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Abstract

Cranston and Kim conjectured that if G is a connected graph with maximum
degree A and G is not a Moore Graph, then x,(G?) < A? — 1; here y, is the list
chromatic number. We prove their conjecture; in fact, we show that this upper
bound holds even for online list chromatic number.

1 Introduction

Graph coloring has a long history of upper bounds on a graph’s chromatic number y in
terms of its maximum degree A. A greedy coloring (in any order) gives the trivial upper
bound xy < A+ 1. In 1941, Brooks [4] proved the following strengthening: If G is a graph
with maximum degree A > 3 and clique number w < A, then y < A. In 1977, Borodin
and Kostochka [3] conjectured the following further strengthening.

Conjecture 1 (Borodin-Kostochka Conjecture [3]). If G is a graph with A > 9 and
w<A—1, then y <A - 1.

If true, this conjecture is best possible in two senses. First, the condition A > 9 cannot
be dropped (or even weakened), as shown by the following graph (see Figure 1). Let D,
induce a triangle for each ¢ € {1,...,5};if |[i—j| =1 (mod 5), then add all edges between
vertices of D; and D;. This yields an 8-regular graph on 15 vertices with clique number 6
and chromatic number 8; it would be a counterexample to the conjecture if we weakened
the hypothesis A > 9. Similarly, even if we require w < A — 2, we cannot conclude that
X < A — 2, as is shown by the join of a clique and a 5-cycle. For each A € {3,...,8},
examples are known [6, 13] where w < A —1 but x = A. Kostochka has informed us that
already in 1977 when he and Borodin posed Conjecture 1, they believed the following
stronger “list version” was true; however they omitted this version from their paper, and
it appeared in print [6] only in 2013. We define the list chromatic number, denoted xy, in
Section 2 below.
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Figure 1: The hypothesis A > 9 in the Borodin—Kostochka Conjecture is best possible.

Conjecture 2 (Borodin-Kostochka Conjecture (list version)). If G is a graph with A > 9
and w <A —1, then y, <A —1.

The purpose of this paper is to prove the following conjecture of Cranston and Kim [5].
In fact, we will prove this conjecture in the more general setting of online list coloring. It
is easy to show, as we do below, that Conjecture 2 implies Conjecture 3.

Conjecture 3 (Cranston-Kim [5]). If G is a connected graph with maximum degree
A > 3, and G is not a Moore graph, then x,(G?) < A? — 1.

A Moore graph is a A-regular graph G' on A? + 1 vertices such that G?> = Kx2,1; the
sole example when A = 3 is the Petersen graph. Hoffman and Singleton [12] famously
proved that Moore graphs exist only when A € {2,3,7,57}. When A € {2,3,7} Moore
graphs exist and are known to be unique, and when A = 57 no Moore graph is known.

In 2008 Cranston and Kim [5] proved Conjecture 3 when A = 3, and suggested that
a similar but more detailed approach might prove the whole conjecture. As mentioned
above, it is easy to show that Conjecture 3 is implied by Conjecture 2. The key is the
following easy lemma at the end of [5]: If G is connected and is not a Moore graph and G
has maximum degree A > 3, then G? has clique number at most A?—1. The proof is short
once we have a result of Erdds, Fajtlowicz, and Hoffman [11] stating that a “near-Moore
graph”, i.e., a A-regular graph such that G? = K2, exists only when A = 2. For details,
see the start of the proof of the Main Theorem.

We note that recently Conjecture 3 was generalized to higher powers. Let M denote
the maximum possible degree when a graph of maximum degree k is raised to the dth
power, i.e., vertices are adjacent in G? if they are distance at most d in G. Miao and
Fan [14] conjectured that if G is connected and G? is not Ky, 1, then we can save one
color over the bound given by Brooks Theorem, i.e., x(G?) < M — 1. This was proved by
Bonamy and Bousquet [2] in the more general context of online list coloring.

The following conjecture is due to Wegner [20], in the 1970’s. It is a less well-known
variant of Wegner’s analogous conjecture when the class Gy, is restricted to planar graphs.
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Figure 2: On the left is a 4-regular graph G, such that G? = K;5.
On the right is a 5-regular graph G5 such that G2 = Ko,.

Conjecture 4 (Wegner [20]). For each fixed k, let G denote the class of all graphs with
maximum degree at most k and form G2 by taking the square G* of each graph G in Gy.
Now maxpcg2 Xx(H) = maxycgz w(H).

Wegner in fact posed a more general conjecture for all powers of G;; however, here we
restrict our attention to Conjecture 4, specifically for small values of k. For each H € G7,
we have A(H) < k2, so Brooks’ Theorem implies that y(H) < k? unless some component
of H is Ky2,,. For k = 1 Wegner’s Conjecture is trivial. For k € {2,3,7} it is easy; in
each case G contains a Moore graph G, and letting H = G?, we have H = K2, so
X(H) = w(H) = k* + 1. Thus, the first two open cases of Conjecture 4 are k = 4 and
k = 5. Our Main Theorem shows that every graph G in G, satisfies x,(G?) < 15 and
every graph G in Gy satisfies x,(G?) < 24. Matching lower bounds are shown in Figure 2:
we have G € Gy with w(G?) = 15 and Gy € G5 with w(G3) = 24. Both graphs were
discovered by Elspas ([9] and p. 14 of [15]) and are known to be the unique graphs G with
A €{4,5} and G? = Kx2_;. This confirms Wegner’s Conjecture when k = 4 and k = 5.

Rather than coloring, or even list coloring, this paper is about online list coloring,
a generalization introduced in 2009 by Schauz [16] and Zhu [22], and the online list
chromatic number, x,, also called the paint number. We give the definition in Section 2,
but for now if you are unfamiliar with y,, you can substitute x;, (or even y) and the Main
Theorem remains true. Our main result is the following.

Main Theorem. If G is a connected graph with mazimum degree A > 3 and G is not
the Peterson graph, the Hoffman-Singleton graph, or a Moore graph with A = 57, then
Xp(G?) < A% — 1.

We conclude this section with the following conjecture, which generalizes our Main
Theorem as well as Conjecture 2.

Conjecture 5 (Borodin-Kostochka Conjecture (online list coloring version)). If G is a
graph with A > 9 and w < A — 1, then y, <A — 1.
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The structure of the paper is as follows. In Section 2 we give background and defini-
tions. In Section 3, we prove the Main Theorem, subject to a number of lemmas about
forbidden subgraphs in a minimal counterexample. In Section 4 we prove the lemmas
that we deferred in Section 3. Finally, in Section 5, we generalize the online list chromatic
number to the Alon—Tarsi number, and extend our Main Theorem to that setting.

2 Preliminaries

Here we give definitions and background. Most of our terminology and notation is stan-
dard. We write A\ B for ANB. If H is a subgraph of G, then G\ H means G[V (G)\V (H)],
that is G with the vertices of H deleted. For graphs G and H, the join GV H is formed
from the disjoint union of G and H by adding all edges with one endpoint in each of V(G)
and V(H). For any undefined terms, see West [21].

A list size assignment [ : V(G) — Z7T assigns to each vertex in G a list size. An f-
assignment L assigns to each vertex v a subset of the positive integers L(v) with |L(v)| =
f(v). An L-coloring is a proper coloring ¢ such that ¢(v) € L(v) for all v. A graph G
is f-list colorable (or f-choosable) if G has an L-coloring for every f-assignment L. In
particular, we are interested in the case where f(v) = k for all v and some constant k.
The list chromatic number of G or choice number of G, denoted x,(G), or simply x, when
G is clear from context, is the minimum k such that G is k-choosable. List coloring was
introduced by Vizing [19] and Erdés, Rubin, and Taylor [10] in the 1970s. Both groups
proved the following extension of Brooks’ Theorem. If G is a graph with maximum degree
A > 3 and clique number w < A, then y, < A.

The next idea we need came about 30 years later. In 2009, Schauz [16] and Zhu [22]
independently introduced the notion of online list coloring. This is a variation of list
coloring in which the list sizes are determined (each vertex v gets f(v) colors), but the
lists themselves are provided online by an adversary.

We consider a game between two players, Lister and Painter. In round 1, Lister
presents the set of all vertices whose lists contain color 1. Painter must then use color 1
on some independent subset of these vertices, and cannot change this set in the future. In
each subsequent round k, Lister chooses some subset of the uncolored vertices to contain
color k in their lists, and Painter chooses some independent subset of these vertices to
receive color k. Painter wins if he succeeds in painting all vertices. Alternatively, Lister
wins if he includes a vertex v among those presented on each of f(v) rounds, but Painter
never paints v.

A graph is online k-list colorable (or k-paintable) if Painter can win whenever f(v) = k
for all v. The minimum & such that a graph G is online k-list colorable is its online list
chromatic number, or paint number, denoted x,. A graph is d;-paintable if it is paintable
when f(v) = d(v)—1 for each vertex v. In [7], the authors introduced d; -choosable graphs,
which are the list-coloring analogue. Interest in d;-paintable graphs owes to the fact that
none can be induced subgraphs of a minimal graph with maximum degree A that is not
(A — 1)-paintable. In particular, if G is a minimal counterexample to our Main Theorem,
then G2 contains no induced d;-paintable subgraph.
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Lemma 1. Let G be a graph with maximum degree A and H be an induced subgraph of
G that is di-paintable. If G\ H is (A — 1)-paintable, then G is (A — 1)-paintable.

Proof. Let G and H satisfy the hypotheses. We give an algorithm for Painter to win
the online coloring game when f(v) = A — 1 for all v. Painter will simulate playing two
games simultaneously: a game on G\ H with f(v) = A — 1 and a game on H with
f(v) = dg(v) — 1. Let Si denote the set of vertices presented by Lister on round k.
Painter first plays round k of the game on G'\ H, pretending that Lister listed the vertices
Sk \ H. Let I, denote the independent set of these that Painter chooses to color k.

Let S, = (S NV(H)) \ N(Ig), the vertices of H that are in Sy and have no neighbor
in . Now Painter plays round k of the game on H, pretending that Lister listed Sj.
Each vertex in V(G \ H) will clearly be listed A — 1 times. Consider a vertex v in V(H).
It will appear in N(I) for at most dg(v) — dy(v) rounds. So v will appear in S}, for at
least (A —1) — (dg(v) —dy(v)) = dg(v) — 1 rounds. Now Painter will win both simulated
games, and thus win the actual game on G. ]

When the graph G in Lemma 1 is a square, we immediately get that G\ H is (A —1)-
paintable, as we note in the next lemma.

Lemma 2. Let G be a connected graph with mazimum degree A and let H be an induced
subgraph of G*. If H is d-paintable, then G? is di-paintable. If there exists v with
de2(v) < A? — 1, then G* is (A® — 1)-paintable.

Proof. We prove the first statement first. Let V = V(G) and V; = V(H). Clearly a
graph is dj-paintable only if each component is. So we assume that G?[V;] is connected.
For simplicity, we assume also that G[V]] is connected. If not, then some vertex v has
neighbors in two or more components of G[V;]. We simply add v to V], since we can color
v first (when it still has at least two uncolored neighbors).

Form G’ from G by contracting G[V;] to a single vertex r. Let T be a spanning tree
in G’ rooted at r. Let o be an ordering of the vertices of G\ H by nonincreasing distance
in T' from r. Each time that Lister presents a list of vertices, Painter chooses a maximal
independent subset of them, by greedily adding vertices in order 0. Each vertex v € V\ 1}
is followed in ¢ by the first two vertices on a path in T" from v to r. Thus v will be colored.
We now combine strategies for G* \ H and H as in the proof of Lemma 1.

Now we prove the second statement, which has a similar proof. Suppose there exists v
with dg2(v) < A% — 1. As before we order the vertices by nonincreasing distance in some
spanning tree T' from v, and we put v and some neighbor u last in o. The difference now
is that even for u and v we are given A% —1 colors. Since dg2(v) < A? — 1, either (i) v lies
on a 3-cycle or 4-cycle or else (ii) dg(v) < A or v has some neighbor u with dg(u) < A;
in Case (ii), by symmetry we assume dg(v) < A. In Case (i), dg2(u) < A? — 1 for some
neighbor u of v on the short cycle and by assumption dg2(v) < A% — 1; so the two final
vertices of o are u and v. In Case (ii), we again have dgz(v) < A2 —1 and dg2(u) < A?—1,
so again v and v are last in o. O]

The previous lemma implies that A% — 1 < dg2(v) < A? for every vertex v in a graph
G such that G2 is not (A? —1)-paintable. A vertex v is high if dg=(v) = A?, and otherwise
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it is low. The proof of Lemma 2 proves something slightly more general, which we record
in the following corollary.

Corollary 3. Let G be a graph with mazimum degree A and let H be an induced subgraph
of G*. Let f(v) = d(v)—1 for each high vertex of G* and f(v) = d(v) for each low vertex.
If H is f-paintable, then G? is (A? — 1)-paintable.

Now we will introduce the Alon—Tarsi Theorem, but we need a few definitions first.
Let G be a graph and let Dbea digraph arising by orienting the edges of G. A circulation
is a subgraph of D in which each vertex has equal indegree and outdegree; circulations
are also called eulerian subgraphs The parity of a mrculatlon is the parity of its number
of edges. For a digraph D, let EE(D) (resp. EO(D)) denote the set of circulations that
are even (resp. odd).

Theorem A (Alon and Tarsi [1]). For a digraph D, if |EE(D)| # |EO(D)|, then D is
f-choosable, where f(v) =1+ dz(v) for all v.

The proof that Alon and Tarsi gave was algebraic and not constructive. In their pa-
per, they asked for a combinatorial proof. This was provided by Schauz [17], in the more
general setting of paintability. His proof relies on an elaborate inductive argument. The
argument does yield a constructive algorithm, although in general it may run in expo-
nential time. In [18], Schauz proved an online version of the combinatorial nullstellensatz
from which the paintability version of Alon and Tarsi’s theorem can also be derived.

Theorem B (Schauz [17]). For a digraph D, if |EE(D)| # |EO(D)|, then D is f-
paintable, where f(v) =14 dz(v) for all v.

Our main result relies heavily on forbidding d;-paintable subgraphs. For many of the
smaller d;-paintable graphs that we need, we give direct proofs. However, for some of
the larger d;-paintable graphs, particularly the classes of unbounded size, our proofs of
di-paintability use Theorem B.

3 Proof of Main Theorem

In this section we prove our main result, subject to a number of lemmas on forbidden
subgraphs, which we defer to the next section. We typically prove that a subgraph is
forbidden by showing that it is d;-paintable. If a copy of a subgraph H in G? contains low
vertices, then this configuration is reducible as long as H is f-paintable, where f(v) =
dy(v) — 1 for each high vertex v and f(w) = dy(w) for each low vertex w. For many of
the graphs, we give an explicit winning strategy for Painter. In contrast, for some of the
graphs, particularly those of unbounded size, we don’t give explicit winning strategies.
Instead, we show that they are dj-paintable via Schauz’s extension of the Alon—Tarsi
Theorem (Theorem B).

Main Theorem. If G is a connected graph with mazimum degree A > 3 and G is not
the Peterson graph, the Hoffman-Singleton graph, or a Moore graph with A = 57, then
Xp(G?) < A% - 1.
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Proof. Let G be a connected graph with maximum degree A > 3, other than the graphs
excluded in the Main Theorem. Assume that G? is not (A? — 1)-paintable. By Lemma 2,
if there exists v € V(G) with dg2(v) < A% — 1, then G? is (A% — 1)-paintable. So G is
A-regular and has girth at least 4. Further, no vertex of G lies on two or more 4-cycles.
It will be helpful in what follows to show that w(G?) < A? — 1.

Clearly A(G?) < A?. Further, w(G?) = A? + 1 only if G* = Ka2,;. Hoffman
and Singleton [12] showed this is possible only if A € {2,3,7,57}; such a graph G is
called a Moore graph. When A € {2,3,7}, the unique realizations are the 5-cycle, the
Peterson graph, and the Hoffman-Singleton graph. When A = 57, no realization is
known. These are precisely the graphs excluded from the theorem. Now we consider the
case w(G?) = A?. Erdés, Fajtlowicz, and Hoffman [11] showed that the only graph H
such that H? = Kamy2 is C4. Cranston and Kim noted that if H? is not a clique on
at least A? vertices, then in fact w(H?) < A? — 1. For completeness, we reproduce the
details.

Suppose that w(G?) = A% and let U be the vertices of a maximum clique in G?. The
result of Erdos, Fajtlowicz, and Hoffman implies that U is not all of V. Choose v,w € V'
with v € U, w ¢ U and v adjacent to w. Since dg2(v) = A% and w ¢ U, every neighbor of
w must be in U. Applying the same logic to these neighbors, every vertex within distance
2 of w must be in U. But now we can add w to U to get a larger clique in G?. This
contradiction implies that in fact w(G?) < A% — 1.

Two vertices are linked if they are adjacent in G2, and otherwise they are unlinked.
When we write that vertices are adjacent or nonadjacent, we mean in G; otherwise we
write linked or unlinked. We write v <+ w if v and w are adjacent, and v 4 w otherwise.

Now we are ready to present the details of the proof. Before that, it is useful to give
a general outline. Our approach is to show that G? must contain a forbidden induced
subgraph. Above, we noted that G must be A-regular and have girth at least 4. Now
we consider the possibilities for the girth of GG, which we denote by g. Suppose g = 4.
For each vertex v on a 4-cycle, dg2(v) < A? — 1. So it is straightforward to show that G
contains a forbidden subgraph.

When G has sufficiently high girth, the situation is also simpler than the general case.
Now we let U denote the vertices of a shortest cycle, as well as a few off-cycle neighbors.
Because the girth is high enough, we know that G?[U] has only the edges guaranteed by
its definition. In other words, no pairs of vertices in U have edges in G? due to common
neighbors outside of U; if they did, then we could find a shorter cycle. This allows us
again to show that G? contains a forbidden subgraph. Each of our forbidden subgraphs
contains an induced cycle in GG, so the case of high girth is interesting, since we need to
show that an infinite family of subgraphs (with unbounded girth) are forbidden. It turns
out the the girth is sufficiently high for this approach to succeed when g > 9. This leaves
us with the cases g € {5,6,7,8}.

The case g = 6 is quite easy, since C? is a forbidden subgraph. The cases g = 7 and
g = 8 are not hard, but involves some tedious details. So the real difficulty is in the case
g = 5. This makes sense, since the Moore graphs have girth 5. At some point, we must
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explicitly use our assumption that G is not a Moore graph. This argument requires some
detailed structural analysis of G. It is this structural analysis that makes up much of the
proof in this section. Most of the other possibilities for girth are deferred to lemmas that
we prove in the next section.

Case 1: G has girth 4

Let C be a 4-cycle with vertices vy, ...,vy, and let C = V(C). Tt is helpful to note
that every v; is low. We need two lemmas. These were first proved in [8] for list coloring,
and we generalize them to online list coloring in Lemmas 5 and 6. The following two
configurations in G? are reducible: (A) K,V K, where some vertex w € V(Ky) is low and
(B) K3V K, where some vertices w € V(K3) and z € V(K5) are both low.

Note that G?*[C] = K,. This implies that every w adjacent to some v; € C must be
linked to all of C. Suppose not, and let w be adjacent to v; and not linked to v3. Now
G*[CU{w}] = K3V Ks, and every v; is low; this is (B), which is forbidden. Now suppose
that w; and w, are vertices adjacent to v; and v;, respectively. We must have w; linked
to wy, since otherwise G2[C U {wy,wq}] is (A), which is forbidden.

Now let x be a vertex at distance 2 from v; and not adjacent to any v;; let w; be a
common neighbor of v; and x. Since w; is linked to vs, they have a common neighbor
ws. Now z is linked to vy, wy, and ws. To avoid configuration (B), z must be linked to
all of C. Thus, all vertices within distance 2 of v; must be linked to all of C. Now every
pair of vertices x and y that are both within distance 2 of v; must be linked; otherwise
G?*[C U {z,y}] is (A). So the vertices within distance 2 of v; induce in G* a clique of size
A? which contradicts that w(G?) < A? — 1.

Case 2: G has girth at least 5

Let g denote the girth of G. First suppose that ¢ = 6, and let U be the vertices of a
6-cycle. Note that G*[U] = CZ, since girth 6 implies there are no extra edges. Since C?
is di-paintable, by Lemma 9, we are done by Lemma 2.

Suppose g = 7. Let U denote the vertices of some 7-cycle in GG, with a pendant edge at
a single vertex of the cycle. Because G has girth 7, G?[U] has only the edges guaranteed
by its definition. We show in Lemma 18 that G*[U] is d;-paintable. So again, we are done
by Lemma 2.

Suppose instead that ¢ > 8. Let U = {vy,...,v,, w1, ws} be the vertices of some
g-cycle in G together with pendant edges viw; and vsws. If g > 9, then G?[U] has only
the edges guaranteed by its definition. If g = 8, then G?[U] has the edges guaranteed
by its definition as well as possibly the extra edge wyws. For each girth g at least 8, we
show in Lemma 19 and Lemma 16 that G?[U] is d;-paintable. So again, we are done by
Lemma 2.

Now we consider girth 5. Our approach is similar to that for girth 4, but we must
work harder since we don’t necessarily have any low vertices. Let C' be a 5-cycle with
vertices vy, ...,vs. Let k = A — 2. For each i, let V; denote the neighbors of v; not on C.
Let C = V(C) and let D = UJ_,V;. Each vertex of D is linked to either 5, 4, or 3 vertices
of C. We call these By-vertices, Bj-vertices, and Bs-vertices, respectively (a B;-vertex is
unlinked to i vertices of C). We will consider four possibilities for the number and location
of each type of vertex. In each case we find a d;-paintable subgraph. Let L denote the
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subgraph G[D]. Since G has girth 5, we have A(L) < 2. Each vertex w with dp(w) = 2—1i
is a Bj-vertex (for i € {0,1,2}).

Suppose that G has two Bj-vertices w; and ws and they are unlinked with distinct
vertices in C. Let H = G?[C U {wy,wy}]. If w; and wy are linked, then H = K3V Cy D
Ky Vv Cy, which is d;-paintable, by Lemma 10. If instead w; and ws are unlinked, then
H = K3V Py, which is also d;-paintable, by Lemma 11. So we assume that all By-vertices
are unlinked with the same vertex v € C. As a result, each B;-vertex is an endpoint of a
path of length 3 (mod 5) in L, for otherwise the two endpoints of the path are unlinked
with different vertices in C (here we use that G contains no 3-cycle and no 4-cycle). Since
the number of odd degree vertices in any graph is even, here the number of B;-vertices is
even.

Case 2.1: G has a B;-vertex w; and a Bs-vertex ws.

Let H = G?|C U {w;,ws}]. Suppose the four vertices of C linked to w; include the
three vertices of C linked to ws. If wy and wsy are linked, then H = K3V Py, and if w; and
wy are unlinked, then H = K3V (K;+ P3). In each case, H is dj-paintable, by Lemmas 11
and 12, respectively.

Suppose instead that the four vertices of C' linked to w; do not include all three vertices
of C' linked to ws. If wy is linked with wy, then H D Ky V Cy, which is d;-paintable by
Lemma 10. If w; is unlinked with ws, then we will finish by Lemma 15, but we need a
little explanation first.

Since each Bj-vertex is an endpoint of a path in L with length 3 (mod 5), if G has
any Bj-vertices, then it has Bj-vertices adjacent to two successive cycle vertices. So, if G
has a Bj-vertex and a Bs-vertex, then we may choose them so that their corresponding
cycle vertices are either identical or nonadjacent. If these cycle vertices are identical, then
the By-vertex is linked with three cycle vertices contained among those linked with the
Bi-vertex. So the situation is as in the first paragraph of Case 2.1. If these cycle vertices
are nonadjacent, then the situation is covered by Lemma 15, so H is again d;-paintable.
Thus, G? cannot contain both B;-vertices and Bs-vertices.

Case 2.2: G has no B;j-vertices, but only some Bs-vertices, and possibly
also By-vertices.

Now L consists of disjoint cycles, each with length a multiple of 5. This implies that
each V; contains the same number of By-vertices; by assumption this number is at least 1.
We call a pair of By vertices with distinct cycle neighbors near if their cycle neighbors are
adjacent and far if their cycle neighbors are nonadjacent. If any pair of far Bs-vertices
are linked, then G has a d;-paintable subgraph, by Lemma 13. If any pair of near Bs-
vertices are linked, then, together with their adjacent cycle vertices, they induce Ky V Cy,
which is d;-paintable by Lemma 10. Thus, we consider the subgraph induced by C and
3 non-successive By-vertices, say with cycle neighbors vy, v9,v4. Each such subgraph is
di-paintable, by Lemma 14.

Combining Cases 2.1 and 2.2, we conclude that G contains no Bs-vertices.

Case 2.3: G has Bj-vertices (and also By-vertices).

Recall that G has an even number of B;-vertices and they are all unlinked with the
same vertex. By symmetry, assume that G has Bj-vertices wy € V5 and ws € V3 and they
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are both unlinked with vs. We will find two disjoint pairs of nonadjacent vertices, such
that all four are linked with C — vs.

Since ws is a Bj-vertex, it is the endpoint of some path in L; let w; € V; be the
neighbor of ws on this path. We will show that w; is unlinked with some vertex in D.

Recall that |D| = 5k. Suppose that w; is linked to each vertex of D. Since dp(w;) = 2
and dr(w3) = 1, at most 3 of these 5k — 1 vertices linked with w; can be reached from w;
by following edges in L. Clearly w; is linked to the other £ — 1 vertices of V;. Now for
each vertex w of the remaining (5k —1) —3 — (k — 1) = 4k — 3 vertices in D, w; must have
a common neighbor z with w and x ¢ D U C. Furthermore, each such common neighbor
x can link u to at most 4 of these vertices (at most one in each other V;, since the girth
is 5). However, this requires at least (%T_ﬂ = k additional neighbors of w;, but we have
already accounted for 3 neighbors of w;. Thus, w; is unlinked with some vertex y € D.

Let z be a Bj-vertex distinct from y, e.g., either ws or ws will do. Now 2z and v5 are
unlinked and w; and y are unlinked. But every vertex of {wy, vs,y, 2z} is linked to C — vs.
Thus G?[(C —vs)U{w1,vs,y, 2}] = K4V H, where H contains disjoint pairs of nonadjacent
vertices. So K4V H is di-paintable, by Lemma 7.

Case 2.4: D has only By-vertices.

Let H = G?[C UD]. We will show that if H is not a clique, then we can choose a
different 5-cycle and be in an earlier case. Suppose that H is not a clique. Since D is
linked to C and G?[C] = K3, we must have wi,w; € D with w; and ws unlinked. By
symmetry, we have only two cases.

First suppose that w; € V; and wy € V5 and w; and wy are unlinked. Since w; is a
By-vertex, we have ws € V3 with w; <> ws3. Consider the 5-cycle wyviv9v3w3. Now wo
is not linked to w;, which makes wy not a By-vertex for that 5-cycle. So we are in Case
2.1, 2.2, or 2.3 above. Now suppose instead that w; € V; and w3 € V3 and w; and w3 are
unlinked. Now we pick some w} € V3 with wy <> w} and consider the 5-cycle wyv1v9v5w5.
Since w3 and w; are unlinked, w3 is not a By-vertex for this 5-cycle, so we are in Case
2.1, 2.2, or 2.3 above. Hence G*[C U D] must be a clique.

To link all vertices in D, we must have k(k — 1) additional vertices in G, at distance
2 from C; call the set of them F. We see that |F| > k(k — 1) as follows. All (52k) pairs
of vertices in D are linked. The 5(];) pairs contained within a common V; are linked via
vertices of C. Each of the 5k vertices is linked with exactly 4 vertices via edges of L. The
remaining links all must be due to vertices of F, and each vertex of F can link at most

(5) = 10 pairs of vertices in D (at most one vertex in each V;, since G has girth 5). Thus

\F| = ((3) = 5(5) —5k(4)/2)/(3) = k(k —1). If any vertex x € F has fewer than exactly
one neighbor in each V;, then some pair of vertices in D will be unlinked. Thus, each
x € F has exactly one neighbor in each V;. This implies that F is linked to C, and hence
that |F| = k(k — 1). We will show that every pair of vertices in C UD U F is linked.

Suppose there exists w € D and x € F with w and x unlinked. By symmetry, we
assume w € V;. There exist wy € V; and w, € V5 with ¢ <> w; and x <> we. Now consider
the 5-cycle xw vivows. Since w and x are unlinked, w is not a By-vertex for that 5-cycle.
This puts us in Case 2.1, 2.2, or 2.3 above. So F must be linked to D.

Finally suppose there exist 1,29 € F with x; and x5 unlinked. Now there exist
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wy,wy € Vi with 27 <> wy and x5 <> wy. Since G has girth 5, we have x; 4 ws. And
since 7 is linked with ws, they have some common neighbor y € DUJF. Now consider the
5-cycle xywiviwaey. Since x1 and o are unlinked, x5 is not a By-vertex for this 5-cycle.
Hence, we are in Case 2.1, 2.2, or 2.3.

Thus, all vertices of CUDUF are pairwise linked. Now [CUDUF| = 5+5k+k(k—1) =
k*+4k+5 = (k+2)*>+1 = A?+ 1. This contradicts that w(G?) < A? —1 and completes
the proof. O

We note that many of the cases of the above proof actually prove that G? is d;-
paintable (rather than only (A(G)? — 1)-paintable), and hence has paint number at most
A(G?) — 1. In particular, this is true when G has girth 6, 7, or at least 9. Probably with
more work, we could also adapt the proof to the case when G has girth 8. The Conjecture
that G? is (A(G?) — 1)-paintable unless w(G?) > A(G?) is a special case of Conjecture 5.
The main obstacle to proving this stronger result is the case when G has girth at most 5,
particularly girth 3 or girth 4.

4 Proofs of forbidden subgraph lemmas

In what follows, we slightly abuse the terminology of high and low vertices defined earlier.
Now a vertex is high if its list size is one less than its degree and low if its list size equals
its degree. Note that if a vertex v is high (resp. low) in G by our old definition, then it
will be high (resp. low) in each induced subgraph H by our new definition. A vertex is
very low if its list size is greater than its degree. When a vertex v in a graph G is very
low, we may say that we delete v. If G — v is paintable from its lists, then so is G. On
each round, we play the game on G — v and consider v after all other vertices, coloring it
only if its list contained the color for that round and we have colored none of its neighbors
on that round. Recall that S; denotes the vertices with lists containing color k. We write
E,, for the empty graph on k vertices, i.e., E, = Kj. In what follows, all vertices not
specified to be low are assumed to be high.

4.1 Direct proofs

For pictures of the graphs in Lemmas 4 through 12, see Figures 6 and 6 in Section 5.

Lemma 4. If G is K4 — e with one degree 3 vertex high and the other vertices low, then
G s f-paintable.

Proof. Let vy, vy denote the degree 3 vertices, with vy low, and let wy, ws denote the degree
2 vertices. If wy,wy € Sy, then color them both with 1. Now the remaining vertices are
low and very low, so we can finish. Otherwise, color some v; with 1, choosing v, if possible.
Now at least one w; becomes very low and the uncolored vy, is low, so we can finish. [

Lemma 5. If G is K3V Ey with a low verter in the K3 and a low vertex in the Fs, then
G s f-paintable.
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Proof. Denote the vertices of the K3 by vy, v, v3, with v; low, and the vertices of Ey by
wy, wo, with wy low. If wy,ws € Sy, then color them both 1. Now v; becomes very low
and v, and v3 each become low, so we finish greedily, ending with v and v;. Suppose
wy € 8. If vy € Sy (or vg € S, by symmetry), then color v with 1. Now w; becomes
very low (since Sy 2 {wi,wq}), and vy remains low, so we can finish greedily. If instead
vy € S1 and vg,v3 ¢ S1, then color v; with 1. Again w; becomes very low and vy and v3
become low, so we can finish greedily. The situation is similar if S; contains only a single
w;. Thus, wy ¢ S;. Since Sy # {w, }, some v; is in S;. Use color 1 on v;, choosing v, or
vs if possible. What remains is K, — e with one degree 3 vertex high and all others low
(or very low). So we finish by Lemma 4. O

Lemma 6. If G is K4V Ey with a low verter in the Ky, then G is f-paintable.

Proof. Denote the vertices of the Ky by vy, ..., vs, with v; low and the vertices of Fy by
wi, ws. If wy,ws € S, then color them both 1. Now v; becomes very low and the other
v; become low, so we can finish by coloring greedily, with v, last. So S contains at most
one wj, say wy. Suppose S; contains a v; other than v;. Color v; with 1. Now w; becomes
low, v; remains low, and the other vertices remain high. So we can finish the coloring
by Lemma 5. If the only v; in S} is vy, then color it 1. Now the other v; become low,
so again we finish by Lemma 5. Finally, if the only vertex in S; is ws, then color it 1.
Now v becomes very low, and the other v; become low, so again we can finish by coloring
greedily, ending with a low vertex and a very low vertex. O]

Lemma 7. If G is K4,V H with H containing two disjoint nonadjacent pairs, then G is
di-paintable.

Proof. We may assume |H| = 4. Denote the vertices of Ky by vy, ..., vy and the vertices
of H by wy,...,wy with wy 4 wy and w3 4 wy. If wy,wy € Sy, then color w; and wy
with 1. Now every v; becomes low, so we can finish by Lemma 6. Similarly, if ws, wy € 57.

If some v; is missing from S, then use 1 to color either some v; or some wy. In the
first case, we finish by Lemma 5 and in the second by Lemma 6. So color v4 with 1. Now,
by symmetry, wq, wy ¢ Si, so they each become low. If wq,ws € Sy, then color them both
with 2. Now every v; becomes low, so we can finish by Lemma 5. Similarly if ws, wy € Ss.
So S5 contains at most one of wy, ws and at most one of ws, w,. If S5 contains no v;, then
we color some w; with 2. This makes every v; low. Now we can finish by Lemma 5. So
S, contains some v;, say vs.

Color vg with 1. Recall that S; was missing at least one of wy, wy and at least one of
wsz, wy. (1) If wg, wy ¢ So, then they both become very low, so we can delete them. This
in turn makes v; and vy both very low, so we can finish greedily. (ii) If wy, w3 ¢ S5, then
wy becomes very low, so we delete it. Now v; and vy become low; also w3 and w, are
low. Since vy, v9, w3, wy induce Ky — e with all vertices low, we can finish by Lemma 4.
By symmetry, this handles the case wy,wy ¢ Sy. (iii) If wy, w3 ¢ Ss, then the uncolored
vertices induce Ky V H, with all vertices of H low. Now consider S;. If S3 contains a
nonadjacent pair in H, then color them both 3. This makes v; and vy low, so what remains
is Ky — e with all vertices low. We now finish by Lemma 4. Similarly, if S3 contains no
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v;, then color some w; with 3, and we can finish by Lemma 4. So S3 contains some v;,
say v9, and we color vy with 3. Now one of w;,ws becomes very low and one of ws, wy
becomes very low. We can delete the very low vertices, which in turn makes v; very low.
We can now finish greedily, since what remains is a 3-vertex path with two low vertices
and a very low vertex. O]

We won’t use Lemma 8 in the proof, but it is generally useful so we record it here.
Lemma 8. If G is K¢V E3, then G is di-paintable.

Proof. Denote the vertices of Kg by v1,...,vs and the vertices of E3 by wy,wq, w3. If
wi, we, w3 € Sq, then color wy, wy, w3 all with 1. Now all v; are very low, so we finish
greedily. If no v; appears in S, then color some w; with 1. Now all the v; are low, so we
can finish by Lemma 6. So some v; is in Sy, say vg. Color vg with 1. This makes some
w; low, say ws. Repeating this argument, we get by symmetry that v; € Sy and S; is
missing some w,. If Sy is missing ws, then color vs with 2. Now w3 becomes very low, so
we delete it. This in turn makes all uncolored v, low. Now we can finish by Lemma 6.
So instead Sy is missing (by symmetry) wy. Again repeating the argument, we must have
vy € S3 and wy ¢ Ss3; otherwise we finish by Lemma 5 or Lemma 6. Now we color v, with
3. What remains is K3V F3 with every w; low.

Now consider Sy. If wq,ws, w3 € Sy, then color them all with 3. Now all remaining
vertices become very low, so we finish greedily. Suppose instead that w; € Sy and vy ¢ Sy.
Color wy with 4. What remains is K3V E, with both w; low and some v; low. So we can
finish by Lemma 4. A similar approach works for any w; € Sy and v; ¢ Ss4. So instead,
assume by symmetry that v; € Sy and w; ¢ Sy. Color v; with 4. Now w; becomes very
low, so we delete it. This in turn makes v9 and vz low. Now we can finish by Lemma 4. [

Lemma 9. If G is CZ, then G is dy-paintable.

Proof. Denote the vertices of the 6-cycle by vy,...,vs in order. So v; is adjacent to all
but v(+3)moas. Consider S;. If S; contains some nonadjacent pair, then color them
with 1. What remains is C; with all vertices low, so we can complete the coloring since
C, is 2-paintable. So assume that S; contains no nonadjacent pairs. Now without loss
of generality, we assume S; = {vy,v9,v3}, since adding vertices to S; only makes things
harder to color, as long as .S induces a clique; we may also need to permute a nonadjacent
pair. Color v; with 1.

Now vs and vg become low. Consider S;. Again, if Sy contains a nonadjacent pair,
then we color both vertices with 2 and can finish greedily since all remaining vertices are
low, except for one that is very low. If vy, v3 € S5, then color vy with 2. Now vg becomes
very low and vs remains low, so we can finish greedily. So Sy misses at least one of vy, vs.
Suppose vy € Sy. Color vy with 3. What remains is Cy. If vy, v3 € S5, then all vertices
are low, and we can finish since C}y is 2-paintable. Otherwise, vs or vg becomes very low
and the other remains low. Now we can finish greedily. So vy ¢ S;. If vy € Sy, then
color ve with 2. Now w3 and vy become low, so we can finish by Lemma 4. An analogous
argument works if v3 € S5, So assume vy, v3,v4 ¢ Sy. Now color vs or vg with 2. Again
we can finish by Lemma 4. O
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Lemma 10. If G is Ky V Cy, then G is di-paintable.

Proof. Denote the vertices of Ky by vy, vs and the vertices of Cy by wq,...w, in order.
If S contains a pair of nonadjacent vertices, then color them both 1. What remains is
K, — e, with all vertices low. So we can finish by Lemma 4. So S; misses at least one
of wy, w3 and at least one of wy, wy. By symmetry, say it misses w; and w,. Suppose
vy, vy ¢ S1. Now by symmetry ws € S, so color ws with 1. This makes each of wy, vq, vy
low. So what remains is K3 V Fy with two low vertices in the K3 and a low vertex in the
Es. Hence, we can finish by Lemma 5.

So instead (by symmetry) vy € S;. Color ve with 1. What remains is K7 V Cy with w;
and ws low. Consider S5. Again if Sy contains a nonadjacent pair, then we color them
both 2, and we can finish greedily. Suppose that ws € Sy. If wy ¢ Ss, then we color
w3 with 4; now wy becomes low, so we can finish by Lemma 4. If instead w, € S5, then
wy ¢ Ss. Now when we color ws with 2, wy becomes very low, so we can finish greedily.
So assume ws,wy ¢ Sy. If vy € Sy, then color v; with 1. What remains is C; with all
vertices low. Now we can finish the coloring since CYy is 2-paintable. The proof is similar
to that for 2-choosability, so we omit it. So assume that v; ¢ Sy. By symmetry, we have
wy; € Sy. Color wy with 2. What remains is K, — e with only w3 high. Hence we can
finish by Lemma 4. m

Lemma 11. If G K35V Py, then G is dy-paintable.

Proof. Let vy, v9,v3 denote the vertices of K3 and wy,...,ws denote the vertices of the
Py in order. If wy,ws € Si, then color them both 1. Now what remains is K3V Ey with
all but one vertex low, so we can finish by Lemma 5. An analagous strategy works if
wy, wy € S;. So assume S7 misses at least one of wy, w3 and at least one of wq, wy. If
S1 misses v1, then use color 1 on some w;, choosing w, or ws if possible. Again, we can
finish by Lemma 5. So assume v; € S;. Now color v3 with 1. What remains is Ky V P,
with at least two vertices of the Py low. Consider Ss. If wy,ws € Sy (or (wq, wy € Ss),
then color them both 2, and we can finish greedily since all vertices are low except for
one that is very low. If vy € Sy, then color it with 2. Now in each case we can finish
by repeatedly deleting very low vertices, possibly using Lemma 4. So vy ¢ Sy (and by
symmetry vs ¢ Sp). If possible use color 2 on w; or wy. This leaves K3V Fy with enough
low vertices to finish by Lemma 5. Finally, if wy,wy ¢ S, then by symmetry wq € Sy, so
color s, with 2. What remains contains a K, — e with all vertices low, so we can finish
by Lemma 4. O]

Lemma 12. If G is K3V (K1 + P3), then G is dy-paintable.

Proof. Let vy, vy, v3 denote the vertices of Kj; let wy, wy, w3 denote the vertices of P3 in
order, and let wy be the K;. If wy,ws € Si, then color them both 1 and we can finish
by Lemma 5. If instead wy, w4 € S7, then color them both 1, and again we can finish by
Lemma 5. If S} = {w,}, then color wy with 1. What remains is K3 V P; with all vertices
of the K3 low. Since K3V Py & K,V FE5, we can finish by Lemma 6. If w; € S; (or
wy € S1 or wy € S7) and vz ¢ S, then color wy with 1. Again we can finish by Lemma 5.
This implies that vz € S;.
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Since vy € Sy, color v3 with 1. Now at least one of w;, w3 becomes low and at least
one of ws, wy becomes low. What remains is Ky V (K7 + P3), and by symmetry either (i)
wy and wq are low or (ii) w; and wy are low. Consider (i). If we ignore wy, then what
remains is KoV Py =& K3V FE5. Since wy and ws are low, we can finish by Lemma 5. Instead
consider (ii). If wq,ws € S, then color them both with 2. What remains is K4 — e and
all vertices are low, so we finish by Lemma 4. Suppose instead that ws, wy € S5. Color
them both with 2, which makes v; and vy low. If w; became very low, then we finish
greedily. Otherwise w3 became low, so we finish by Lemma 4. Now suppose v; € Sy, and
color v; with 2. We have four possibilities. If wy and w3z become low, then we can finish
by Lemma 4. Similarly, if w, becomes very low, we delete it; now v, becomes low, so we
can finish by Lemma 4. In the two remaining cases, we can finish greedily by repeatedly
deleting very low vertices. O

4.2 Proofs via the Alon—Tarsi Theorem

Our goal in each of the next lemmas is to prove that a certain graph is d;-paintable.
Recall the definitions of FE and EO from Section 2, preceding Theorem A. For a digraph
B, we write diff(B) to denote ]EE(B)\ — |EO(D)|. In each case we find an orientation

such that each vertex has indegree at least 2 and diff(D) # 0. Now the Alon-Tarsi
Theorem, specifically the generalization in Theorem B, proves the graph is d;-paintable.
To compute diff(D), sometimes we simply calculate |EFE(D)| and |[EO(D)| and take
the difference. However, this it typically quite difficult if we are considering a set of
subgraphs of unbounded size. In that case we want to avoid calculating |[EFE(D)| and
|[EO( %explicitly. Rather, we look for a parity-reversing bijection that pairs elements
of EE(D) with elements of EO(B) In computing diff (B), we can ignore all circulations
paired by such a bijection. We also use the following trick to reduce our work. We explain
it via an example, but it holds more generally.

Let D contain a 5-clique and two other vertices w; and wy such that for each v either
dt(v) < 3ordt(v) =4 and wy,wy € NT(v). In computing diff(B), we want to restrict
the difference to the set of circulations in which d*(w;) > 1 and d*(ws) > 1; call this
diff/(B). By inclusion-exclusion, we have diff’(B) = diff(B) - diff(B —wy) — diﬂ(B —
wy) + diff(B — wy — wy). So it suffices to show that the final three terms on the right
side are 0. If any term were nonzero, then, by the Alon—Tarsi Theorem, we would be able
to color the corresponding subgraph from lists of size at most 4. However, the subgraph
contains a 5-clique, making this impossible. Thus, each term is 0, and we have the desired
equality. (In some cases we use a slight variation of this approach, instead concluding
that the induced subgraph H with diff(H) # 0 is d;-paintable.) Finally, we combine this
technique with the parity-reversing bijection mentioned above, by restricting the bijection
only to the set of circulations where d*(w;) > 1 and d*(ws) > 1.

For brevity, in this section our proofs of Lemmas 13, 14, 15, and 16 consist simply
of orientations in which each vertex has in-degree at least 2 and |EE| # |EO|. In each
case, we provide the sizes of FE and FO, which are easy to check with a computer
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Figure 3: (a) The orientation for Lemma 13 has |EE| = 57 and |EFO| = 59.
(b) The orientation for Lemma 14 has |[EFE| = 105 and |EO| = 106.

(c) The orientation for Lemma 15 has |FE| = 63 and |EO| = 64.

(d) The orientation for Lemma 16 has |[EE| = 299 and |FO| = 298.

program. (Ours is available at https://dl.dropboxusercontent.com/u/8609833/Web/
WebGraphs/WebGraphsTestPage.html.) For the curious reader, in the appendix we pro-
vide hand checkable proofs of these lemmas.

Lemma 13. Let H be a 5-cycle vy, ...,vs with pendant edges at vo and vy, leading to
vertices wo and wy, respectively, and let wy and wy have a common neighbor x (off the
cycle). Let G = H? — z; now G is dy-paintable.

Proof. The orientation D shown in Figure 3(a) has |EE(B)| = 57 and |EO(B)| = 59.
Hence, the Alon—Tarsi Theorem implies that the graph is d;-paintable. O

Lemma 14. Let H be a 5-cycle vy, ..., vs with pendant edges at vy, vy, and vs, leading
to vertices ws, wy, and ws, respectively. Let G = H?; now G is d;-paintable.
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Proof. The orientation D shown in Figure 3(b) has ]EE(B)\ = 105 and |EO(B)] = 106.
Hence, the Alon—Tarsi Theorem implies that the graph is d;-paintable. O

Lemma 15. Let H be a 5-cycle vy, ...,vs with pendant edges at vy and vs, leading to
vertices we and ws, respectively, and let ws and vy have a common neighbor x (off the
cycle). Let G = H? — z; now G is dy-paintable.

Proof. The orientation D shown in Figure 3(c) has |EE(B)| = 63 and |EO(B)| = 64.
Hence, the Alon—Tarsi Theorem implies that the graph is d;-paintable. O

Lemma 16. §-cycle + two pendant edges + extra edge: Let Jg consist of an 8-cycle on
vertices vy, . ..,vs (in clockwise order) with pendant edges at vy and vs leading to vertices
wy and ws. Form Dg by squaring Js, adding the edge wyws and orienting the edges as
follows. Orient edges v;v;11 and v;vi1o away from v; (with subscripts modulo 8). Orient
wivg away from wy and viwy and vewy toward wy; similarly, orient wsvy away from
ws and vsws and vews toward ws. Finally, orient wswy toward wy,. We will show that

diff(Dg) # 0 (or else diff (Dg \ B) # 0 for some subset B C {wy,ws}).

Proof. The orientation D shown in Figure 3(d) has ]EE(B)\ = 299 and |EO(B)] = 298.
Hence, the Alon—Tarsi Theorem implies that the graph is d;-paintable. O]

Form [_’n) from (P,)? by orienting all edges from left to right. Number the vertices
as v, ...,v, from left to right. A subgraph 7 - P_’n> is weakly eulerian if each vertex
w ¢ {v1,v,} satisfies d¥(w) = d~(w) and d*(v1) = d~(v,) = 7 for some i € {1,2}. Let
EE;(P,) (resp. EOZ(I_’;)) denote the set of even (resp. odd) weakly eulerian subgraphs
where d* (vy) = d ™ (v,) =i. Finally, let f;(n) = |EEZ(?n)| - |EOZ(Fn>)| We will not apply
the following lemma directly to find d;-paintable subgraphs. However, it will be helpful in
the proofs for some of the remaining d;-paintable graphs, specifically those that include
cycles of arbitrary length.

Lemma 17. Ifn = 3k + j for some positive integer k and j € {—1,0,1}, then fi(n) =7
and forn =4 also fo(n) = — fi(n — 2), with fi(n) as defined above.

Proof. Rather than directly counting weakly eulerian subgraphs, we again use a parity-
reversing bijection. We first prove that fo(n) = —fi(n — 2). The complement of each
D c EEQ(F;) U EOQ(F?:) has d™(vg) = d (v,—1) = 1 and d*(w) = d~(w) for each
w ¢ {vy,v2,v-1,0,} (and d¥(v1) = d” (v,) = d (v2) = d*(v,—1) = 0). Since ]?)n has
2n — 3 edges, each digraph has parity opposite its complement; so fao(n) = —fi(n — 2).
Now we determine f1(n). Let T be a weakly eulerian subgraph with d*(v;) = 1.
Consider the directed paths v;v3 and vive, vous. If ? contains all of one path and none of
the other, then we can pair % with its complement, which has opposite parity. If neither

of these cases holds, then we must have vivs, vov4 € and vivg,vouz ¢ 1. This yields
fi(n) = fi(n—3). It remains only to check that f;(2) = —1, f1(3) =0, and f1(4) =1. O
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Figure 4: The orientation for Lemma 18 with n = 7.

Lemma 18. Cycle + one pendant edge: Let J, consist of an n-cycle on vertices vy, ..., v,

(in clockwise order) with a pendant edge at vy leading to vertex w. Form D, by squaring
Jy, and orienting the edges as follows. Orient edges v;v;11 and vV, away from v; (with
subscripts modulo n). Orient uv, away from u and viu and vou toward w. We will show

that diff(ﬁn) # 0 when n # 2 mod 3 (or else diff(ﬁn —u) #0).

Proof. Form ﬁn as in the lemma. We will show that diff (17;) # 0, and thus J2? is d;-
paintable. We may assume that diff(D,, —u) = 0, for otherwise D,, — u is d;-paintable.
Thus, restricting our count to the set A of circulations with d*(u) = 1 does not affect the
difference. Let ? be a circulation in A. Consider the directed paths viu and vivs, vou.
If ? contains all edges of one path and none of the other, then we can pair via a
parity-reversing bijection. So we assume we are not in one of those cases. Clearly
contains v, and exactly one of vju and vyu. Thus either (i) vou € 7 and viu, vivy ¢

or (ii) viu, vivy € ? and vou ¢ T'.

Case (i): wvu € ? and viu, v1ve & ? Since vyu € ? and vivy ¢ ?, we must
have v,,vy € ? and vevs, vovy ¢ T'. By removing edges uwvy,, v,vq, vou, we see that these
circulations are in bijection with the circulations in %n — u — vy (with the parity of each
subgraph reversed). If we exclude the empty graph, these circulations are in bijection
with those counted by fi(n — 1), since d*(v;) = 1 and d~(v3) = 1. Adding 1 for the
empty subgraph, this difference is 1 — f1(n — 1), and when we account for removing edges
UV, Uy U2, Vou, the difference is —1 + f1(n — 1).

Case (ii): viu,v1v9 € T and vou ¢ 7 Since viu, V1V € ?, we have v,,_1v1, v,01 € 7
and vivg ¢ T'. After removing edges v,v1, v1u, uv,, we see that these circulations are in
bijection with the circulations in D,, —u —v,v; —vyv3 that contain edges v,,_1v; and vy vs.
We will count the difference of these even and odd circulations, then multiply the total
by —1 (to account for removing edges viu, uv,, v,v;) before adding to the total above.
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We consider two subcases: v,vy ¢ ? and v, vy € ? In the first case, these circulations
are in bijection with circulations of D, 1 — u — vy (since d*(v,) = 0 and v; may be
suppressed). This difference is counted by fi(n — 2). In the second case, the difference
is counted by — f2(n), since we may think of deleting vyv, and replacing v,v, with v,vy;
our path now starts at vy and runs through v, to v; (and the parity is changed when
accounting for vjvs).

Thus, the total difference in Case (ii) is counted by fi(n —2) — fa(n). Thus, the total
difference overall is counted by —1+ f1(n—1)— f1(n—2)+ fo(n) = =1+ fi(n—1)—2f1(n—2).
Substituting values from Lemma 17 shows that this expression is non-zero when n #
2 mod 3. O

Ug/ \U2

N4

Figure 5: The orientation for Lemma 19 with n = 8.

Lemma 19. Cycle + two pendant edges: For n > 7, let J, consist of an n-cycle on
vertices vy, . .., v, (in clockwise order) with pendant edges at vy and vs leading to vertices

wy and ws. Form D, by squaring J, and orienting the edges as follows. Orient edges
Vi1 and Vv away from v; (with subscripts modulo n). Orient wiv, away from w;
and viwy and vow, toward wy; similarly, orient wsvy away from ws and vsws and vgws

toward ws. We will show that diff(D,) # 0 (or else diff(D,, \ B) # 0 for some subset
B g {wl, w5})

— —
Proof. Form D, as in the lemma. We will show that diff(D,) # 0, and thus J? is d;-
paintable. For each nonempty B C {w;,ws}, we may assume that diff(D,, \ B) = 0, for

—_>
otherwise D,, \ B is d;-paintable. Thus, restricting our count to the set A of circulations
with d™(w;) =1 and d*(ws) = 1 does not affect the difference.
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Let ? be a circulation in A. Clearly ? contains m and exactly one of 'zTuq) and
UQ—u)l) . Consider the directed paths viw; and viv9, vowy. If contains all edges of one
path and none of the other, then we can pair 1" via a parity-reversing bijection. So we
assume we are not in one of those cases. Thus either (i) vow; € and vywy, vive ¢ T or
(il) viwy, v1v9 € ? and vow, ¢ ?

Now we consider the directed paths vsws and vsvg, vsws. Among those circulations,
within Cases (i) and (ii), where T' contains all of one path and none of the other we again
pair T' via a parity-reversing bijection, by removing the edges of one path and adding the
edges of the other. Thus, we need only consider two subcases in each case: (1) vgws €
and vsws, v5vg ¢ ? and (2) vsws, vsvs € T and vgws & ?

Case (i.1): vow; € and vywy, V109 ¢ and also vgws € ? and vsws, vsvg ¢ ?
Since vowy € 1T, we must have v,vs € and also vqus,v9vy € T'. Similarly, since
vews € 1T, we must have v vg € and also vgv7, vgUg & % Since both triangles wiv, v,
and vyvgws must be included in every circulation under consideration, we may remove
wy, Vg, Ws, Vg Without changing the total difference. Now any non-empty circulation must
contain both vjvs and vsv;. But we have a parity reversing bijection between those
circulations containing v3vs and those containing v3vy, v4vs5, so for non-empty circulations
the difference is zero. Thus after adding in the empty circulation, we see that the total
difference is 1 for this case.

Case (i.2): vw; € and viwy, V109 & 7 and also vsws, vsvg € ? and vgws ¢ ?
Since vowy € T, we must have v,vy € and hence vyus, vovg € T'. Since the triangle
w1V, V2 must be included in every circulation under consideration, we may remove wy, vs at
the cost of negating the difference. Since vsws, vsvg € ?, we must have wsvy, v3v5, V4U5 €

and vsv; ¢ T'. But then vsvy & and hence vgvg € T'. Now we may remove ws
and v4 at the cost of negating the difference again. Now removing vs and vs we lose
three edges that must be in every circulation and the resulting difference is counted by
fi(n —4); the paths run from vg through v,, to v;. Hence this case contributes — f;(n — 4)
to the difference.

Case (ii.1): vywy,v1v9 € ? and vowy ¢ ? and also vgws € ? and vsws, vsvg & ?
Since vywy, vvg € T, we get v,v1,v,_1v1 € T'. Since vgws € ? and vsvg ¢ T, we get
VU5 € and vgur, vevg ¢ T . Since we have v,_1v; € T', we must also have vsv; € T.
Since vgur, vgvs ¢ T and vsv; € ?, we get d¥(vg) = 1. This also implies d*(v,_1) = 1.
Now when n > 9 our difference is counted by —f1(3)fi(n — 7). Here fi(3) accounts for
the edges of the path from v, to vs and fi(n — 7) accounts for the edges of the path from
v7 to v,—1 (and the —1 accounts for the 9 edges that are present but not on either of these
paths). Since f1(3) = 1, the total for this case is —fi(n — 7). When n = 8 the total is
—f1(3) = —1 and when n = 7 the total is 0, since v,,_; = vg. Now by Lemma 17, together
with checking the cases n = 7 and n = 8, we get that this case is counted by — f1(n — 4).

Case (ii.2): vywq,vivy € ? and vow; ¢ ? and also vsws, vsvg € and vews ¢
Since vﬂ%,vlvg € T, we must have wyv,, v,v1,v,_1v1 € and vivg € T'. Since
vsWs, UsUg € T, we must have wsvy, v3vs, V405 € and vsv; € T. Suppose v,vy & T'.
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Now wvovy ¢ ?, so d*(v4) = 1. Now our problem reduces to computing — f;(n — 6); the
f(n — 6) accounts for the edges on the path from wvg to v,—1 and the —1 accounts for
the 11 other edges that are present. Suppose instead that v,vs € 7 Now our problem
reduces to computing fo(n — 4), accounting for the edges on the two paths from to v;
(after replacing v,vy by v,v1) and the 12 edges present but not on these paths.

So, combining the contributions from all cases we get that the difference is 1 — fi(n —
4)— filn—4) = fi(n—6) + fo(n—4). By Lemma 17 this is 1 —2(f;(n—4)+ fi(n—6)) # 0
when n > 8. When n = 7 the difference is 1 — 2f1(3) — 1 + f5(3) = —1. O

For n > 4, a subgraph ? C ]?n is extra weakly eulerian if each w ¢ {vy1,ve, V10, }
satisfies d™(w) = d~(w), d*(v1) = d” (v,) = 1, d¥(ve) = d (v2) + 1 and d™ (v,_1) =
d*(vp-1) + 1 Let EE*(P,) (resp. EO*(FZ)) denote the set of even (resp. odd) extra
weakly eulerian subgraphs. Finally, let g(n) = |EE*(]7>n)| - \EO*(FZM Lemma 20 is
analogous to Lemma 17, but for extra weakly eulerian subgraphs.

Lemma 20. Ifn = 3k+j > 4 for a positive integer k and j € {—1,0,1}, then g(n) = —j.

Proof. Let ? C ﬁn be extra weakly eulerian. Consider the directed paths vijvs and
V19, Vg3, If ? contains all of one path but none of the other, then we can pair 1" with
its complement which has opposite parity. If neither of these cases holds, then we must
have either vjvs, vov3 € T and vive & T or vivy € and vyvs, vouz ¢ T'. The latter case
is impossible, so suppose we have v vs, VU3 € and v1vo ¢ T'. Then vsvy, v3vs €

and vovy ¢ T'. Hence the difference is counted by g(n — 3). It remains only to check that
g(4) =—1, g(5) =1 and g(6) = 0. O

5 Generalizing to Alon—Tarsi number

Excepting the direct proofs of paintability in Section 4.1, we have actually proved that
all the excluded subgraphs have a good Alon—Tarsi orientation. This suggests that the
main theorem might hold more generally for the Alon—Tarsi number AT(G)—the least k
for which G has an orientation D with AT(D) < k — 1 and EE(D) # EO(D). Here we
show that this is indeed the case.

Main Theorem for AT. If G is a connected graph with mazimum degree A > 3 and G
is not the Peterson graph, the Hoffman-Singleton graph, or a Moore graph with A = 57,
then AT(G?) < A% — 1.

The proof is identical to the paintability proof except that we need to replace all the
auxiliary lemmas with their AT counterparts. We first consider the two subgraph lemmas,
which are actually easier to prove in the AT context.

Lemma 21. Let G be a graph with mazimum degree A and H be an induced subgraph of
G that is di-AT. If G\ H is (A — 1)-AT, then G is (A —1)-AT.
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Proof. Let G and H satisfy the hypotheses. Take an orientation of G \ H demonstrating
that it is (A — 1)-AT and an orientation of H demonstrating that it is d;-AT. Orient all
edges between H and G\ H into G\ H. Call the resulting oriented graph D. Now D
satisfies the outdegree requirements to be (A —1)-AT, since the outdegree of each vertex in
G\ H is unchanged and the outdegree of each v € V(H) has increased by dg(v) — dg(v).
Since no directed cycle in D has vertices in both H and D \ H, the circulations of D
are just all pairings of circulations of H and D\ H. Therefore EE(D) — EO(D) =
EE(H)EE(D\ H)+ EO(H)EO(D\ H) — (EE(H)EO(D \ H)+ EO(H)EE(D \ H)) =
(EE(H) — EO(H))(EE(D\ H) — EO(D \ H)) # 0. Hence G is (A — 1)-AT. O

Lemma 22. Let G be a graph with mazximum degree A and let H be an induced subgraph
of G?. If H is d\-AT, then G? is dy-AT. If there exists v with dg=(v) < A% — 1, then G*
is (A? —1)-AT.

Proof. We prove the first statement first. Form G’ from G by contracting V (H) to a single
vertex r. Let T be a spanning tree in G’ rooted at r. Let o be an ordering of the vertices
of G\ H by nonincreasing distance in 7" from r. Take an orientation of H demonstrating
that it is dy-AT; direct all edges between H and G \ H towards G \ H and direct all
other edges of G? toward the vertex that comes earlier in o. Call the resulting oriented
graph D. By construction, all circulations in D are contained in H, so EE(D) # EO(D).
Clearly, every vertex in D has indegree at least two and hence G? is d;-AT.

Now we prove the second statement, which has a similar proof. Suppose there exists
v with dg2(v) < A? — 1. As before we order the vertices by nonincreasing distance
in some spanning tree T from v, and we put v and some neighbor u last in ¢. Since
de2(v) < A? — 1, either (i) v lies on a 3-cycle or 4-cycle or else (ii) dg(v) < A or v has
some neighbor u with dg(u) < A; in Case (ii), by symmetry we assume dg(v) < A. In
Case (i), dg2(u) < A% — 1 for some neighbor u of v on the short cycle and by assumption
dg2(v) < A? — 1; so the two final vertices of ¢ are u and v. In Case (ii), we again have
da2(v) < A? — 1 and dg2(u) < A% — 1, so again u and v are last in o. O

The proof of Lemma 22 proves something slightly more general.

Corollary 23. Let G be a graph with maximum degree A and let H be an induced subgraph
of G*. Let f(v) = d(v)—1 for each high vertex of G* and f(v) = d(v) for each low vertex.
If H is f-AT, then G* is (A* — 1)-AT.

Now each of Lemmas 13-19 was already proved for AT. It remains to prove the
lemmas in Section 4.1 for AT. We do this by exhibiting in Figure 6 a good Alon—Tarsi
orientation for each. For brevity, we do not prove that the counts differ; instead we give
the actual even/odd circulation counts for the reader to check at her leisure. Each vertex
is labeled with its indegree for easy checking. Note that three of the cases in Lemma 7 are
handled by Lemmas 10, 11, and 12 (none of which depend on Lemma 7). We conclude by
generalizing the conjectures we mentioned in the introduction to the Alon—Tarsi number.

Conjecture 6 (Borodin-Kostochka Conjecture (Alon—Tarsi version)). If G is a graph
with A > 9 and w < A — 1, then AT(G) < A — 1.
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©)

(a) Lemma 4: EE=2, EO=1 (b) Lemma 5: EE=4, EO=3 (c) Lemma 6: EE=16, EO=17

(d) Lemma 10: EE=30, EO=28  (e) Lemma 11: EE=108,  (f) Lemma 12: EE=88, EO=87

EO=107

(g) Lemma 7a: EE=512, (h) Lemma 7b: EE=751, (i) Lemma 7c: EE=1097,
EO=515 EO=750 E0=1096

(j) Lemma 8: EE=4394, (k) Lemma 9: EE=22, EO=16
EO=4393

Figure 6: Good orientations for the AT versions of Lemmas 4-12.
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A Proofs of Reducibility, without Computers

In Section 4.2, our proofs of Lemmas 13, 14, 15, and 16 consisted of simply providing
orientations for which |EFE| and |EO]| differ. Here we give hand-checkable proofs.

Figure 7: The orientation for Lemma 13.

Lemma 13. Let H be a 5-cycle vy, ...,vs with pendant edges at vo and vy, leading to
vertices wy and wy, respectively, and let wy and wy have a common neighbor x (off the
cycle). Let G = H* — x; now G is dy-paintable.

Proof. Orient G to form D with these out-neighborhoods: N (vy) = {vg,v3}, NT(wsy) =
{v1,wa}, NT(v2) = {wa, v, v5}, NT(v3) = {vg, wa, wy,v5}, NT(wy) = {vg,v5}, NT(vg) =
{v1,v3,v5}, Nt(vs5) = {v1}. See Figure 7.

We will show that diff (D) # 0. Since each vertex has at least two in-edges, this proves
that G is dj-paintable. Let R = {vswy, v3w,}. For any nonempty subset S of R, we must

have diff(D \ R) = 0. This is because each vertex on the 5-cycle has outdegree at most
3, so will get a list of size at most 4. And clearly, we cannot always color K5 from lists
of size at most 4. Thus, it suffices to count the difference, when restricted to the set A of

circulations ? such that vsws, v3wy € ?

Let ? be such a circulation. Note that vsvy, vsvs ¢ ?, and thus vjvs, v4v3 € ?
Now we consider the 8 possible subsets of {wyvy, wyvs, v4v5} in T'. Clearly d*(wy) > 1
and d~(vs) < 1. Also, we can pair the case wqvg, V405 € and wyvs ¢ with the
case coming from its complement. Thus, we can restrict to the case when wyvy €
and vyvs ¢ T (and we're not specifying whether wyvs is in or out). Now consider the
directed triangle vivy, vovy, v4v1. We can pair the cases when all or none of these edges
are in 7'. Thus we may assume that either exactly 1 or exactly 2 of these edges are
in. Considering indegree and outdegree of vy shows that we must have viv, € and
VU4, v4v1 € T'. This implies wyvy, vsv1 € T'. Now we have two ways to complete T'. We
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can have vyws, Woty, Wavs € 7 and vovy ¢ 7 or vice versa. Each of these gives |E(?)|
odd; thus, we get |diff(D)| = 2. O

Figure 8: The orientation for Lemma 14.

Lemma 14. Let H be a 5-cycle vy, ..., vs with pendant edges at vy, vy, and vs, leading
to vertices way, wy, and ws, respectively. Let G = H?; now G is dy-paintable.

Proof. We orient G to form B with these out-neighborhoods: Nt (v1) = {vq, ws, v5, ws},
N+(Uz) = {w2>v3>?15}> N+(w2) = {03}7 N+(03) = {7)1,?14}, N+(U4) = {U1>U2>w4},
N*t(wy) = {vs}, NT(vs) = {vs, v4, wg, w5}, NT(ws) = {vs4}. See Figure 8.

We will show that diff(D) # 0. Since each vertex has at least two in-edges, this
proves that G is dj-paintable. If diff(D — wy) # 0, then we are done, since D — wy is
d;-paintable. Thus, we can assume that diff(D —wy) = 0. Similarly, we can assume that
diff (B \ ) = 0 for every S C {ws, wy, ws}. Thus, it suffices to count the difference, when
restricted to the set A of circulations such that d* (wp) =1, d™(ws) = 1, and d* (ws) = 1.
Let ? be such a circulation. So wqvs, wyvs, wsvy € T. Now dt(vs) = 2, S0 V301, V304 €
and v9v3, V53 & ? In particular, d=(vy) > 1, so d*(vy) > 1.

Now we will pair some circulations in A via a parity-reversing bijection. Consider the
paths vywy and vyvg, vows. If a circulation contains all edges in one path and none in
the other, then we can pair it via a bijection. The same is true for the paths v,ws; and
0105, Usws. Since 1 < d¥(v1) < 2, and also d™ (wg) = d~(w;) = 1, the only way that
can avoid these cases is if either (i) vivg, vywe € or (ii) vivs,vyws € T . Before we
consider these cases, note that in each case vyv; € T'.

Case (i): Now we must have vjws,viv; ¢ T. Note that vows ¢ ?, which implies
VU9 ¢ ? Also vyvs € 7 Further, d~(ws) = 1 implies vsws € ?, which in turn yields
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V5Uy, UsWy & 7 Finally, vjw, € ? Thus, we have a unique ? (with an odd number of
edges).

Case (ii): Now we must have vywsq, v1vy ¢ T and also vsws & T Note that Vowy € ?,
which implies that v vy € 7 and also that vyvs ¢ 7 Now we get that either (a) vsvy € T,
and thus vqwy € T and vswy ¢ 7 or else (b) vswy € ? and vsvy, vqwy ¢ T'. Again, by
a parity-reversing bijection, we see that together these circulations contribute nothing to
diff(A) (in fact there is only one of each). Now combining Cases (i) and (ii), we get that
|diff(A)| = 1, and in fact \dlff(B)] = 1. Thus, G is d;-paintable. O

Figure 9: The orientation for Lemma 15.

Lemma 15. Let H be a 5-cycle vy, ...,vs with pendant edges at vo and vs, leading to
vertices we and ws, respectively, and let ws and vy have a common neighbor x (off the
cycle). Let G = H? — z; now G 1is dy-paintable.

Proof. We orient G to form D with these out-neighborhoods: N (vy) = {vy, wy, vs, w5},
N+(U2) = {’wg,’U4, U5}, N+(1U2) = {Ug}, N+(Ug) = {’Ul, V2, UJ5}, N+(U4) = {Ul,Ug, U5},
N*t(vs) = {vs}, N*(ws) = {vy,v5}. See Figure 9.

We will show that diff(D) # 0. Since each vertex has at least two in-edges, this
proves that G is d;-paintable. Note that for each nonempty subset S C {ws, w5}, we have
diff (B \\S) = 0, since otherwise we can color the corresponding subgraph from lists of size
4, even though it contains a 5-clique. So by inclusion-exclusion, we can restrict our count
of diff to the set of circulations A where ws and ws each have positive indegree. Consider

the paths v;wy and vivy, vaws. Let T be a circulation in A. If T' contains all edges of one
path and none of the other, then we can pair it via a parity-reversing bijection. So we
assume we are not in these situations. Since wsy has positive indegree, and hence indegree
1, we either have (i) viws, vive € ? and vowg ¢ T or (i) vowy € T and viwy, vive & T.

Case (1): vjwg, v1v9 € T and vowy ¢ ? Clearly wqvs € ? Since d* (vy) = 2, we have
V3V, Vg € and vyvs, vyws & ? Suppose v3vs € T'. Now also vovy, vovs, v5v3 € T'.
Finally, since ws has positive indegree, vsws, wsv4, v4v3 € T'. The resulting circulation is
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even. Suppose instead that vsve ¢ ? If vyvs € ?, then we get vsvs3, v3ws, wsvy € ?
The resulting circulation is odd. If instead wvyvs ¢ and vovy € T, then we have three
possibilities to ensure d*(ws) > 0. Either vsws, wsvy, v4v5, v5v3 € T' Or V3ws, W5y, V4V3 €
or vsws, wsvs, vsv3 € 1. Two of the resulting circulations are odd and one is even.
Thus in total for Case (i), we have one more odd circulation than even.
Case (ii): vowy € T and viws, V109 & 7 We have vowy € ?, which implies wyvs € ?
and vgve € T. This further yields vovy, vovs ¢ T. Again we will pair some of the

circulations in A via a parity-reversing bijection. Consider the paths vsws and vzvy, viws.
If a circulation contains all edges in one path and none in the other, then we can pair it

via a bijection. Since 1 < d~(ws), the only way that 7 can avoid these cases is if either
(a) viws € T and vsvy ¢ T or (b) vzvy € T and vyws ¢ ? (and thus vsws € ? or (¢)
v3v1, viws, v3ws € T'. Consider (a). vyws € implies vv; € ?, and thus wsvy € T'.
We also have the option of all or none of vsws, wsvs,vsv3 in 1. One of the resultin
circulations is odd and the other is even. Consider (b). Now vsv; € T and vws ¢
imply vivs € ?, and thus vsvs € T'. Now d*(ws) > 0 implies vzws, wsvg, v4v3 € T'. The
resulting circulation is odd. Consider (c¢). Now we get wsvs € T', which implies vsv3 € ?

We also get wsv, € T', which implies vyv3 € ? The resulting circulation is even. Thus
in total for Case (ii), we have the same number of even and odd circulations.
So combining Cases (i) and (ii), we have one more odd circulation than even. Thus

diff(B) # 0, so G is d;-paintable. O

Form F)n from (P,)? by orienting all edges from left to right. Number the vertices
as vy, ...,v, from left to right. A subgraph ? - ]?n is weakly eulerian if each vertex
w ¢ {vy,v,} satisfies d*(w) = d~(w) and d*(v1) = d”(v,) = i for some i € {1,2}. Let
EE;(P,) (resp. EOl(F;)) denote the set of even (resp. odd) weakly eulerian subgraphs
where d* (v;) = d ™ (v,) = i. Finally, let f;(n) = \EEZ(?H)\ - ]EOZ(?n)] We will not apply
the following lemma directly to find d;-paintable subgraphs. However, it will be helpful in
the proof for the remaining d;-paintable graph, which includes cycles of arbitrary length.

Lemma 16. 8-cycle + two pendant edges + extra edge: Let Jg consist of an 8-cycle on
vertices vy, . ..,vs (in clockwise order) with pendant edges at vy and vs leading to vertices

wy and ws. Form Dg by squaring Jg, adding the edge wyws and orienting the edges as
follows. Orient edges v;v; 1 and v;v;1o away from v; (with subscripts modulo 8). Orient
wyvg away from wy and viw, and vowy toward wy; similarly, orient wsvy away from ws and

vsWs and Uﬁ% toward ws. Finally, orient wswy toward wy. We will show that f(Dg) # 0
(or else f(Dg \ B) # 0 for some subset B C {wy, ws}).

— =
Proof. Form Dsg as in the lemma. Suppose f(Ds\ B) = 0 for each subset ) # B C
{wy,ws}. Then by Lemma 19, we have diff (Dg — wsw;) # 0. Hence it will suffice to show
that the circulations of Dg containing wsw; are half odd and half even.
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Figure 10: The orientation for Lemma 16.

Let ? be a circulation of 175;) containing wsw;. Then wyvg € ? and vywq, vowy & ?
After suppressing wy, we are looking at all circulations containing wsvs.

Consider the directed paths vsws and vsvg, vews. If T' contains all edges of one path
and none of the other, then we can pair 7' via a parity-reversing bijection. So we assume

we are not in one of those cases. Thus either (i) vews € and vsws, vsvg & ?, (ii)
VsWs, UsVg € ? and vews ¢ T', (iil) vsws, vsvg, Vews € or (iv) vews, vsws € and
V5Vg ¢ .

Case (i): vgws € ? and vsws, vsvs ¢ 7 Then v4vg € ? and wsvyg, VU7, VgUg & ?
Now we can suppress vg and ws. First suppose vsv; ¢ T'. Now vy, v5 ¢ and what
remains is counted by — f1(5). Instead suppose vsv; € T'. Then the difference is counted

by ¢(7); the path is from v; to vs. Hence the total difference is g(7) — f1(5) = —1—(—1) =
0.

Case (ii): vsws, vsv € ? and vgws ¢ ? Then v3vs, v4v5 € 7 and wsvy, vsv7 ¢ ?
Now we can suppress ws. First suppose vyvg € T'. There is only one possible circulation
and it contains all edges except v;vg; this circulation is odd, hence the difference is —1.
Now suppose vqvg ¢ T'. If vgv; € T', then vgvg ¢ ? and the difference is counted by
—g(6); the path is from vy to vy. If vev; € T, then vgus, vsvy, vsve € T and vy ¢ T'. Now
the difference is counted by —g(4); the path is from v; to vy. Hence the total difference
is —1 —g(6) — g(4) = 0.

Case (iii): wvsws, vsv6, Vews € ? Then wsvy, v3v5, V405 € ? and vsv; ¢ ? If
v4v6, 607 € T, then the difference is counted by ¢(6); the path is from v; to vs. Since
VU7 € and v4vg ¢ ? is impossible, we may assume either v vg € and vgvy ¢ ? or
V40, Vg7 & T'. Suppose we are in the former case. Then vguvg, vsvq,vgve € T and vy ¢ T'.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(2) (2016), #P2.50 28



This difference is counted by g(4); the path is from v; to vy. Now suppose vyvg, vgv7 ¢ ?
Then v; ¢ ? and vgvg ¢ T . This difference is counted by fi(4); the path is from vg to
v3. Hence the total difference is g(6) + g(4) + f1(4) = 0.

Case (iv): vgws, vsws € T and vsvg ¢ T . Then wsvy, v4vg € ? and vgvr, veUs ¢ ? If
vsvr ¢ T, then v; ¢ T and the difference is counted by f1(6) = 0; the path is from vg to
vs. Hence we may assume vsv; € ? Then v3vs, v4v5 € 7 and the difference is counted
by ¢(6) = 0; the path is from v; to vy.

So in each of the four cases, half the circulations are even and half are odd. Thus,
the difference is not affected by the circulations that use edge wsw;. Now by Lemma 19,
f(B) # 0, so D is d;-paintable. O
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