the elements larger than the rightmost one (which avoid
η). Thus, the permutation π itself can be merged from three permutations, belonging
respectively to DIY−, D, and Y ∩AvS(η), where we use the fact that DAvS(η) = AvS(η),
since η is skew-indecomposable.

Suppose now that σ = ρ⊕ 1. Then AvS(σ) = 213 AvS(ρ) by Lemma 19. Therefore, by
Lemma 26, we have the identity

Y ∩ AvS(σ) = 213Y− ∩ 213 AvS(ρ) = 213 (Y− ∩ AvS(ρ)).

Let us argue that Y− ∩AvS(ρ) is a proper subclass of Y−, i.e., that ρ is in Y−. If ρ is not
in Y−, then ρ cannot be in IY− either, since ρ is skew-decomposable. Thus ρ contains a
minimal separable obstruction τ of IY−, and therefore σ contains the minimal separable
obstruction τ ⊕ 1 of Y , which is impossible, since σ is in Y .

What remains is to argue that each class of one of the four types above has a splitting
into proper representable subclasses of Y . This is clear for classes of types (1) and (2),
and it follows from the inductive hypothesis for type (3). For type (4), the argument
is analogous to the corresponding part of the argument in the case of y1 = D, solved
previously.

We are finally ready to prove our main result, which describes all the unsplittable
proper subclasses of Sep.

Theorem 28. A proper subclass of Sep is unsplittable if and only if it is representable.

Proof. We already know that every representable class is unsplittable. To prove the
converse, let us first observe that every unsplittable proper subclass X of Sep is a subclass
of a representable class Y . To see this, choose π to be a minimal separable obstruction
of X . We know that π is slim, otherwise X would be splittable by Lemma 10. Thus, X
is a subclass of the class Y = AvS(π), which is representable by Corollary 24.

From Theorem 17 the ordering of representable classes by containment is a strict re-
finement of the subword ordering on a subset of the free monoid A∗. Higman’s Lemma [10]
implies that the subword ordering on A∗ is a well quasi-order and so we may deduce that
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the ordering of the representable classes by inclusion is also a well quasi-order. In particu-
lar, for any unsplittable class X there is a (not necessarily unique) minimal representable
superclass.

Suppose now that X is an unsplittable class and assume, for contradiction, that X
is not representable. Let Y be a minimal representable superclass of X and let σ be a
minimal separable obstruction of X that belongs to Y . Note that σ is a slim permutation,
otherwise X would be splittable by Lemma 10.

By Lemma 27, the class Y∩AvS(σ), and therefore also its subclass X , is {Y1, . . . ,Yk}-
splittable, for some representable proper subclasses Y1, . . . ,Yk of Y . Since Y was a mini-
mal representable superclass of X , none of the Yi contains X . Therefore X is splittable,
contrary to our assumption.

Theorem 29. Let X be a proper subclass of Sep and let A be the set of representable
subclasses of X . Then X is A-splittable.

Proof. Let X be a proper subclass of Sep and let BaS(X ) be its minimal separable ob-
structions. Then BaS(X ) is finite since, as we noted earlier, Sep is well quasi-ordered by
permutation containment (see [3, Corollary 2.6]). We may assume without loss of gen-
erality that all the elements of BaS(X ) are slim, for otherwise we could use Lemma 10
to show that X can be split into its subclasses whose minimal separable obstructions are
slim.

As argued in the proof of Theorem 28 we may choose a minimal representable super-
class, Y , of X . By Theorem 17, Y has only finitely many proper representable subclasses.
We will proceed by induction on the number of representable subclasses of Y . If Y has no
representable subclass beyond itself then Y = 1 and the claim of the theorem is trivial.

Suppose Y 6= 1. If X = Y , the claim is again trivial. If X is a proper subclass of Y ,
then Lemma 27 shows that X is {Y1, . . . ,Yk}-splittable, where each Yi is a representable
proper subclass of Y . In particular, X is also {X ∩Y1, . . . ,X ∩Yk}-splittable. Each class
X ∩Yi is contained in the representable class Yi which has fewer representable subclasses
than Y . Hence we may apply induction to show that each X ∩ Yi is splittable over the
set of its representable subclasses. It follows that X is splittable over its representable
subclasses as well.

As an easy consequence, we obtain the following result.

Theorem 30. Let A be a set of representable permutation classes. Let B be the set of
minimal representable classes that are not contained in any class in A. Then B is finite
and a proper subclass X of Sep is A-splittable if and only if X does not contain any
element of B as a subclass.

Proof. Since B is an antichain in the inclusion order of representable classes, B is finite.
Let X be a proper subclass of Sep. If X is A-splittable, then every representable subclass
of X is A-splittable as well and, since representable classes are unsplittable, every repre-
sentable subclass of X is contained in an element of A. In particular, no subclass of X is
in B.
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Conversely, if X has no element of B as subclass, then all the representable subclasses
of X are subclasses of elements of A, and so X is A-splittable by Theorem 29.

5 Concluding remarks

In the preceding sections we have answered the question: what characterises the unsplit-
table subclasses of Sep? This invites the question: given a collection, A, of unsplittable
subclasses of Sep, can one characterise the A-splittable classes? The A-splittable sub-
classes of Sep are characterised by Theorem 30. It is a natural problem to extend such
classification to more general classes.

For certain specific cases of A, the characterisation in Theorem 30 remains valid even
without the assumption that X is a subclass of Sep. For instance, it can be shown that
an arbitrary class X is 1-splittable if and only if it does not contain I and D as subclasses,
it is I-splittable if and only if it does not contain D, it is {I,D}-splittable if and only if it
does not contain ID and DI (see Vatter [14]), it is {231 , 312 }-splittable if it does not contain
DI, etc.

Unfortunately, the assumption that X is a subclass of Sep in Theorem 30 cannot in
general be omitted. For instance, it can be shown that the class X = Av(1423), which is
not a subclass of Sep, cannot be split over its representable subclasses. In fact, it can be
shown that this class is not even Sep-splittable.

To extend our results from separable permutations to more general cases, we first need
to get a better understanding of the unsplittable classes, especially those that cannot be
obtained by inflations of smaller unsplittable classes. Our results show that the inflation
monoid is closely related to splittability. Therefore, it seems natural to investigate split-
tability in substitution-closed classes particularly those that contain only finitely many
simple permutations. Since the shortest non-monotone simple permutations are 2413 and
3142 this motivates the following question.

Question. What are the unsplittable subclasses of the the closure under subpermutations
and inflation of {2413} (or of {2413, 3142})?

We believe that a better understanding of the consequences of splittability in per-
mutation classes, and a more general understanding of the characteristics of unsplittable
permutation classes could be a key element in the program of systematically investigating
permutation classes by structural means.
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