
2-Walk-regular dihedrants from

group divisible designs

Zhi Qiao
School of Mathematical Sciences

University of Science and Technology of China
Hefei, Anhui, 230026, China

gesec@mail.ustc.edu.cn

Shao Fei Du
Department of Mathematics
Capital Normal University

Beijing, 100048, China

dushf@mail.cnu.edu.cn

Jack H. Koolen∗

School of Mathematical Sciences
University of Science and Technology of China

and
Wen-Tsun Wu Key Laboratory of

Mathematics of CAS
Hefei, Anhui, 230026, China

koolen@ustc.edu.cn

Submitted: Apr 1, 2015; Accepted: Jun 7, 2016; Published: Jun 24, 2016

Mathematics Subject Classifications: 05E30, 05C50

Abstract

In this note, we construct bipartite 2-walk-regular graphs with exactly 6 distinct
eigenvalues as the point-block incidence graphs of group divisible designs with the
dual property. For many of them, we show that they are 2-arc-transitive dihedrants.
We note that some of these graphs are not described in Du et al. (2008), in which
they classified the connected 2-arc transitive dihedrants.

Keywords: 2-walk-regular graphs; distance-regular graphs; association schemes;
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1 Introduction

For unexplained terminology, see next section. C. Dalfó et al. [7] showed the following
result.

∗Corresponding author
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Proposition 1. (cf. [7, Proposition 3.4, 3.5]) Let s, d be positive integers. Let Γ be a
connected s-walk-regular graph with diameter D > s and exactly d+1 distinct eigenvalues.
Then the following two results hold:

i) If d 6 s+ 1, then Γ is distance-regular;

ii) If d 6 s+ 2 and Γ is bipartite, then Γ is distance-regular.

In this note, we will construct infinitely many bipartite 2-walk-regular graphs with
exactly 6 distinct eigenvalues and diameter D = 4, thus showing that Statement (ii) of
Proposition 1 is not true for d = 5 and s = 2. We will construct these graphs as the
point-block incidence graphs of certain group divisible designs with the dual property.
We will show that infinitely many of these graphs are 2-arc transitive dihedrants, and, en
passant, provide a new description of 2-arc transitive graphs found by Du et al. [9]. Note
that, although most of the graphs we describe may not be new, the fact that many of
them are 2-arc-transitive dihedrants seems to be new, as they give counter examples to a
result of Du et al. [8, Theorem 1.2] in which they classified the connected 2-arc transitive
dihedrants. The classical examples Γ(d, q) (d > 2 and q a prime power), as described in
Section 4, are not mentioned in Du et al. [8] for the case d > 3 and q any prime power,
and also for the case d = 2 and q a power of two.

2 Preliminaries

All the graphs considered in this note are finite, undirected and simple. The reader is
referred to [5, 4] for more information. Let Γ := (V,E) be a connected graph with vertex
set V = V (Γ) and edge set E = E(Γ). Denote x ∼ y if the vertices x, y ∈ V are
adjacent. The distance dΓ(x, y) between two vertices x, y ∈ V is the length of a shortest
path connecting x and y in Γ. If the graph Γ is clear from the context, then we simply
use d(x, y). The maximum distance between two vertices in Γ is the diameter D = D(Γ).
We use Γi(x) for the set of vertices at distance i from x and denote ki(x) = |Γi(x)|. For
the sake of simplicity, we write Γ(x) = Γ1(x) and k(x) = k1(x). The valency of x is the
number |Γ(x)| of vertices adjacent to it. A graph is regular with valency k if the valency
of each of its vertices is k.

The distance-i matrix Ai = A(Γi) is the matrix whose rows and columns are indexed
by the vertices of Γ and the (x, y)-entry is 1 whenever d(x, y) = i and 0 otherwise. The
adjacency matrix A of Γ equals A1.

Let Γ be a graph with diameter D and let x, y be vertices of Γ at distance i (0 6
i 6 D). Then the number of vertices which are at distance j from x and h from y is
denoted by pijh(x, y) and is called an intersection number of Γ. Note that pijh(x, y) =
|Γj(x) ∩ Γh(y)|. And we consider the numbers ci(x, y) = pii−1,1(x, y), ai(x, y) = pii1(x, y),
bi(x, y) = pii+1,1(x, y). Note that k(y) = ci(x, y)+ai(x, y)+bi(x, y) holds for all 0 6 i 6 D.
The intersection numbers pijh(x, y) (0 6 i, j, h 6 D) are called well-defined if the numbers
do not depend on the choice of x and y but only on i, i.e., pijh(x, y) = pijh(z, w) if
d(x, y) = d(z, w) = i. A connected graph Γ with diameter D is called distance-regular if
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these numbers ci(x, y), ai(x, y) and bi(x, y) are well-defined. If this is the case, then these
numbers are denoted simply by ai, bi and ci for 0 6 i 6 D.

A graph Γ is called t-walk-regular if the number of walks of every given length ` between
two vertices x, y ∈ V depends only on the distance between them, provided that d(x, y) 6 t
(where it is implicitly assumed that the diameter of Γ is at least t). If a graph Γ is t-walk-
regular, then for any two vertices x, y at distance i, the numbers ci = ci(x, y), ai = ai(x, y)
and bi = bi(x, y) are well-defined for 0 6 i 6 t (see [7, Proposition 3.15]) and the numbers
pijh = pijh(x, y) are also well-defined for 0 6 i, j, h 6 t (see [6, Proposition 1]). And
for a vertex x of a t-walk-regular graph Γ, the relation ki−1(x)bi−1 = ki(x)ci shows that
ki = ki(x) are well-defined for 0 6 i 6 t, where ki(x) can be considered as p0

ii(x, x).
Note that kt+1 = kt+1(x) is also well-defined if the diameter D of Γ is equal to t + 1. A
D-walk-regular graph is a distance-regular graph, where D is the diameter of the graph.

Let Γ be a graph. The eigenvalues of Γ are the eigenvalues of its adjacency matrix A.
We use {θ0 > · · · > θd} for the set of distinct eigenvalues of Γ. If Γ has diameter D, then
since I, A, . . . , AD are linearly independent, it follows that d > D. The multiplicity of an
eigenvalue θ is denoted by m(θ).

Let Γ be a graph. Let Π = {P1, P2, . . . , Pt} be a partition of the vertex set of Γ
where t is a positive integer. We say Π is an equitable partition if there exist non-negative
integers qij (1 6 i, j 6 t) such that any vertex in Pi has exactly qij neighbors in Pj. The
(t × t)-matrix Q = (qij)16i,j6t is called the quotient matrix of Π. If Π is equitable, the
distribution diagram of Γ with respect to Π is the diagram in which we present each Pi by
a balloon such that the balloon representing Pi is joined by a line segment to the balloon
representing Pj if qij > 0 and we will write the number qij just above the line segment
close to the balloon representing Pi. We write pi := |Pi| and qii inside and below the
balloon representing Pi, respectively. If qii = 0, we write ′−′ instead of 0.

Let Γ be a graph and let x be a vertex of Γ. Then the walk partition W (x) of the
vertex x is the partition {{x}, P1, . . . , Pn} of V (Γ), such that two vertices y, z are in the
same part if and only if for any `, the numbers of walks of length ` between x, y and x, z
are the same. A similar definition was introduced by Fiol [12]. For those graphs discussed
in later sections, the walk partition is always equitable.

For example we consider a distance-regular graph Γ with diameter D. And the dis-
tribution diagram with respect to the walk partition W (x) of any vertex x is shown in
Figure 1 (for distance-regular graph, the walk partition W (x) is the same as the partition
according to the distance from the vertex x).

1 k

a1

ki

ai

ki+1

ai+1

kD−1

aD−1

kD

aD

k 1 b1 ci bi ci+1 bi+1 cD−1 bD−1 cD

Figure 1

The action of a group G on a set V is regular, if it is transitive and no non-identity
element of G fixes a point of V .
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Let Γ be a graph and G be a group of automorphisms of Γ. The quotient graph Γ/G
has as vertices the G-orbits on the vertices of Γ, as edges the G-orbits on the edges of
Γ, and a vertex v̄ is incident with an edge ē in Γ/G if and only if some element of v̄ is
incident with some element of ē in Γ, where v ∈ V (Γ), e ∈ E(Γ), v̄ and ē are the orbits
of v and e respectively.

Let G be a group with identity 1 and let Q be a subset of G∗ := G−{1} closed under
taking inverses. Then the Cayley graph Cay(G,Q) is the undirected graph with vertex
set G and edge set E(Cay(G,Q)) = {{g, h} | g−1h ∈ Q}. It is known that Cay(G,Q) is
vertex-transitive and it is connected if and only if Q generates G.

The dihedral group of order 2n is the group D2n = 〈a, b | an = 1 = b2, bab = a−1〉. Let
Q be a subset of D∗2n closed under taking inverses. The graph Cay(D2n, Q) is called a
dihedrant and is denoted by Dih(2n, S, T ) where Q = {ai | i ∈ S} ∪ {ajb | j ∈ T}.

Let G be a finite group of order mn and let N be a normal subgroup of G of order n.
A k-element subset D of G is called an (m,n, k, λ)-relative difference set in G relative to
N if every element in G\N has exactly λ representations r1r

−1
2 (or r1−r2 if G is additive)

with r1, r2 ∈ D, and no non-identity element in N has such a representation. When n = 1,
we simply call D an (m, k, λ)-difference set. A difference set or a relative difference set is
called cyclic if the group G is cyclic. Note that any cyclic relative difference set or cyclic
difference set can be seen as a relative difference set in Zmn or a difference set in Zm,
respectively.

An incidence structure I = (P ,B, I) consists of a set P of points, a set B of blocks
(disjoint from P), and a relation I ⊆ P × B called incidence. If (p,B) ∈ I, then we say
the point p and the block B are incident. We usually consider the blocks B as subsets of
P . If I = (P ,B, I) is an incidence structure, then its dual incidence structure is given by
I∗ = (B,P , I∗), where I∗ = {(B, p) | (p,B) ∈ I}. The point-block incidence graph Γ(I)
of an incidence structure I is the graph with vertex set P ∪ B, where two vertices are
adjacent if and only if they are incident. Note that the point-block incidence graph of an
incidence structure is a bipartite graph.

A group divisible design D = (P ,G,B) with parameters (n,m; k;λ1, λ2), denoted by
GDD(n,m; k;λ1, λ2), consists of a set P of points, a partition G of P into m sets of size
n, each set being called a group, and a collection B of k-subsets of P , called blocks, such
that each pair of points from the same group occurs in exactly λ1 blocks and each pair
of points from different groups occurs in exactly λ2 blocks. The triple I = (P ,B, I) of
a group divisible design is an incidence structure (with the natural incidence relation I)
and we consider the dual incidence structure I∗ = (B,P , I∗). If there exists a partition
G ′ of B such that the triple (B,G ′,P) is a GDD(n,m; k;λ1, λ2), then we say that the D
is a group divisible design with the dual property with parameters (n,m; k;λ1, λ2) and we
denote such a design by GDDDP (n,m; k;λ1, λ2).

Let X be a finite set and CX×X the set of complex matrices with rows and columns
indexed by X. Let R = {R0, R1, . . . , Rn} be a set of non-empty subsets of X ×X, where
Ri (0 6 i 6 n) is called a relation. For each i, the relation graph ΓRi := (X,Ri) with
respect to the relation Ri is the (directed, in general) graph with vertex set X and edge
set Ri. Let Fi be the adjacency matrix of the graph ΓRi . The pair (X,R) is an association
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scheme with n classes if

i) F0 = I, the identity matrix,

ii)
∑n

i=0 Fi = J , the all-ones matrix,

iii) F t
i ∈ {F0, F1, . . . , Fn} for 0 6 i 6 n,

iv) FiFj is a linear combination of F0, F1, . . . , Fn for 0 6 i, j 6 n.

The vector space A spanned by {F0, F1, . . . , Fn} is the Bose-Mesner algebra of (X,R).
We say that (X,R) is commutative if A is commutative, and that (X,R) is symmet-

ric if the Fi (0 6 i 6 n) are symmetric matrices. A symmetric association scheme is
commutative. We only consider symmetric association scheme in this note.

Let (X,R) be a symmetric association scheme with n classes. Then CX can be de-
composed as a direct sum of common eigenspaces Vi (0 6 i 6 n) of the Bose-Mesner
algebra A. Let Ei be the orthogonal projection onto the common eigenspace Vi, where we
always set E0 = |X|−1J (J is the all-ones matrix). Then {E0, E1, . . . , En} forms a basis
of the primitive idempotents of A, i.e. EiEj = δijEj (0 6 i, j 6 n),

∑n
i=0 Ei = I. We call

the change-of-base matrices P and Q the first and second eigenmatrices of the association
scheme (X,R), where P and Q are defined as follows:

Fi =
n∑
j=0

PjiEj, Ei =
1

|X|
n∑
j=0

QjiFj (0 6 i 6 n).

Let (X,R) be a symmetric association scheme with n classes. Then the relation graph
ΓRi (1 6 i 6 n) is an undirected graph. Choose a vertex x of the relation graph ΓRi ,
then the partition {P0, P1, . . . , Pn} of V (ΓRi ) is equitable, where Pj := {y | (x, y) ∈ Rj}
(0 6 j 6 n). The distribution diagram of the symmetric association scheme (X,R) with
respect to the relation Ri is the distribution diagram of the relation graph ΓRi with respect
to the equitable partition {P0, P1, . . . , Pn}.

3 Group divisible designs with the dual property

In this section, we will construct bipartite 2-walk-regular graphs with diameter 4 having
exactly 6 distinct eigenvalues, as the point-block incidence graphs of certain group divisible
designs with the dual property.

Theorem 2. Let D be a GDDDP(n,m; k; 0, λ2) with n,m > 2, λ2 > 1, k > nλ2 and let
Γ := Γ(D) be the point-block incidence graph of D. Then Γ is a relation graph, say with
respect to a relation R of a symmetric association scheme (X,R) with 5 classes, such that
the distribution diagram of (X,R) with respect to the relation R is as in Figure 2, where
k4 = n−1, c2 = λ2 and b′2 = (n−1)λ2. In particular, Γ is a bipartite 2-walk-regular graph
with diameter 4 and exactly 6 distinct eigenvalues.
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1 k

-

k2

-

k′3

-

k4

-

k′′3

-

k 1 k − 1 c2 b′2 k − 1 1 k

b′′2

k

Figure 2

Proof. Note that Γ is a bipartite graph with valency k and diameter 4, as Γ is an incidence
graph, each block contains k points and λ1 = 0, λ2 > 1. Let x be a vertex of Γ. By the
dual property, we may assume without loss of generality that x is a point of D, thus
{x} ∪ Γ2(x) ∪ Γ4(x) is the set of points of D. As λ1 = 0 and λ2 > 1, we see that two
vertices are in the same group if and only if they are at distance 4. It follows that the
group of D that contains the vertex x is {x} ∪ Γ4(x), i.e., Γ4(x) consists of n− 1 vertices
and they are mutually at distance 4, and c2(x, y) = λ2 holds for any vertex y ∈ Γ2(x).
Now let Γ′3(x) be the set of vertices at distance 3 from x with a neighbor in Γ4(x) and
Γ′′3(x) := Γ3(x)\Γ′3(x). As λ1 = 0, we see that b3(x, y) = 1 holds for any vertex y ∈ Γ′3(x).
Choose a vertex y ∈ Γ2(x), then Γ(y)∩Γ′3(x) = ∪z∈Γ4(x)(Γ(y)∩Γ(z)). Since those vertices
in Γ4(x) are mutually at distance 4 from each other, we see that |Γ(y)∩Γ′3(x)| = (n−1)λ2.
It follows that the partition Π = {{x},Γ(x),Γ2(x),Γ′3(x),Γ′′3(x),Γ4(x)} is an equitable
partition of V (Γ) with distribution diagram as in Figure 2 with k4 = n− 1, c2 = λ2 and
b′2 = (n− 1)λ2. And k > nλ2 implies that k′′3 > 0.

Now define the matrix B3 by (B3)xy = 1 if y ∈ Γ′3(x) and 0 otherwise, where x and y
are any two vertices of Γ. Note that for any pair of vertices x and y with y ∈ Γ3(x), the
number of walks of length 3 between x and y equals c3(x, y)c2 = c3(y, x)c2, and c3(x, y) 6= k
if and only if y ∈ Γ′3(x), which in turn implies that B3 is symmetric. Let C3 = A3 − B3,
where Ai is the distance-i matrix of Γ for i = 0, 1, 2, 3, 4. It is straightforward to check
that the set of matrices {A0 = I, A1, A2, B3, C3, A4} satisfies the axioms of a symmetric
association scheme. That Γ is 2-walk-regular follows from the fact that A2 is a relation
matrix of the association scheme. As Γ is the relation graph of a 5-class association
scheme, it follows that Γ has at most 6 distinct eigenvalues. The fact that it has at least
6 eigenvalues follows from Proposition 1. This shows the theorem.

Remark 3. i) The first and second eigenmatrices of the corresponding association sche-
me, where b′′2 = k − (k4 + 1)c2 are as follows:
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P =



1 k (k−1)k
c2

kk4
(k−1)b′′2

c2
k4

1 −k (k−1)k
c2

−kk4 − (k−1)b′′2
c2

k4

1
√
k 0 −

√
k 0 −1

1 −
√
k 0

√
k 0 −1

1
√
b′′2 −(k4 + 1) k4

√
b′′2 −(k4 + 1)

√
b′′2 k4

1 −
√
b′′2 −(k4 + 1) −k4

√
b′′2 (k4 + 1)

√
b′′2 k4


,

Q =



1 1
(k2−b′′2 )k4
k−b′′2

(k2−b′′2 )k4
k−b′′2

(k−1)k
k−b′′2

(k−1)k
k−b′′2

1 −1
(k2−b′′2 )k4√
k(k−b′′2 )

− (k2−b′′2 )k4√
k(k−b′′2 )

√
b′′2 (k−1)

k−b′′2
−
√
b′′2 (k−1)

k−b′′2
1 1 0 0 −1 −1

1 −1 − k2−b′′2√
k(k−b′′2 )

k2−b′′2√
k(k−b′′2 )

√
b′′2 (k−1)

k−b′′2
−
√
b′′2 (k−1)

k−b′′2
1 −1 0 0 − k√

b′′2

k√
b′′2

1 1 −k2−b′′2
k−b′′2

−k2−b′′2
k−b′′2

(k−1)k
k−b′′2

(k−1)k
k−b′′2


.

ii) It is easy to see that if (X,R) is a symmetric association scheme such that the
distribution diagram of (X,R) with respect to a relation R is equal to the diagram in
Figure 2, then (X,R) comes from a GDDDP(n,m; k; 0, λ2) with n = k4 + 1, λ2 = c2,
as described in the above theorem.

iii) If the point-block incidence matrix of a GDDDP is symmetric with zeroes on the
diagonal, it corresponds exactly to the divisible design graph as defined by Haemers
et al. [14].

4 Classical Examples

In this section we discuss classical examples of group divisible designs with the dual
property and in Proposition 4 we show that the point-block incidence graphs of these
examples are 2-arc transitive dihedrants. Some of them were already found by Bose [3],
for more information see [11].

We first introduce classical examples of group divisible designs with the dual property.
Let d > 2 be an integer and let q be a prime power. Let V be a vector space of dimension
d over GF (q) (the finite field with q elements). We define the set of non-zero vectors
in V as the point set P and the set of affine hyperplanes in V as the block set B, i.e.,
P = {x ∈ V | x 6= 0} and B = {x+H | H is a hyperplane in V and x /∈ H}.

We make a partition G of P such that the collinear non-zero vectors in V belong
to the same group in G. Note that each group in G has size q − 1. Then (P ,G,B) is

a GDD(n,m; k; 0, λ2), where n = q − 1, m = qd−1
q−1

is the number of projective points

in V , k = qd−1 is the number of affine hyperplanes containing a given non-zero vector,
and λ2 = qd−2 is the number of affine hyperplanes containing two given non-zero and
non-collinear vectors.
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Now we look at the dual incidence structure I∗ = (B,P , I∗) of I = (P ,B, I). We
make a partition G ′ of B such that the parallel affine hyperplanes belong to the same

group in G ′. Then (B,G ′,P) becomes a GDD(n,m; k; 0, λ2), where n = q − 1 , m = qd−1
q−1

is the number of d − 1 dimensional subspaces in V , k = qd−1 is the number of non-zero
vectors in an affine hyperplane, and λ2 = qd−2 is the number of non-zero vectors in the
intersection of two given non-parallel affine hyperplanes.

This shows that D(d, q) := (P ,G,B) is a GDDDP (n,m; k; 0, λ2), where n,m, k, λ2

are given above. We denote Γ(d, q) := Γ(D(d, q)) as the point-block incidence graph of
D(d, q). It is clear that the general linear group GL(d, q) acts as a group of automorphism
of the graph Γ(d, q).

Now we show that the point-block incidence graphs Γ(d, q) of classical group divisible
designs with the dual property D(d, q) are 2-arc transitive dihedrants.

Proposition 4. For all integers d > 2 and prime powers q, the point-block incidence graph
Γ(d, q) of the group divisible design with the dual property D(d, q) is a 2-arc transitive
dihedrant.

Proof. Let z be a primitive element of GF∗(qd) and define the map τz : GF∗(q)→ GF∗(q)
by τz(x) = zx for x ∈ GF∗(qd). The map τz has order n := qd − 1. We can identify the
map τz as a linear map Az ∈ GL(d, q) by identifying the field GF(qd) with the vector
space GF(q)d. Note that the group 〈Az〉 is the well-known Singer-Zyklus subgroup of
GL(d, q). It is clear that Az is an automorphism of the graph Γ(d, q). For any non-zero
vector y ∈ GF(q)d, define Hy := {x ∈ GF(q)d | xty = 1}. Az maps Hy to Hy′ , where
y′ = (Atz)

−1y. Now let u0, u1, . . . , un and v0, v1, . . . , vn be two orderings of the non-zero
vectors of GF(q)d, such that Az maps ui to ui+1 and Hvi to Hvi+1

(0 6 i 6 n) (where we
take the indices module n). Define the map φ : P ∪ B → P ∪ B by φ(ui) = Hvn−i

and
φ(Hvi) = un−i (0 6 i 6 n), where P is the point set of the design D(d, q), consisting of
the non-zero vectors in GF(q)d, and B is the block set of the design D(d, q), consisting

of the affine hyperplanes in GF(q)d. Then we see that ui
φ7−→ Hvn−i

Az7−−→ Hvn−i+1

φ7−→ ui−1,
i.e., φAzφ = A−1

z . Note that φ has order 2 and Az has order n. We see that the group
generated by φ and Az is the dihedral group D2n and it acts regularly on the vertex set
of Γ(d, q). This show that Γ(d, q) is a dihedrant by [13, Lemma 3.7.2].

Now we show that Γ(d, q) is 2-arc transitive. As Γ(d, q) is vertex-transitive, we only
need to show it is transitive on 2-arcs xHy, where x, y are non-zero vectors in GF(q)d and
H is an affine hyperplane (For a 2-arc H1xH2, where H1 and H2 are affine hyperplanes and
x is a non-zero vector, we may consider φ(H1xH2)). Note that xHy is a 2-arc if and only
if x, y are linearly independent non-zero vectors and H is an affine hyperplane containing
x, y. Let x′H ′y′ be a 2-arc, with x′, y′ non-zero vectors and H ′ an affine hyperplane. Then
there exists an element σ ∈ GL(d, q) that maps simultaneously x to x′, y to y′ and H to
H ′.

This shows that Γ(d, q) is a 2-arc transitive dihedrant.

Remark 5. The graphs Γ(d, q) can also be described in a pure group theoretical way as
a bi-coset graph (see Du and Xu [10]). Take G =GL(d, q). Let R be the set of matrices
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in G whose first row equals (1, 0, 0, . . . , 0), and let L be the set of matrices in G whose
first column equals (1, 0, 0, . . . , 0)t. Note that R and L are subgroups of G. Then Γ(d, q)
is isomorphic to the bi-coset graph B(G,L,R;RL), which is bipartite with color classes
{Lg | g ∈ G} and {Rg | g ∈ G}, where Lg1 is adjacent to Rg2 if and only if g2g

−1
1 ∈ RL.

Now we consider some quotient graphs of Γ(d, q), which are also 2-arc transitive di-
hedrants. Consider the group Z := {αId | α ∈ GF∗(q)} 6 GL(d, q). Let n be a divisor
of q − 1. As Z is a cyclic group of order q − 1, it contains a cyclic subgroup C of order
(q − 1)/n. Using a similar method as in Proposition 4, we may see that quotient graph
Γ(d, q, n) := Γ(d, q)/C is a 2-arc transitive dihedrant and when n = q − 1, Γ(d, q, n) is
the same as Γ(d, q). The distribution diagram of Γ(d, q, n) with respect to the walk par-
tition W (x) of any vertex x is shown in Figure 2 with k = qd−1, c2 = qd−2(q − 1)/n and
k4 = n− 1.

5 Cyclic relative difference sets

In this section, we give another viewpoint on the examples of the last section and give a
construction for dihedrants from cyclic difference sets.

Proposition 6. Let D be a cyclic (m,n, k, λ)-relative difference set with m,n > 2. Then
the dihedrant Dih(2nm, ∅, D) is the point-block incidence graph of a GDDDP(n, m; k; 0, λ).
In particular, Dih(2nm, ∅, D) is a connected 2-walk-regular graph.

Proof. By definition, the dihedrant Dih(2nm, ∅, D) is bipartite. By direct verification, we
see that the distribution diagram with respect to the walk partition of any vertex is as in
Figure 2 with k4 = n− 1 and c2 = λ. It follows that it is the point-block incidence graph
of a GDDDP(n,m; k; 0, λ). Then the dihedrant Dih(2nm, ∅, D) is 2-walk-regular follows
from Theorem 2.

The graphs Γ(d, q, n) as considered in the last section arise from cyclic ( q
d−1
q−1

, n, qd−1,
qd−2(q−1)

n
)-relative difference sets. And Arasu et al. [2, 1] gave constructions for cyclic

( q
d−1
q−1

, n, qd−1, q
d−2(q−1)

n
)-relative difference sets for q a prime power, where n is a divisor of

q−1 when q is odd or d is even, and n is a divisor of 2(q−1) when q is even and d is odd.
Arasu et al. [2, Theorem 1.2] showed that for a prime power q, cyclic relative difference

sets with parameters ( q
d−1
q−1

, n, qd−1, q
d−2(q−1)

n
) exist if and only if the above restrictions are

satisfied.
Note that those dihedrants in Section 4 are 2-arc transitive. But the dihedrants

constructed from general cyclic relative difference are not always 2-arc transitive. We
give two examples below.

The 2-arc transitive dihedrant generated by the cyclic (7, 2, 4, 1)-relative difference set
{0, 1, 9, 11} in Z14 relative to {0, 7} has the distribution diagram with respect to the walk
partition of any vertex as in Figure 3. It is the graph C4[28, 3] in [15].

The cyclic (13, 2, 9, 3)-relative difference set {0, 9, 11, 15, 18, 19, 20, 23, 25} in Z26 rela-
tive to {0, 13} generates a dihedrant, which is not edge transitive. That graph and the
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2-arc transitive graph Γ(3, 3) have the same distribution diagram with respect to the walk
partition of any vertex as in Figure 4.
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