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Abstract

The study of limits of graphs led to elegant limit structures for sparse and dense
graphs. This has been unified and generalized by the authors in a more general
setting combining analytic tools and model theory to FO-limits (and X-limits) and
to the notion of modeling. The existence of modeling limits was established for
sequences in a bounded degree class and, in addition, to the case of classes of trees
with bounded height and of graphs with bounded tree depth. The natural obstacle
for the existence of modeling limit for a monotone class of graphs is the nowhere
dense property and it has been conjectured that this is a sufficient condition. Ex-
tending earlier results here we derive several general results which present a realistic
approach to this conjecture. As an example we then prove that the class of all finite
trees admits modeling limits.
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1 Introduction

The study of limiting properties of large graphs have recently received a great attention,
mainly in two directions: limits of graphs with bounded degrees [1] and limit of dense
graphs [13]. These developments are nicely documented in the recent monograph of
Lovász [12]. Motivated by a possible unifying scheme for the study of structural limits,
we introduced the notion of Stone pairing and FO-convergence [18, 20]. Precisely, we
proposed an approach based on the Stone pairing 〈φ,G〉 of a first-order formula φ (with
set of free variables Fv(φ)) and a graph G, which is defined by following expression

〈φ,G〉 =
|{(v1, . . . , v|Fv(φ)|) ∈ G|Fv(φ)| : G |= φ(v1, . . . , v|Fv(φ)|)}|

|G||Fv(φ)| .

In other words, 〈φ,G〉 is the probability that φ is satisfied in G by a random assignment of
vertices (chosen independently and uniformly in the vertex set of G) to the free variables
of G.

Stone pairing induces a notion of convergence: a sequence of graphs (Gn)n∈N is FO-
convergent if, for every first order formula φ (in the language of graphs), the values 〈φ,Gn〉
converge as n → ∞. In other words, (Gn)n∈N is FO-convergent if the probability that a
formula φ is satisfied by the graph Gn with a random assignment of vertices of Gn to the
free variables of φ converges as n grows to infinity.

It is sometimes interesting to consider weaker notions of convergence, by restricting
the set of considered formulas to a fragment X of FO. In this case, we speak about
X-convergence instead of FO-convergence. Of special importance are the following frag-
ments:
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Fragment Type of formulas Type of convergence

QF quantifier free formulas left convergence [13]

FO0 sentences (no free variables) elementary convergence

FOp formulas with all free variables in
{x1, . . . , xp}

FOlocal local formulas (depending on a fixed
distance neighborhood of the free
variables)

FOlocal
1 local formulas with single free vari-

able
local convergence (if bounded de-
gree) [1]

Table 1: Fragments of specific importance.

Note that the above notions clearly extend to relational structures. Precisely, if we
consider relational structures with signature λ, the symbols of the relations and constants
in λ define the non-logical symbols of the vocabulary of the first-order language FO(λ)
associated to λ-structures. Notice that if λ is at most countable then FO(λ) is countable.

The following representation theorem was proved in [18, 20]: every finite relational
structure A with (at most countable) signature λ defines (injectively) a probability mea-
sure µA on the standard Borel space S(B(FO(λ))), which is the Stone space of the
Lindenbaum-Tarski algebra of first-order formulas (modulo logical equivalence) in the
language of λ-relational structures. Moreover, a sequence (An)n∈N of λ-structures is FO-
convergent if and only if the sequence (µAn)n∈N of measures converge (in the sense of a
weak-* convergence), and that the uniquely determined limit probability measure µ is
such that for every first-order formula φ it holds

lim
n→∞
〈φ,An〉 = µ(K(φ)).

Note that the space of probability measures on the Stone space of a countable Boolean
algebra, equipped with the weak topology, is compact.

It is natural to search for a limit object that would more look like a relational structure.
Thus we introduced in [20] — as candidate for a possible limit object of sparse structures
— the notion of modeling, which extends the notion of graphing introduced for bounded
degree graphs. Here is an outline of its definition. For a relational structure A, a subset
X ⊆ Ap of a power of the domain A of A is first-order definable if there exist a non-negative
integer q, a first-order formula φ with p + q free-variables, and q elements a1, . . . , aq ∈ A
(called parameters) such that

X = {(v1, . . . , vp) ∈ Ap : A |= φ(a1, . . . , aq, v1, . . . , vp)}.

In the case where one can require q = 0, the set X is first-order definable without param-
eters.
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A relational sample space is a relational structure A (with signature λ) with additional
structure: The domain A of A of a relation sample space is a standard Borel space (with
Borel σ-algebra ΣA) with the property that every subset of Ap that is first-order definable
in FO(λ) is measurable (in Ap with respect to the product σ-algebra). Note that it was
proved in [20] that this is equivalent to require that every subset of Ap that is first-order
definable without parameters is measurable

A modeling is a relational sample space equipped with a probability measure (denoted
νA). For brevity we shall use the same letter A for structure, relational sample space,
and modeling. The definition of modelings allows us to extend Stone pairing naturally
to modelings: the Stone pairing 〈φ,A〉 of a first-order formula φ (with free variables in
{x1, . . . , xp}) and a modeling A, is defined by

〈φ,A〉 = ν⊗pA (φ(A)),

where φ(A) is the solution set of φ in A, that is:

φ(A) = {(v1, . . . , vp) ∈ Ap : A |= φ(v1, . . . , vp)},
and where ν⊗pA denotes the product measure on Ap. Note that every finite structure canon-
ically defines a modeling (with same universe, discrete σ-algebra, and uniform probability
measure) and that in the definition above matches the definition of Stone pairing of a
formula and a finite structure introduced earlier.

In the following, we assume that free variables of formulas are of the form xi with
i ∈ N. Note that the free variables need not to be indexed by consecutive integers. For a
formula φ, denote by φO the formula obtained by packing the free variables of φ: if the
free variables of φ are xi1 , . . . , xip with i1 < i2 < · · · < ip then φO is obtained from φ
by renaming xi1 , . . . , xip to x1, . . . , xp. Although φ(A) and φO(A) differ in general, it is
clear that they have same measure (as φ(A) can be obtained from φO(A) by taking the
Cartesian product by some power of A, and then permuting the coordinates). Hence for
every formula φ it holds

〈φ, · 〉 = 〈φO, · 〉,
that is: the Stone pairing is invariant by renaming of the free variables.

The expressive power of the Stone pairing goes slightly beyond satisfaction statistics
of first-order formulas. In particular, we prove (see Corollary 1) that the Stone pairing
〈 · ,A〉 can be extended in a unique way to the infinitary language Lω1ω, which is an
extension of FO allowing countable conjunctions and disjunctions [22,23]. Note that this
language is still complete, as proved by Karp [8]. Although the compactness theorem does
not hold for Lω1,ω, the interpolation theorem for Lω1,ω was proved by Lopez-Escobar [11]
and Scott’s isomorphism theorem for Lω1,ω by Scott [21]. For a modeling A and an integer
p, the Lω1,ω-definable subsets of Ap correspond to the smallest σ-algebra that contains all
the first-order definable subsets of Ap (see Lemma 7). According to the definition of a
modeling, this means that all Lω1,ω-definable sets of a modeling are Borel measurable.

We say that a class C of structures admits modeling limits if for every FO-convergent
sequence of structures An ∈ C there is a modeling L such that for every φ ∈ FO it holds

〈φ,L〉 = lim
n→∞
〈φ,An〉,
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what we denote by An
FO−→ L. More generally, for a fragment X of FO, we say that a class

C of structures admits modeling X-limits if for every X-convergent sequence of structures
An ∈ C there is a modeling L such that for every φ ∈ X it holds 〈φ,L〉 = limn→∞〈φ,An〉,
and we denote this by An

X−→ L.
The following results have been proved in [20]:

• every class of graphs with bounded degree admits modeling limits;

• every class of graphs of colored rooted trees bounded height admits modeling limits;

• every class of graphs with bounded tree-depth admits modeling limits.

On the other hand, only sparse monotone classes of graphs can admits modeling
limits. Precisely, if a monotone class of graphs admits modeling limits, then it is nowhere
dense [20], and we conjectured that a monotone class of graphs actually admits modeling
limits if and only if it is nowhere dense.

Recall that a monotone class of graphs C is nowhere dense if, for every integer p
there exists a graph whose p-subdivision is not in C (for more on nowhere dense graphs,
see [14–17, 19]). The importance of nowhere dense classes and the strong relationship of
this notion with first-order logic is exemplified by the recent result of Grohe, Kreutzer,
and Siebertz [7], which states that (under a reasonable complexity theoretic assumption)
deciding first-order properties of graphs in a monotone class C is fixed-parameter tractable
if C is nowhere dense. This result is essentially tight, as the non-tractability for somewhere
dense classes was earlier proven by Dawar and Kreutzer [3] and Dvořák, Král’, and Thomas
[4].

A modeling A with universe A satisfies the Finitary Mass Transport Principle if, for
every φ, ψ ∈ FO1(λ) and every integers a, b such that{

φ ` (∃>ay) (x1 ∼ y) ∧ ψ(y)

ψ ` (∃6by) (x1 ∼ y) ∧ φ(y)

it holds
a 〈φ,A〉 6 b 〈ψ,A〉.

It is clear that every finite structure satisfies the Finitary Mass Transport Principle,
hence every modeling FO-limit of finite structures satisfies the Finitary Mass Transport
Principle, too.

A stronger version of this principle, which is also satisfied by every finite structure,
does not automatically hold in the limit. A modeling A with universe A satisfies the
Strong Finitary Mass Transport Principle if, for every measurable subsets X, Y of A, and
every integers a, b, the following property holds:

If every x ∈ X has at least a neighbors in Y and every y ∈ Y has at most b
neighbors in X then a νA(X) 6 b νA(Y ).
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In this paper, we initiate a systematic study of hereditary classes that admit modeling
limits. We prove that the problem of the existence of a modeling limit can be reduced to
the study of FOlocal-convergence, and then to two “typical” particular cases:

• Residual sequences, that is sequences such that (intuitively) the limit has only zero-
measure connected components,

• Non-dispersive sequences, that is sequences such that (intuitively) the limit is (al-
most) connected.

In this context, we prove the following theorem, which is the principal result of this paper.

Theorem 1. Let C be a hereditary class of structures.
Assume that for every An ∈ C and every ρn ∈ An (n ∈ N) the following properties

hold:

1. if (An)n∈N is FOlocal
1 -convergent and residual, then it has a modeling FOlocal

1 -limit;

2. if (An, ρn)n∈N is FOlocal-convergent (resp. FOlocal
p -convergent) and ρ-non-dispersive

then it has a modeling FOlocal-limit (resp. a FOlocal
p -limit).

Then C admits modeling limits (resp. modeling FOp-limits).
Moreover, if in cases (1) and (2) the modeling limits satisfy the Strong Finitary Mass

Transport Principle, then C admits modeling limits (resp. modeling FOp-limits) that sat-
isfy the Strong Finitary Mass Transport Principle.

Then we apply this theorem in Section 8 to give a simple proof of the fact that the
class of forests admit modeling limits.

Theorem 2. The class of finite forests admits modeling limits: every FO-convergent
sequence of finite forests as a modeling FO-limit that satisfies the Strong Finitary Mass
Transport Principle.

Note that the same result as Theorem 2 was independently claimed by Král’, Kupec,
and Tůma (personal communication), and very recently extended (using some techniques
of this paper) by these authors and others to plane rooted trees and graphs with bounded
pathwidth [6].

2 Preliminaries

Let A be a relational structure with signature λ and universe A, and let X ⊆ A. The
substructure A[X] induced by X has domain X and the same relations as A (restricted
to X). A class C of λ-structures is hereditary if every induced substructure of a structure
in C belongs to C: (∀A ∈ C,∀X ⊂ A) A[X] ∈ C.

The distance between two vertices u, v ∈ A is the smallest number of relations inducing
a connected substructure of A and containing both u and v, that is the graph distance
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between u and v in the Gaifman graph of A. For r ∈ N and v ∈ A, we denote by
Br(A, v) the ball of radius r centered at v, that is the substructure of A induced by the
vertices at distance at most r from v in A. More generally, for v1, . . . , vk ∈ A, we denote
by Br(A, v1, . . . , vk) the substructure of A induced by the vertices at distance at most r
from at least one of the vi (1 6 i 6 k) in A.

Let φ be a first-order formula. The quantifier rank qrank(φ) of φ is the maximum
depth of quantification in φ. The solution set φ(A) of a formula φ (with p free variables)
in A is:

φ(A) = {(v1, . . . , vp) ∈ Ap : A |= φ(v1, . . . , vp)}.
A formula φ ∈ FOlocal

p is r-local if its satisfaction only depends on the r-neighborhood of
the free variables, that is: for every λ-structure A and every v1, . . . , vp ∈ Ap it holds

A |= φ(v1, . . . , vp) ⇐⇒ Br(A, v1, . . . , vp) |= φ(v1, . . . , vp).

Recall the particular case of Gaifman locality theorem for sentences, which we will be
usefull in the following. A local sentence is a sentence of the form

∃x1 . . . ∃xk
( ∧
16i<j6k

dist(xi, xj) > 2r ∧
∧

16i6k

ψi(xi)
)
,

where r, k > 1 and ψi is r-local.

Theorem 3 (Gaifman [5]). Every first-order sentence is equivalent to a Boolean combi-
nation of local sentences.

We end this section with two very simple but useful lemmas. (As usual, the notation
〈φ, · 〉 stands for the function A 7→ 〈φ,A〉.)
Lemma 4. Let φ, ψ be formulas. Then it holds

|〈φ, · 〉 − 〈φ ∧ ψ, · 〉| 6 1− 〈ψ, · 〉.
Proof.

〈ψ ∧ φ, · 〉 6 〈φ, · 〉 = 〈¬ψ ∧ φ, · 〉+ 〈ψ ∧ φ, · 〉 6 〈¬ψ, · 〉+ 〈ψ ∧ φ, · 〉,
Thus

|〈φ, · 〉 − 〈φ ∧ ψ, · 〉| 6 〈¬ψ, · 〉 = 1− 〈ψ, · 〉.
Lemma 5. Let ψ1, . . . , ψp be formulas without common free variables. Then it holds

〈
p∧
i=1

ψi, · 〉 =

p∏
i=1

〈ψi, · 〉.

Proof. Let k = max{i : xi ∈
⋃p
j=1 Fv(ψj)}−

∑p
j=1 |Fv(ψj)|. Let ζ =

∧p
i=1 ψi(xi) For every

modeling A, the solution set ζ(A) can be obtained from ψO
1 (A) × · · · × ψO

p (A) × Ak by
permuting the coordinates, hence both sets have the same measure, that is:

〈
p∧
i=1

ψi, · 〉 =

p∏
i=1

〈ψO
i , · 〉 =

p∏
i=1

〈ψi, · 〉.
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3 What does Stone pairing measure?

By definition, the Stone pairing 〈φ,A〉 measures the probability that a given first-order
formula φ is satisfied in A by a random assignment of vertices of A to the free variables.
For this definition to make sense, we have to assume that every subset of a power of A that
is first-order definable without parameters is measurable. Hence we have to consider, for
each p ∈ N, a σ-algebra on Ap that contains all subsets of Ap that are first-order definable
without parameters.

The aim of this section is to prove that the minimal σ-algebra including all subsets of
Ap that are first-order definable without parameters is exactly the family of all subsets of
Ap that are Lω1ω-definable without parameters.

We take time out for two lemmas.

Lemma 6. Let Ω be a set. For p ∈ N, let Ap be a field of sets on Ωp, and let σ(Ap)
be the minimal σ-algebra that contains Ap. For p ∈ N, let fp : Ωp+1 → Ωp and let
Fp : P(Ωp+1)→ P(Ωp) be defined by Fp(X) = {fp(x) : x ∈ X}.

Assume that for each p ∈ N, Fp maps Ap+1 to Ap.
Then Fp maps σ(Ap+1) to σ(Ap).

Proof. The proof follows the standard construction of a σ-algebra by transfinite induction.
For p ∈ N, we let

• Sp,0 be the collection of sets obtained as countable unions of increasing sets in Ap,
that is: sets of the form

⋃
i∈NXi where Xi ∈ Ap and X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ . . . ;

• Pp,0 be the collection of sets obtained as countable intersections of decreasing sets in
Ap, that is: sets of the form

⋂
i∈NXi where Xi ∈ Ap and X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ . . . ;

• (for i > 1 not a limit ordinal) Sp,i be the collection of sets obtained as countable
unions of increasing sets in Pp,i−1;

• (for i > 1 not a limit ordinal) Pp,i be the collection of sets obtained as countable
intersections of decreasing sets in Sp,i−1;

• (for i limit ordinal) Sp,i =
⋃
j<i Sp,j and Pp,i =

⋃
j<i Pp,j.

Then it is easily checked that by induction that for every i up to ω1 it holds:

• for all X ∈ Ωp, (X ∈ Sp,i) ⇐⇒ (Ωp \X ∈ Pp,i);

• for every limit ordinal i, Sp,i = Pp,i;

• if X, Y ∈ Sp,i then X ∪ Y ∈ Sp,i and X ∩ Y ∈ Sp,i;

• if X, Y ∈ Pp,i then X ∪ Y ∈ Pp,i and X ∩ Y ∈ Pp,i;

• Fp maps Sp+1,i to Sp,i and Pp+1,i to Pp,i;
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According to the monotone class theorem, σ(Ap) = Sp,ω1 = Pp,ω1 .

Lemma 7. We consider a relational structure A with countable signature.
Let Ap (resp. A+

p ) be the field of sets of all the subsets of Ap that are first-order
definable without (resp. with) parameters. Then the smallest σ-algebra σ(Ap) ⊇ Ap (resp.
σ(A+

p ) ⊇ A+
p ) is the algebra of all the subsets of Ap that are definable in Lω1ω without

(resp. with) parameters.

Proof. Let Ω = L and fp : Ap+1 → Ap be the projection map. According to Lemma 6,
the projection map send sets in σ(Ap+1) to sets in σ(Ap) (and sets in σ(A+

p+1) to sets in
σ(A+

p )). It follows easily that subsets of Ap that are Lω1ω-definable without (resp. with)
parameters are exactly those in σ(Ap) (resp. σ(A+

p )).

Note that when A is a modeling, the collection of the subsets of Ap definable in Lω1ω

without parameters is the σ-algebra generated by the projection Tpp
A : Ap → S(B(FOp)),

mapping a p-tuple of vertices of A to its p-type: a subset X of Ap is definable in Lω1ω

without parameters if and only if it is the preimage by Tpp
A of a Borel subset of S(B(FOp))

(see [20] for detailed definition and analysis of Tpp
A ).

Corollary 1. For every modeling A the Stone pairing 〈 · ,A〉 can be extended in a unique
way to Lω1ω.

Theorem 8. Let A be a relational sample space. Then every subset of Ap that is Lω1ω-
definable (with parameters) is measurable (with respect to product Borel σ-algebra Σ⊗pA ).

Remark 9. Let Ξ(λ) be the set of all probability measures on the Stone space S(B(FO(λ))),
and let B be the σ-algebra on Ξ(λ) generated by evaluation maps µ 7→ µ(A) for measurable
set A of S(B(FO(λ))). It is well known that (Ξ(λ),B) is a standard Borel space ( [9], Sect.
17.E). (Hence the space of all finite λ-structures and their FO-limits is also a compact
standard Borel space, as it can be identified to a closed subspace of Ξ(λ).) The mapping
A 7→ νA embeds the space M of modelings into Ξ(λ). The initial topology on M with
respect to this mapping is the same as the topology induced by Stone pairing. Hence the
mapping 〈φ, · 〉 : M → [0, 1], which maps A to 〈φ,A〉, is continuous for φ ∈ FO(λ), and
measurable for φ ∈ Lω1ω(λ).

Also remark that the topology of Ξ(λ) can be defined by means of Lévy–Prokhorov
metric (by choosing some metric on the Stone space). For instance, for finite signature λ,
the topology of M can be generated by the pseudometric:

dist(A,B) = 2− sup{n| ∀φ∈FO(λ), qrank(φ)+|Fv(φ)|6n⇒|〈φ,A〉−〈φ,B〉|<2−n}.

3.1 Interpretation Schemes

Interpretation Schemes (introduced in this setting in [20]) generalize to other logics than
FO.

In the next definition, for a relational structure A, a formula φ with pk free variables,
and p vectors v1, . . . ,vp ∈ Ak (with vi = (vi,1, . . . , vi,k)) we use the usual shortcut notation

φ(v1, . . . ,vp) := φ(v1,1, . . . , v1,k, . . . , vp,1, . . . , vp,k).
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Definition 10. Let L be a logic (for us, FO or Lω1ω). For p ∈ N and a signature λ,
Lp(λ) denotes the set of the formulas in the language of λ in logic L, with free variables
in {x1, . . . , xp}.

Let κ, λ be signatures, where λ has q relational symbols R1, . . . , Rq with respective
arities r1, . . . , rq.

An L-interpretation scheme I of λ-structures in κ-structures is defined by an integer
k — the exponent of the L-interpretation scheme — a formula E ∈ L2k(κ), a formula
θ0 ∈ Lk(κ), and a formula θi ∈ FOrik(κ) for each symbol Ri ∈ λ, such that:

• the formula E defines an equivalence relation of k-tuples;

• each formula θi is compatible with E, in the sense that for every 0 6 i 6 q it holds∧
16j6ri

E(xj,yj) ` θi(x1, . . . ,xri)↔ θi(y1, . . . ,yri),

where r0 = 1, boldface xj and yj represent k-tuples of free variables, and where
θi(x1, . . . ,xri) stands for θi(x1,1, . . . , x1,k, . . . , xri,1, . . . , xri,k).

For a κ-structure A, we denote by I(A) the λ-structure B defined as follows:

• the domain B of B is the subset of the E-equivalence classes [x] ⊆ Ak of the tuples
x = (x1, . . . , xk) such that A |= θ0(x);

• for each 1 6 i 6 q and every v1, . . . ,vsi ∈ Akri such that A |= θ0(vj) (for every
1 6 j 6 ri) it holds

B |= Ri([v1], . . . , [vri ]) ⇐⇒ A |= θi(v1, . . . ,vri).

From the standard properties of model theoretical interpretations (see, for instance
[10] p. 180), we state the following: if I is an L-interpretation of λ-structures in κ-
structures, then there exists a mapping Ĩ : L(λ)→ L(κ) (defined by means of the formulas
E, θ0, . . . , θq above) such that for every φ ∈ Lp(λ), and every κ-structure A, the following
property holds (while letting B = I(A) and identifying elements of B with the corre-
sponding equivalence classes of Ak):

For every [v1], . . . , [vp] ∈ Bp (where vi = (vi,1, . . . , vi,k) ∈ Ak) it holds

B |= φ([v1], . . . , [vp]) ⇐⇒ A |= Ĩ(φ)(v1, . . . ,vp).

It directly follows from the existence of the mapping Ĩ that

• an FO-interpretation scheme I of λ-structures in κ-structures defines a continuous
mapping from S(B(FO(κ))) to S(B(FO(λ)));

• an Lω1ω-interpretation scheme I of λ-structures in κ-structures defines a measurable
mapping from S(B(FO(κ))) to S(B(FO(λ))).
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Definition 11. Let κ, λ be signatures.
An injective L-interpretation scheme I of λ-structures in κ-structures with exponent k

is defined by a formula θ0 ∈ Lk(κ), and a formula θi ∈ Lkri(κ) for each symbol Ri ∈ λ
with arity ri.

For a κ-structure A, we denote by I(A) the structure with domain θ0(A) such that,
for every Ri ∈ λ with arity ri and every v1, . . . ,vri ∈ Ak it holds

I(A) |= Ri(v1, . . . ,vri) ⇐⇒ A |= θi(v1, . . . ,vri).

A basic L-interpretation scheme is an injective L-interpretation scheme such that θ0
is universally true (i.e. θ0(A) = Ak).

It is immediate that every injective L-interpretation scheme I defines a mapping Ĩ :
L(λ)→ L(κ) such that for every κ-structure A, every φ ∈ Lp(λ), and every v1, . . . ,vp ∈
θ0(A) it holds

I(A) |= φ(v1, . . . ,vp) ⇐⇒ A |= Ĩ(φ)(v1, . . . ,vp)

We deduce the following general properties:

Lemma 12 ( [20]). Let I be an FO-interpretation scheme of λ-structures in κ-structures.
Then, if a sequence (An)n∈N of finite κ-structures is FO-convergent then the sequence

(I(An))n∈N of (finite) λ-structures is FO-convergent.

Lemma 13. Let I be an Lω1ω-interpretation scheme of λ-structures in κ-structures.
If I is injective and A is a relational sample space, then I(A) is a relational sample

space.
Furthermore, if I is a basic Lω1ω-interpretation scheme and A is a modeling, then I(A)

is a modeling and for every φ ∈ Lp(λ), it holds

〈φ, I(A)〉 = 〈̃I(φ),A〉.

Proof. Assume I is an injective Lω1ω-interpretation scheme, A is a relational sample space,
and B = I(A).

We first mark all the (finitely many) parameters and reduce to the case where the
interpretation has no parameters (as in the case of FO-interpretation, see [20]). As B =
θ0(A) is L-definable in A it holds B ∈ Σk

A. Thus B is is a Borel sub-space of Ak and
(B,ΣB) is a standard Borel space.

Let D be L-definable in B. Then D is L-definable in A thus a Borel subset of Ak (as
A is a relational sample space) hence a Borel subset of B. It follows that (B,ΣB) is a
λ-relational sample space.

Assume I is a basic Lω1ω-interpretation scheme and A is a modeling. The pushforward
of νA by I defines a probability measure on I(A) such that for every φ ∈ Lp(λ), it holds

〈φ, I(A)〉 = I∗(νA)(φ(I(A))) = νA(̃I(φ)(A)) = 〈̃I(φ),A〉.
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4 Residual Sequences

Every modeling can be decomposed into countably many connected components with
non-zero measure and an union of connected components with (individual) zero measure.
A residual modeling is a modeling, all components of which have zero measure.

Lemma 14. A modeling A is residual if it holds

∀r ∈ N,∀v ∈ A νL(Br(A, v)) = 0.

Proof. Assume that for every r ∈ N and every v ∈ A it holds νA(Br(A, v)) = 0. For
u ∈ A, the connected component Cu of u is Cu =

⋃
r∈NBr(A, u). As all these balls are

first-order definable (hence measurable) we deduce

νA(Cu) = lim
r→∞

νA(Br(A, u)) = 0.

It follows that every connected component of A has zero-measure, hence A is residual.
Conversely, assume that there exists u ∈ A and r ∈ N such that νA(Br(A, u)) >

0. Then the connected component of u does not have zero measure, hence A is not
residual.

This equivalence justifies the following notion of residual sequence.

Definition 15 (Residual sequence). A sequence (An)n∈N of modelings is residual if

∀r ∈ N, lim sup
n→∞

sup
v∈An

νAn(Br(An, v)) = 0.

Lemma 16. Let φ ∈ FOlocal
p be r-local, and define the formula

θr(x1, . . . , xp) :
∧

16i<j6p

dist(xi, xj) > 2r.

Then there exist r-local formulas ψ1, . . . , ψN ∈ FOlocal
1 and a subset F of {1, . . . , N}p

such that it holds

|〈φ, · 〉 −
∑

(a1,...,ap)∈F

p∏
i=1

〈ψai , · 〉| 6 2(1− 〈θr, · 〉).

Proof. According to Lemma 4 it holds

|〈φ, · 〉 − 〈φ ∧ θr, · 〉| 6 1− 〈θr, · 〉.

As φ and θr are r-local, so is φ∧ θr. Let q be the quantifier rank of the formula φ∧ θr. As
θr prevents the satisfaction of φ∧ θr when two free variables are at distance less than 2r,
the satisfaction of φ∧θr only depends on the r-local formulas with quantifier rank at most
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q satisfied by each the free variables, (as easily checked by using a standard Ehrenfeucht-
Fräıssé game). As there exist only finitely many non-logically equivalent formulas with
quantifier rank q, there exist r-local formulas ψ1, . . . , ψN ∈ FOlocal

1 such that φ ∧ θr is
logically equivalent to a Boolean combination of ψ1, . . . , ψN . We can obviously choose
ψ1, . . . , ψN such that ψi ∧ ψj is universally false for i 6= j (by possibly increasing N).
Then there exists a subset F of {1, . . . , N}p such that φ ∧ θr is logically equivalent to

ζ :=
∨

(a1,...,ap)∈F

p∧
i=1

ψai(xi)

(where ψai(xi) denotes the formula ψai with free variable x1 renamed xi). Thus, according
to Lemma 4, it holds

|〈ζ, · 〉 − 〈φ ∧ θr, · 〉| 6 1− 〈θr, · 〉.
As the formulas ψai(xi) use no common free variables and as ψi ∧ ψj is universally false
for i 6= j it holds (by Lemma 5 and additivity of probabilities):

〈
p∧
i=1

ψai(xi), · 〉 =

p∏
i=1

〈ψai , · 〉.

〈ζ, · 〉 = 〈
∨

(a1,...,ap)∈F

p∧
i=1

ψai(xi), · 〉 =
∑

(a1,...,ap)∈F

p∏
i=1

〈ψai , · 〉.

Hence the result.

Corollary 2. Let φ ∈ FOlocal
p be r-local.

Then there exist r-local formulas ψ1, . . . , ψN ∈ FOlocal
1 and a subset F of {1, . . . , N}p

such that for every modeling A it holds

|〈φ,A〉 −
∑

(a1,...,ap)∈F

p∏
i=1

〈ψai ,A〉| < p2 sup
v∈A

νA(B2r(A, v)).

Proof. Let θr be defined as in Lemma 16. By union bound, we get

〈¬θr,A〉 = 〈
∨

16i<j6p

dist(xi, xj) 6 2r,A〉

6

(
p

2

)
〈dist(x1, x2) 6 2r,A〉

=

(
p

2

)
sup
v∈A

νA(B2r(A, v)),

and the result follows from Lemma 16.

Lemma 17. A residual sequence is FOlocal-convergence if and only if it is FO1
local-

convergent.
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Proof. Let (An)n∈N be a residual sequence.
If (An)n∈N is FOlocal-convergent, it is FOlocal

1 -convergent;
Assume (An)n∈N is FOlocal

1 -convergent, let φ ∈ FOlocal
p be an r-local formula, and let

θr be the formula
∧

16i<j6p dist(xi, xj) > 2r.
As C is residual, it holds

lim
n→∞
〈θr,An〉 = 1.

According to Lemma 16, there exist r-local formulas ψ1, . . . , ψN ∈ FOlocal
1 and a subset F

of {1, . . . , N}p such that for every n ∈ N it holds

|〈φ,An〉 −
∑

(a1,...,ap)∈F

p∏
i=1

〈ψai ,An〉| 6 2(1− 〈θr,An〉).

Hence

lim
n→∞
〈φ,An〉 = lim

n→∞

∑
(a1,...,ap)∈F

p∏
i=1

〈ψai ,An〉 =
∑

(a1,...,ap)∈F

p∏
i=1

lim
n→∞
〈ψai ,An〉.

Hence for residual sequences, FOlocal
1 -convergence implies FOlocal-convergence.

To every formula φ ∈ FOlocal
p and integer r ∈ N we associate the formula Λr(φ) ∈

FOlocal
p defined as

(∃y1, . . . , yp)
p∧
i=1

(dist(xi, yi) 6 2r) ∧ φ(y1, . . . , yp).

Definition 18. A modeling A is clean if for every formula φ ∈ FOlocal
1 it holds

A |= (∃x) φ(x) ⇐⇒ ∃r ∈ N : 〈Λr(φ),A〉 > 0.

(Note that the right-hand side condition is equivalent to limr→∞〈Λr(φ),A〉 > 0.)

Lemma 19. Let A be a residual clean modeling and let φ ∈ FOlocal
1 .

If φ(A) is not empty, then it is uncountable.

Proof. Assume φ(A) is not empty. As A is clean, there exists an integer r such that
〈Λr(φ),A〉 > 0, that is: νA(Λr(φ)(A)) > 0. Clearly Λr(φ)(A) =

⋃
v∈φ(A)B2r(A, v).

Assume for contradiction that φ(A) is countable. Then

νA(Λr(φ)(A)) 6
∑

v∈φ(A)

νA(B2r(A, v)).

As A is residual, for every v ∈ A it holds νA(B2r(A, v)) = 0, what contradicts the
assumption νA(Λr(φ)(A)) > 0.
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Let X be a fragment of FO. Two modeling A and A′ are X-equivalent if, for every
φ ∈ X it holds 〈φ,A′〉 = 〈φ,A〉. We shall now show how any modeling can be transformed
into a residual clean modeling, which is FOlocal

1 -equivalent.

Lemma 20. Let A be a modeling. Then there exists a residual modeling A′ that is
FOlocal

1 -equivalent to A.

Proof. Consider the modeling A′ with universe A′ = A × [0, 1], measure νA′ = νA ⊗ λ
(where λ is standard Borel measure of [0, 1]) and relations defined as follows: for every
relation Ri of arity ri it holds

A′ |= Ri((v1, α1), . . . , (vri , αri)) ⇐⇒ A |= Ri(v1, . . . , vri) and α1 = · · · = αri .

Then A′ is residual and for every φ ∈ FOlocal
1 it holds

〈φ,A〉 = νA′(φ(A′)) = νA′(φ(A)× [0, 1]) = νA(φ(A)) = 〈φ,A′〉.

Lemma 21. Let A be a residual modeling. Then there exists a residual clean modeling
A′ obtained from A by removing a union of connected components with global νA-measure
zero.

Proof. Let φ ∈ FOlocal
1 be such that A |= (∃x)φ(x) and limr→∞〈Λr(φ),A〉 = 0. For v ∈ A,

denote by Av the connected component of A that contains v, that is: Av =
⋃
r∈NBr(A, v).

Note that if A |= φ(v) and if u ∈ Av then A |= Λr(φ)(u) but 〈Λr(Λr(φ)),A〉 =
〈Λr(φ),A〉 = 0.

Note that the assumption on φ rewrites as “φ(A) 6= ∅ while for every v ∈ φ(A) it
holds νA(Av) = 0”.

Then

νA
( ⋃
v∈φ(A)

Av

)
= νA

( ⋃
v∈φ(A)

⋃
r∈N

Br(A, v)
)

= νA
(⋃
r∈N

⋃
v∈φ(A)

Br(A, v)
)

= νA
(⋃
r∈N

Λr(φ)(A)
)

=
∑
r∈N

〈Λr(φ),A〉 = 0.

Denote by F the set of all φ ∈ FOlocal
1 such that

A |= (∃x)φ(x) and lim
r→∞
〈Λr(φ),A〉 = 0,

and let A′ be obtained by removing
⋃
φ∈F

⋃
v∈φ(A) Av from A. As for every φ ∈ F it

holds νA
(⋃

v∈φ(A) Av

)
= 0 and as F is countable, the modeling A′ differs from A by a set

of connected components of global measure 0. Moreover, it is clear that A′ is clean.

Recall that FO-convergence can be decomposed into elementary convergence and
FOlocal-convergence:

the electronic journal of combinatorics 23(2) (2016), #P2.52 15



Lemma 22 ( [18, 20]). A sequence (An)n∈N is FO-convergent if and only if it is both
elementary convergent and FOlocal-convergent.

Consequently, a modeling L is a modeling FO-limit of a sequence (An)n∈N if and only
if it is both an elementary limit and a modeling FOlocal-limit of it.

The interest of residual clean modelings stands in the following.

Lemma 23. Let (Gn)n∈N be a residual FO-convergent sequence.
If L is a residual clean modeling FOlocal

1 -limit of (Gn)n∈N and M is a countable ele-
mentary limit of (Gn)n∈N then the disjoint union L ∪M (with νL∪M(X) = νL(X ∩ L)) is
a modeling FO-limit of (Gn)n∈N.

Proof. According to Theorem 3, it is sufficient to check that if ψ1, . . . , ψn are r-local
formulas with a single free variable and if we let

φ(x1, . . . , xn) :
∧

16i<j6n

dist(xi, xj) > 2r ∧
n∧
i=1

ψi(xi)

then it holds

L ∪M |= (∃x1, . . . xn)φ(x1, . . . , xn) ⇐⇒ M |= (∃x1, . . . xn)φ(x1, . . . , xn).

But (according to the locality assumptions) it is equivalent to check that for every r-local
ψ1, . . . , ψn and associated φ it holds

L |= (∃x1, . . . xn)φ(x1, . . . , xn) ⇒ M |= (∃x1, . . . xn)φ(x1, . . . , xn).

But if L |= (∃x1, . . . xn)φ(x1, . . . , xn), then forall 1 6 i 6 n it holds L |= (∃x)ψi(x) hence,
as L is clean, it that there exists r0 ∈ N such that 〈Λr0(ψi),L〉 > 0 for every 1 6 i 6 n.
As L is residual, this implies 〈Λr0(φ),L〉 > 0. Thus there exits n0 such that for every
n > n0 it holds 〈Λr0(φ), Gn〉 > 0. In particular the elementary limit M of Gn satisfies
(∃x1, . . . , xn)φ(x1, . . . , xn).

Corollary 3. A residual FO-convergent sequence (Gn)n∈N admits a modeling FO-limit if
and only if it admits a modeling FOlocal

1 -limit.

In this context, the following conjecture is interesting.

Conjecture 1. Every FO-convergent residual sequence admits a modeling FO-limit.

Note that, according to Lemmas 20, 21 and 23, Conjecture 1 is equivalent to the
(seemingly weaker) conjecture that every FOlocal

1 -convergent residual sequence admits a
modeling FOlocal

1 -limit.
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5 Non-dispersive Sequences

The notion of residual sequences derives from the notion of residual modelings, that is:
modelings without connected components with non-zero measure). Similarly the notion
of non-dispersive sequences derives from the notion of connected modelings (modulo a
zero-measure set).

Definition 24. A sequence (An)n∈N of modelings is non-dispersive if

∀ε > 0∃d ∈ N, lim inf
n→∞

sup
v∈An

νAn(Bd(An, v)) > 1− ε.

In the case of rooted structures, we usually want a stronger statement that the struc-
tures remain concentrated around their roots: a sequence (An, ρn)n∈N of rooted modelings
is ρ-non-dispersive if

∀ε > 0∃d ∈ N, lim inf
n→∞

νAn(Bd(An, ρn)) > 1− ε.

Note that every ρ-non-dispersive sequence is obviously non-dispersive.

Remark 25. Let (An)n∈N be a non-dispersive FOlocal-convergent sequence. If (An)n∈N has
a modeling FOlocal-limit L, then L has a full measure connected component, which is also
a modeling FOlocal-limit of (An)n∈N.

Lemma 26. Let (An, ρn)n∈N be a ρ-non-dispersive FO1-convergent sequence, with mod-
eling FOlocal

1 -limit (L, ρ) and a countable elementary limit (M,%).
Let M• and L• be the connected component of the root in M and L, respectively. Then

M• and L• are elementarily equivalent.

Proof. As (An, ρn)n∈N is ρ-non-dispersive, L• has full measure. According to Theorem 3,
it is sufficient to check that if ψ1, . . . , ψn are r-local formulas with a single free variable
and if we let

φ(x1, . . . , xn) :
∧

16i<j6n

dist(xi, xj) > 2r ∧
n∧
i=1

ψi(xi)

then it holds

M• |= ∃x1 . . . ∃xn φ(x1, . . . , xn) ⇐⇒ L• |= ∃x1 . . . ∃xn φ(x1, . . . , xn).

Assume L• |= ∃x1 . . . ∃xn φ(x1, . . . , xn). Let v1, . . . , vn ∈ L• be such that L• |=
φ(v1, . . . , vn). As L• is a full measure connected component of L, there exists d >
max16i6n dist(vi, ρ) such that νL(Bd(L, ρ)) > 1/2. Let ζ ∈ FOlocal

1 be the 2d-local formula

∃y1 . . . ∃yn
( n∧
i=1

dist(x1, yi) 6 2d ∧ φ(y1, . . . , yn)
)
.

Then obviously ζ(L) ⊇ Bd(L, ρ) hence 〈ζ,L〉 > 1/2. As L is a modeling FOlocal
1 -limit

of (An, ρn)n∈N, there exists n0 such that for every n > n0 it holds 〈ζ,An〉 > 1/4.
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In particular, for every n > n0 it holds An |= ∃x1 . . . ∃xn φ(x1, . . . , xn) hence M• |=
∃x1 . . . ∃xn φ(x1, . . . , xn).

Conversely, assume that M• |= ∃x1 . . . ∃xn φ(x1, . . . , xn). Let v1, . . . , vn ∈M• be such
that M• |= φ(v1, . . . , vn), and let d = max16i6n dist(vi, %). As (M•, ρn) is an elementary
limit of (An, ρn)n∈N, there exists n0 such that for every n > n0 it holds

An |= ∃x1 . . . ∃xn
( n∧
i=1

dist(xi, ρn) 6 d ∧ ψ(x1, . . . , xn)
)
.

As (An, ρn)n∈N is ρ-non-dispersive, there exists D > d and n1 > n0 such that for every
n > n0, it holds |BD(An, ρn)| > |An|/2. Let ζ ∈ FOlocal

1 be the 2D-local formula

∃y1 . . . ∃yn
( n∧
i=1

dist(x1, yi) 6 2D ∧ φ(y1, . . . , yn)
)
.

Then obviously ζ(An) ⊇ BD(An, ρn) hence 〈ζ,An〉 > 1/2. As L is a modeling FOlocal
1 -

limit of (An, ρn)n∈N, it holds 〈ζ,L〉 > 1/2 hence, as L• is full dimensional, all of ζ(L) but a
subset with νL-measure zero is included in Ln• . Hence L• |= ∃x1 . . . ∃xn φ(x1, . . . , xn).

Lemma 27. Let p > 1 and let (An, ρn)n∈N be a ρ-non-dispersive FOp-convergent sequence,
with modeling FOlocal

p -limit (L, ρ) and countable elementary limit (M,%).
Let M• and L• be the connected components of the root in M and L, respectively.

Then L• ∪ (M \M•) is a modeling FOp-limit of (An, ρn)n∈N.

Proof. According to Lemma 26, L• and M• are elementarily equivalent, so L•∪ (M \M•)
and M are elementarily equivalent. It follows that L• ∪ (M \M•) is both an elementary
limit of (An, ρn)n∈N and a modeling FOlocal

p -limit of (An, ρn)n∈N (as it differs from L by
a set of connected components with global measure zero) hence a modeling FOp-limit of
(An, ρn)n∈N.

Problem 1. Let (An)n∈N be a non-dispersive FOlocal
1 -convergent sequence with modeling

FOlocal
1 -limit L. Does there exist ρn ∈ An and ρ ∈ L such that (An, ρn)n∈N is a ρ-non-

dispersive FOlocal
1 -convergent sequence with modeling FOlocal

1 -limit (L, ρ)?

Sometimes, ρ-non-dispersive sequences may be still quite difficult to handle, and se-
quences with bounded diameter may be more tractable. It is thus natural to consider to
what extent it could be possible to further reduce to the bounded diameter case. We give
here a partial answer.

Lemma 28. Let (An, ρn) be a ρ-non-dispersive FOlocal
p -convergent sequence, and let (L, ρ)

be a connected modeling.
Assume that for each d ∈ N, it holds that (Bd(L, ρ), ρ) is a modeling FOlocal

p -limit of

(Bd(An, ρn), ρn). Then (L, ρ) is a modeling FOlocal
p -limit of (An, ρn).
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Proof. Let φ ∈ FOlocal
p be r-local and let ε > 0. As (An, ρn)n∈N is ρ-non-dispersive there

exists d0 such that lim infn→∞ νAn(Bd0(An, ρn)) > 1− ε/2, thus there exists n0 such that
for every d > d0 and n > n0 it holds |Bd(An, ρn)| > (1 − ε)|An|. As L is connected,
it holds L =

⋃
dBd(L, ρ). By monotone convergence theorem it holds 1 = νL(L) =

limd→∞ νL(Bd(L, ρ)). Hence there exists d > d0 such that νL(Bd(L, ρ)) > 1− ε.
Let θ be the formula dist(x1, ρ) 6 d− r, and let θ(p) be the formula

∧p
i=1 θd(xi). Note

that

〈θ, Bd(An, ρn)〉 =
|Bd−r(An, ρn)|
|Bd(An, ρn)| >

|Bd−r(An, ρn)|
|An|

= 〈θ,An〉.

According to Lemma 4 it holds

|〈φ,An〉 − 〈φ ∧ θ(p),An〉| 6 1− 〈θ,An〉p < pε.

and also

|〈φ,Bd(An, ρn)〉 − 〈φ ∧ θ(p), Bd(An, ρn)〉| 6 1− 〈θ, Bd(An, ρn)〉p < pε.

According to the r-locality of φ, it holds 〈φ ∧ θ(p),An〉 = 〈φ ∧ θ(p), Bd(An, ρn)〉, hence

|〈φ,An〉 − 〈φ,Bd(An, ρn)〉| < 2pε.

Similarly, it holds
|〈φ,L〉 − 〈φ,Bd(L, ρ)〉| < 2pε.

By assumption, Bd(L, ρ) is a modeling FOlocal
p -limit of (Bd(An, ρn))n∈N. Thus there exists

n1 > n0 such that |〈φ,Bd(L, ρ)〉 − 〈φ,Bd(An, ρn)〉| < pε, hence for every n > n1 it holds

|〈φ,L〉 − 〈φ,An〉| < 5pε.

Considering ε→ 0, we deduce

〈φ,L〉 = lim
n→∞
〈φ,An〉.

6 Breaking

The aim of this section is to prove that the study of FO-convergent sequences of structures
in a hereditary class naturally reduces to the study of residual sequences and ρ-non-
dispersive sequences in that class.

Advancing towards the main result of this section, Theorem 36, we state four technical
lemmas.

Lemma 29. Let 0 < ε 6 1 and let r ∈ N.
Then, for every graph G there exists a subset A of vertices such that

1. for every a ∈ A, it holds |B2r(G, a)| > ε|G|;

2. for every v /∈ ⋃a∈AB2r(G, a), it holds |Br(G, v)| < ε|G|;
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3. |A| 6 1/ε.

Proof. Let A be a maximal subset of vertices of G such that

• for every a ∈ A, it holds |Br(G, a)| > ε|G| (Hence (1) holds);

• for every distinct x, y ∈ A, it holds Br(G, x) ∩Br(G, y) = ∅.
Obviously, |A| 6 1/ε, hence (3) holds. Moreover, by maximality of X, if v is any vertex
such that |Br(G, v)| > ε|G| then there exists a ∈ A such that Br(G, a) ∩ Br(G, v) 6= ∅,
thus v ∈ B2r(G, a). Hence (2) holds.

Lemma 30. Let ε > 0, let r ∈ N and let (Gn)n∈N be an FOlocal-convergent sequence.
Then there exists integer q 6 1/ε, integer D, and increasing function N : N → N and
an FOlocal-convergent sequence (G+

n )n∈N of q-rooted graphs, such that G+
n is a q-rooting of

GN(n) (with roots cn1 , . . . , c
n
q ) and

• limn→∞ distG+
n

(cni , c
n
j ) =∞ for every 1 6 i < j 6 q;

• BD(G+
n , c

n
i ) ∩BD(G+

n , c
n
j ) = ∅ for every 1 6 i < j 6 q and every n ∈ N;

• |BD(G+
n , c

n
i )| > ε|G+

n | for every 1 6 i 6 q and every n ∈ N;

• |Br(G
+
n , v)| < ε|G+

n | for every v /∈ ⋃q
i=1BD(G+

n , c
n
i ) and every n ∈ N.

Proof. Consider the signature obtained by adding K = b1/εc unary symbols R1, . . . , RK .
According to Lemma 29, there exists, for each Gn, vertices zn1 , . . . , z

n
kn

such that

• for every 1 6 i 6 kn, it holds |B2r(Gn, z
n
i )| > ε|Gn|;

• for every v /∈ ⋃kn
i=1B2r(Gn, z

n
i ), it holds |Br(Gn, v)| < ε|Gn|;

• kn 6 K.

We mark vertex zn1 , . . . , z
n
kn

by R1, . . . , Rkn thus obtaining a structure An. By compact-
ness, the sequence (An)n∈N has an FO-converging subsequence (AN1(n))n∈N. Moreover,
as the number of roots of An converges (by elementary convergence), we can assume
without loss of generality that the subsequence is such that all the structures AN1(n) use
exactly the marks R1, . . . , Rp (with p 6 K). According to the elementary convergence of

(AN1(n))n∈N, the limit di,j = limn→∞ distAN1(n)
(z
N1(n)
i , z

N1(n)
j ) exists for every 1 6 i < i 6 p

and this limit can be either an integer or ∞. Let I be a maximal subset of {1, . . . , p}
such that di,j =∞ for every distinct i, j ∈ I, and let q = |I|. Without loss of generality,
we assume that I = {1, . . . , q}. Define

D = 2r + max{di,j|1 6 i < j 6 p and di,j <∞}.

Then for each q < i 6 p there is 1 6 j 6 q such that the ball B2r(AN1(n), z
N1(n)
i ) is included

in the ball BD(AN1(n), z
N1(n)
j ). As di,j = ∞ for every 1 6 i < j 6 q, there exists n0 such

that for every n > n0 it holds distAN1(n)
(z
N1(n)
i , z

N1(n)
j ) > 2D. We let N(n) = N1(n+ n0),

cni = z
N(n)
i , and G+

n = AN(n).
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Let 0 < ε 6 1, let r,D ∈ N, and let (G+
n )n∈N be an FO-convergent sequence of q-rooted

graphs (with roots cni ) such that

• limn→∞ distG+
n

(cni , c
n
j ) =∞ for every 1 6 i < j 6 q;

• BD(G+
n , c

n
i ) ∩BD(G+

n , c
n
j ) = ∅ for every 1 6 i < j 6 q and every n ∈ N;

• |BD(G+
n , c

n
i )| > ε|G+

n | for every 1 6 i 6 q and every n ∈ N;

• |Br(G
+
n , v)| < ε|G+

n | for every v /∈ ⋃q
i=1BD(G+

n , c
n
i ) and every n ∈ N.

For 1 6 i 6 q, we define the function fi : N→ R+ by

fi(d) = lim
n→∞

|Bd(G
+
n , c

n
i )|

|G+
n |

.

and we let λi = limd→∞ fi(d).
For 1 6 i 6 q, we also define gi : N× (0, 1)→ N by

gi(d, x) = min

{
n0 : (∀n > n0)

∣∣∣∣ |Bd(G
+
n , c

n
i )|

|G+
n |

− fi(d)

∣∣∣∣ < x

}
.

We further define the function h : N→ N by

h(x) = min{d : fi(d) > λi − x},

and the function w : N→ N by

w(d) = min{n0 : (∀n > n0) (∀1 6 i < j 6 q) distG+
n

(cni , c
n
j ) > 2d}.

Lemma 31. For every ε′ > 0 and r′ ∈ N there exist d0, n0 ∈ N such that for every n > n0

it holds

• fi(d0 − r′) > λi − ε′,

• |Bd0−r′(G
+
n , c

n
i )− fi(d0 − r′)| < ε′|G+

n |,

• |Bd0(G
+
n , c

n
i )− fi(d0)| < ε′|G+

n |,

• |Bd0+r′(G
+
n , c

n
i )− fi(d0 + r′)| < ε′|G+

n |,

• |Bd0+r′(G
+
n , c

n
i ) \Bd0−r′(G

+
n , c

n
i )| < ε′|G+

n |,

• the cni ’s are pairwise at distance strictly greater than 2d0 + 4r′.
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Proof. Choose d0 > D + 2r and > r + maxi hi(ε
′/3), n0 > w(d0 − r), and n0 >

maxi max(gi(d0 − r, ε′/3), gi(d0, ε
′/3), gi(d0 + r, ε′/3)). Note that the third condition then

follows from

|Bd0+r(G
+
n , c

n
i ) \Bd0−r(G

+
n , c

n
i )|

|G+
n |

6

∣∣∣∣ |Bd0+r(G
+
n , c

n
i )

|G+
n |

− fi(d0 + r)

∣∣∣∣
+

∣∣∣∣ |Bd0−r(G
+
n , c

n
i )

|G+
n |

− fi(d0 − r)
∣∣∣∣

+ fi(d0 + r)− fi(d0 − r)

and the obvious inequality fi(d0 + r)− fi(d0 − r) 6 λi − fi(d0 − r).

Lemma 32. For every ε′ > 0 and r′ ∈ N there exist d0, n0 ∈ N with the following
properties: Define rooted graphs Hi,n = (Bd0(G

+
n , c

n
i ), cni ) and unrooted graph Rn = G+

n \⋃
iHi,n, let G∗n = Rn ∪

⋃
iHi,n, and let G′n = Unmark(G∗n). Then for every n > n0:

• |Hi,n − λi|G+
n || < ε′|G+

n |,

• |Bd0(Hi,n, c
n
i )| > (1− ε′/ε)λi|G+

n |,

• for every vertex v ∈ Rn it holds |Br(Rn, v)| < ε|G+
n |,

• for every r′-local φ ∈ FOlocal
p (for the signature of the Gn’s) it holds |〈φ,Gn〉 −

〈φ,G′n〉| < pε′/ε.

Proof. Obviously, as φ only uses symbols in the signature of the Gn’s it holds 〈φ,Gn〉 =
〈φ,G+

n 〉 and 〈φ,G′n〉 = 〈φ,G∗n〉.
Let θ be the formula defined as(∨

i

dist(x1, ci) 6 d0 − r′
)
∨
(∧
i

dist(x1, ci) > d0 + r′
)
,

and let θ(p) be the formula
∧p
i=1 θ(xi).

For every n > n0, it holds 〈θ(p), G+
n 〉 = 〈θ,G+

n 〉p > (1 − ε′/ε)p hence 1 − 〈θ(p), G+
n 〉 <

pε′/ε. Thus
|〈φ,G+

n 〉 − 〈φ ∧ θ(p), G+
n 〉| 6 1− 〈θ(p), G+

n 〉 < pε′/ε.

Also, 〈θ(p), G∗n〉 = 〈θ,G∗n〉p > (1− ε′/ε)p hence 1− 〈θ(p), G∗n〉 < pε′/ε. Thus

|〈φ,G∗n〉 − 〈φ ∧ θ(p), G∗n〉| 6 1− 〈θ(p), G∗n〉 < pε′/ε

According to the r′-locality of φ it holds 〈φ∧θ(p), G+
n 〉 = 〈φ∧θ(p), G∗n〉. Hence |〈φ,Gn〉−

〈φ,G′n〉| < 2pε′/ε.

Now for a ∈ N we let ε′ = ε/a, r′ = a, Ĥi,a = Hi,n0(a), R̂a = Rn0(a) and Ĝa = G′n0(a)
.

Then it holds for every n ∈ N:

• (Ĥi,n)n∈N is ρ-non-dispersive,
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• limn→∞ |Ĥi,n|/|Ĝn| = λi,

• for every vertex v ∈ Rn it holds |Br(R̂n, v)| < ε|Gn|,

• for every r-local φ ∈ FOlocal
p and every n > r it holds |〈φ,Gn〉 − 〈φ, Ĝn〉| < p/n thus

(Gn)n∈N and (Ĝn)n∈N have the same FOlocal-limit.

We recall the following construction and result from [20].

Definition 33. Let Hi be modelings for i ∈ I ⊆ N and let (αi)i∈I be positive real numbers
such that

∑
i∈I αi = 1.

Let H be the disjoint union of the Hi, let ΣH = {⋃iXi : Xi ∈ ΣHi
} and, for X ∈ ΣH,

let νH(X) =
∑

i αiνHi
(X ∩Hi).

Then H is the convex combination of modelings Hi with weights αi and we denote it
by
∐

i∈I(Hi, αi).

(Note that it is easily checked that
∐

i∈I(Hi, αi) is a modeling.)

Definition 34 ( [20]). A family of sequences (Ai,n)n∈N (i ∈ I) of λ-structures is uniformly
elementarily convergent if, for every formula φ ∈ FO1(λ) there is an integer N such that
it holds

∀i ∈ I, ∀n′ > n > N, (Ai,n |= (∃x)φ(x)) =⇒ (Ai,n′ |= (∃x)φ(x)).

(Note that if a family (Ai,n)n∈N (i ∈ I) of sequences is uniformly elementarily conver-
gent, then each sequence (Ai,n)n∈N is elementarily convergent.)

The following theorem is proved in [20]:

Theorem 35. Assume J is a countable set, αi (i ∈ I) are reals, and (Bi,n)n∈N (i ∈ I) are

sequences of λ-structures such that αi = limn→∞
|Bi,n|

|
⋃

j∈I Bj,n| (∀i ∈ I),
∑

i∈I αi = 1, and for

each i ∈ I, (Bi,n)n∈N is FOlocal-convergent. Then An =
⋃
i∈I Bi,n is FOlocal-convergent.

Also, if there exist λ-modelings Li (i ∈ I) such that for each i ∈ I, Bi,n
FOlocal

−−−−→ Li, then

An
FOlocal

−−−−→∐
i∈I(Li, αi).

Moreover, if the family {(Bi,n)n∈N : i ∈ I} is uniformly elementarily-convergent, then
(An)n∈N is FO-convergent. Also, if there exist λ-modelings Li (i ∈ I) such that for each

i ∈ I it holds Bi,n
FO−→ Li (for i > 0 and i = 0 if α0 > 0) and B0,n

FO0−−→ L0 (if α0 = 0)

then An
FO−→∐

i∈I(Li, αi).

Theorem 36. Let (Gn)n∈N be an FOlocal
p -convergent sequence. Then there exist a ρ-

non-dispersive FOlocal
p -convergent sequences (Ĥi,n)n∈N of rooted graphs (i ∈ N), a residual

FOlocal
p -convergent sequence (R̂n)n∈N, positive real numbers λi > 0 with sum at most 1,

and an increasing function ϕ : N→ N such that:

1. The sequences (Gn)n∈N and (Ĝn)n∈N have the same FOlocal-limit, where Ĝn = Rn ∪⋃
i∈N Unmark(Ĥi,n).
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2. If (Ĥi,n)n∈N has FOlocal
p -modeling limit Li, (R̂n)n∈N has FOlocal

1 -modeling limit L0,

λ0 = 1 −∑i∈N λi, and L =
∐

i>0(Li, λi), then Unmark(L) is an FOlocal
p -modeling

limit of (Gn)n∈N.

3. Furthermore, if (Gn)n∈N is FOp-convergent, then it has a modeling FOp-limit, which
can be obtained by first cleaning L0, computing L, taking the disjoint union with
some countable graph, and then forgetting marks.

Our main result immediately follows from Theorem 36

Theorem 1. Let C be a hereditary class of structures.
Assume that for every An ∈ C and every ρn ∈ An (n ∈ N) the following properties

hold:

1. if (An)n∈N is FOlocal
1 -convergent and residual, then it has a modeling FOlocal

1 -limit;

2. if (An, ρn)n∈N is FOlocal-convergent (resp. FOlocal
p -convergent) and ρ-non-dispersive

then it has a modeling FOlocal-limit (resp. a FOlocal
p -limit).

Then C admits modeling limits (resp. modeling FOp-limits).
Moreover, if in cases (1) and (2) the modeling limits satisfy the Strong Finitary Mass

Transport Principle, then C admits modeling limits (resp. modeling FOp-limits) that sat-
isfy the Strong Finitary Mass Transport Principle.

7 Extended Comb Lemma

Definition 37. A component relation system for a class C of modelings is a sequence $d

of equivalence relations such that for every d ∈ N and for every A ∈ C there is a partition
of the $d-equivalence classes of A into two parts E0($d,A) and E+($d,A) such that:

• every class in E0($d,A) is a singleton;

• νA(
⋃ E0($d,A)) < ε(d) + η(|A|) (where limd→∞ ε(d) = limn→∞ η(n) = 0);

• two vertices x, y in
⋃ E+($d,A) belong to a same connected component of A if and

only if A |= $d(x, y) (i.e. iff x and y belong to a same class).

The proof of the next theorem essentially follows the lines of Section 3.3 of [20]. We
do not provide the updated version of the proof here, as the proof is quite long and
technical, but does not present particular additional difficulties when compared to the
original version.

Theorem 38 (Extended comb structure). Let (An)n∈N be an FOlocal-convergent sequence
of finite λ-structures with component relation system $d.

Then there exist I ⊆ N ∪ {0} and, for each i ∈ I, a real αi and a sequence (Bi,n)n∈N
of λ-structures, such that An =

⋃
i∈I Bi,n (for all n ∈ N),

∑
i∈I αi = 1, and for each i ∈ I

it holds
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• αi = limn→∞
|Bi,n|
|An| , and αi > 0 if i 6= 0;

• if i = 0 and α0 > 0 then (Bi,n)n∈N is FOlocal-convergent and residual;

• if i > 0 then (Bi,n)n∈N is FOlocal-convergent and non-dispersive.

Moreover, if (An)n∈N is FO-convergent we can require the family {(Bi,n)n∈N : i ∈ I} to be
uniformly elementarily-convergent.

8 Limit of Forests

8.1 Limit of Residual Sequences of Forests

In this section we shall prove that every FOlocal
1 -convergent residual sequence of trees has

a modeling FOlocal
1 -limit that satisfies the Strong Finitary Mass Transport Principle.

In this section, we consider rooted forests with edges oriented from the roots. Roots
are marked by unary relation M and arcs by binary relation R. Rooted forests are defined
by the following countable set of axioms:

1. for each r ∈ N, a formula stating that two distinct roots are at distance at least r
(for each r ∈ N);

2. a formula stating that every vertex has indegree exactly one if it is not a root, and
zero if it is a root;

3. for each r ∈ N, a formula stating that there is no circuit of length r.

In other words, a rooted forest is an directed acyclic graph such that all the vertices but
the roots (which are sources) have indegree 1, and such that each connected component
contains at most one root. Note that a rooted forest has two types of connected compo-
nents: connected components that contain a root, and (infinite) connected components
that do not contain a root.

We first state a lemma relating first-order properties of p-tuples in a rooted forest to
first-order properties of individual vertices.

Lemma 39. Fix rooted forests Y,Y′. Let u1, . . . , up be p vertices of Y, let u′1, . . . , u
′
p be

p vertices of Y′, and let r, n ∈ N. We denote by Parent the first-order defined mapping
that maps a non-root vertex to its unique in-neighbor and leaves roots fixed.

Assume that for every 1 6 i 6 p and every pr-local formula φ ∈ FOlocal
1 with quantifier

rank at most n+ r it holds

Y |= φ(ui) ⇐⇒ Y′ |= φ(u′i)

and that for every 1 6 i, j 6 p and every 0 6 k, l 6 r, it holds

Y |= Parentk(ui) = Parentl(uj) ⇐⇒ Y′ |= Parentk(u′i) = Parentl(u′j).

Then, for every r-local formula ψ ∈ FOlocal
p with quantifier rank at most n it holds

Y |= ψ(u1, . . . , up) ⇐⇒ Y′ |= ψ(u′1, . . . , u
′
p).
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Proof. The proof is similar to the proof of Lemma 4.13 in [20].

Lemma 40. Every FOlocal
1 -convergent residual sequence of forests (Yn)n∈N has a modeling

FOlocal
1 -limit that satisfies the Strong Finitary Mass Transport Principle.

Proof. Let (Yn)n∈N be an FOlocal
1 -convergent residual sequence of forests. We mark a root

(by unary relation M) in each connected component of Yn and orient the edges of Yn from
the root (we denote by R(x, y) the binary relation expressing the existence of an arc from
x to y). By extracting a subsequence, we assume that (the rooted oriented) (Yn)n∈N is
FOlocal

1 -convergent.
Connected components of the limit may or not contain a root. For instance, if Yn is

the union of
√
n copies of stars of order

√
n, then every connected component in the limit

contains a root; however, if Yn is a path of length n, only one connected component (with
zero measure) in the limit contains a root.

Local formulas form a Boolean algebra. Let S(B(FOlocal
1 )) be the dual Stone space,

and let S1 be the closed subspace of S(B(FOlocal
1 )) formed by all the T ∈ S(B(FOlocal

1 ))
that contain all the axioms of rooted forests (see the beginning of this section).

As (Yn)n∈N is FOlocal
1 -convergent, there exists (see [18, 20]) a limit measure µ on S1

such that for every φ ∈ FOlocal
1 it holds

lim
n→∞
〈φ, Yn〉 =

∫
S1

1K(φ)(T ) dµ(T ),

where K(φ) = {T ∈ S1 : φ ∈ T}.
We partition S1 into countably many measurable parts as follows:

• for each non-negative integer r, S
(r)
1 denotes the clopen subset of S1 defined by

S
(r)
1 = {T : ((∃z) M(z) ∧ dist(z, x1) = r) ∈ T};

• S◦1 is the closed subset of S1 defined by

S◦1 = S1 \
⋃
r>0

S
(r)
1 .

We further define a measurable mapping ζ : [0, 1) → [0, 1) as follows: Let x ∈ [0, 1),
x =

∑
i>0 xi2

−i (with {i : xi = 1} not cofinite). We define

ζ(x) = (
∑
i∈N

x2i2
−i) mod 1.

We define F : S1 → S1 by

F (T ) =

{
T if M(x1) ∈ T
{φ : ((∃z)R(z, x1) ∧ φ(z)) ∈ T} otherwise
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(Note that F (T ) is indeed an ultrafilter of B(FOlocal
1 ) as there exists exactly one z such

that R(z, x1).)

Define w : S1 \S(0)
1 → {0, 1, . . . ,∞} as the supremum of the integers k such that there

exists a tree A with universe A and a ∈ A such that there are at least k childs b1, . . . , bk
of a such that for all φ ∈ FOlocal

1 it holds A |= φ(bi) if and only if φ ∈ T .

Finally, we define the mapping ξ : (S1 \ S(0)
1 )× [0, 1)→ [0, 1) by

ξ(T, α) =

{
w(T )α mod 1 if w(T ) <∞
ζ(α) otherwise

Note that for every (T, α) ∈ (S1 \ S(0)
1 )× [0, 1), the set

{α′ ∈ [0, 1) : ξ(T, α′) = ξ(T, α)}

has cardinality w(T ) (if w(T ) <∞) and is infinite (if w(T ) =∞).
Using these special functions, we can construct limit modelings of residual sequences

of forests with the following simple form:
Let Z =

(⋃
r>0 S

(r)
1 × [0, 1)

)
∪
(
S◦1 × [0, 1)× S1

)
, where S1 is the unit circle (identified

here with reals mod 2π). It is clear that Z is the standard Borel space. We fix a real θ0
such that θ0 and π are incommensurable, and we define a rooted directed forest Z on Z
has follows:

• for z ∈ Z, it holds M(z) if and only if z ∈ S(0)
1 × [0, 1);

• for positive integer r and z ∈ S(r)
1 × [0, 1), z = (T, α), the vertex z has exactly one

incoming edge from the vertex (F (T ), ξ(T, α)) ∈ S(r−1)
1 × [0, 1);

• for z ∈ S◦1 × [0, 1) × S1, z = (T, α, θ) the vertex z has exactly one incoming edge
from the vertex (F (T ), ξ(T, α), θ + θ0).

It is easily checked that for z ∈ Z (z = (T, α) or z = (T, α, θ)), the set of formulas
φ ∈ FOlocal

1 such that Z |= φ(z) is exactly T .
We now prove that Z is a relational sample space. It suffices to prove that for every

p ∈ N and every ϕ ∈ FOlocal
p the set

ϕ(Z) = {(v1, . . . , vp) ∈ V p
h : Z |= ϕ(v1, . . . , vp)}

is measurable.
Let ϕ ∈ FOlocal

p and let n = qrank(ϕ). We partition Vh into equivalence classes modulo
≡n+r, which we denote C1, . . . , CN . Let i1, . . . , ip ∈ [N ] and, for 1 6 j 6 p, let vj and v′j
belong to Cij . According to Lemma 39, if for every 1 6 i < j 6 p and 1 6 k, l 6 r it
holds

Parentk(ui) = Parentl(u, j) ⇐⇒ Parentk(u′i) = Parentl(u, j′)

then it holds
(v1, . . . , vp) ∈ ϕ(Z) ⇐⇒ (v′1, . . . , v

′
p) ∈ ϕ(Z).
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According to the encoding of the vertices of Z, the conditions on the common ancestors
rewrite as equalities and inequalities of iterated measurable functions [0, 1] → [0, 1). It
follows that ϕ(Z) is measurable. Thus Z is a relational sample space.

We define a probability measure νZ on Z to turn Z into a modeling as follows:

• on
⋃
r>0 S

(r)
1 × [0, 1), νZ is the product of the restriction of µ and the Borel measure

on [0, 1);

• on S◦1 × [0, 1) × S1, νZ is the product of the restriction of µ, the Borel measure on
[0, 1), and the Haar (rotation invariant) probability measure of S1.

It is easily checked from the above definition of Z (and of course ζ, F, ξ, w) that the
modeling Z is a modeling FOlocal

1 -limit of (Yn)n∈N, and that if µ satisfies the Finitary Mass
Transport Principle then Z satisfies the Strong Finitary Mass Transport Principle.

The construction of a modeling FOlocal
1 -limit for the root-free part resembles spinning

wheel of a limit forest (cf [2]) and it is schematically illustrated on Fig 1.

8.2 Limit of ρ-non-dispersive Sequences of Trees

Let λ be the signature of graphs, λ• the signature of graphs with additional unary relation
R, λ+ the signature of graphs with additional unary relations R and P , λω the signature
of graphs with countably many additional unary relations Mi and Ni (i ∈ N). We consider
two basic interpretation schemes, which we made use of already in [20]:

1. IY→F is a basic interpretation scheme of λ+-structures in λ•-structures defined as
follows: for every λ-structure A, the domain of IY→F (A) is the same as the domain
of A, and it holds (for every x, y ∈ A):

IY→F (A) |= x ∼ y ⇐⇒ A |= (x ∼ y) ∧ ¬R(x) ∧ ¬R(y)

IY→F (A) |= R(x) ⇐⇒ A |= (∃z) R(z) ∧ (z ∼ x)

IY→F (A) |= P (x) ⇐⇒ A |= R(x)

In particular, if Y is a λ•-tree, with a single vertex marked by R (the root), IY→F
maps Y into a λ+-forest IY→F (Y ), formed by the subtrees rooted at the childs of the
former root (roots marked by R) and a single vertex rooted principal component
(the former root, marked P );

2. IF→Y is a basic interpretation scheme of λ•-structures in λ+-structures defined as
follows: for every λ+-structure A, the domain of IF→Y (A) is the same as the domain
of A, and it holds (for every x, y ∈ A):

IF→A(A) |= x ∼ y ⇐⇒ A |= (x ∼ y) ∨R(x) ∧ P (y) ∨R(y) ∧ P (x)

IF→A(A) |= R(x) ⇐⇒ A |= P (x)

In particular, IF→Y maps a λ+-forest F with all connected components rooted by R,
except exactly one rooted by P into a λ•-tree IF→Y (F ) by making each non principal
root a child of the principal root.
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Figure 1: Modeling FOlocal
1 -limit of a

√
n-path of stars of order

√
n. Vertex x is adjacent

to 2ℵ0 vertices on a segment and to two vertices obtained by rotation of ±θ0, where θ0 is
irrational to π.

Lemma 41. Every FO-convergent ρ-non-dispersive sequence of rooted trees (Yn)n∈N has
a modeling FO-limit.

Proof. Let (Yn)n∈N be an FO-convergent ρ-non-dispersive sequence of rooted trees. Then
IY→F (Yn)n∈N is an FO-convergent sequence of rooted forests. According to Theorem 38,
there exist I ⊆ N, reals αi, sequences (Bi,n)n∈N for i ∈ I ∪ {0}, such that:

• α0 > 0, αi > 0 (for i ∈ I), and
∑

i∈I∪{0} αi = 1;
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• Yn is the union of the Bi,n (i ∈ I ∪ {0});

• limn→∞ |Bi,n|/|Yn| = αi (for i ∈ I ∪ {0});

• (B0,n)n∈N is an FOlocal-convergent residual sequence if α0 > 0;

• (Bi,n)n∈N is an FOlocal-convergent non-dispersive sequence;

• the family {(Bi,n, ρi,n)n∈N : i ∈ I} is uniformly elementarily convergent.

In this situation we apply Theorem 35:
We denote by Li and L0 the modeling limits, so that

• (Bi,n)
FO−→ Li (for i ∈ N);

• (B0,n)
FO−→ L0 (if α0 > 0), and (B0,n)

FO0−−→ L0 (otherwise).

Then we have (by Theorem 35):

Yn
FO−→ IF→Y

( ∐
i∈I∪{0}

(Li, αi)
)
.

It is easily checked that each sequence (Bi,n)n∈N is ρ-non-dispersive (for Bi,n rooted
at its marked vertex), as a direct consequence of the fact that (Yn)n∈N (rooted at marked
vertex) is ρ-non-dispersive.

If we repeat the same process on each ρ-non-dispersive sequence (Bi,n)n∈N (for i ∈
I \ {0}), we inductively construct a countable rooted tree S and, associated to each node
v of the tree, a residual sequence of forests (Fv,n)n∈N and a weight λv. If we have started
with a ρ-non-dispersive sequence, then (by the definition of a ρ-non-dispersive sequence)
for every ε > 0 there is integer d such that for sufficiently large n the ball of radius d
around the root in Yn contains at least 1− ε proportion of |Yn|. Thus at the limit we get
that the sum of the measures of the residues attached to the nodes at height at most d is
at least 1− ε.

According to Lemma 40, for each residual FO-convergent sequence (Fv,n)n∈N of forests
there is a rooted tree modeling L0

v that is the FOlocal
1 -limit of (IF→Y (Fv,n))n∈N. Hence,

according to Lemmas 20, 21, and 23, there is a rooted tree modeling Lv, which is the
FO-limit of (IF→Y (Fv,n))n∈N.

The grafting of the modelings Lv on the rooted tree S (with weights λv) form a final
modeling L.

We prove that L is a relational sample space: each first-order definable subset of Lp

is a Lω1ω-definable subsets of the countable union of all the Lv in which the roots of all
the roots have been marked by distinct unary relations Mv. As the used language in
countable, it follows from Lemma 7 that Lω1ω-definable subsets are Borel measurable.

Let d ∈ N, and let Y
(d)
n be the subtree of Yn induced by vertices at distance at most

d from the root. As the trees Y
(d)
n are obtained by an obvious interpretation, we get that

(Y
(d)
n )n∈N is FO-convergent. Now consider L(d), obtained from L by restricting to the set
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Xd of the vertices at distance at most d from the root. As the set Xd is first-order defined,
it is measurable. It follows that Xd (with induced σ-algebra) is a standard Borel space,
and that L(d) is a relational sample space. We define a probability measure on L(d) by
νL(d) = νL/νL(Xd), thus defining the modeling L(d). By applying iteratively (at depth d)
Theorem 35 and the interpretation IF→Y we easily deduce that L(d) is a modeling FO-limit
of (Y

(d)
n )n∈N. Thus, according to Lemma 28, we deduce that L is a modeling FOlocal-limit

of the sequence (Yn)n∈N. By Lemma 27, we deduce that (Yn)n∈N has a modeling FO-limit,
which is the union of L and a countable graph.

Theorem 2. Every FO-convergent sequence of finite forests has a modeling FO-limit that
satisfies the Strong Finitary Mass Transport Principle.

Proof. The theorem is an immediate consequence of Theorem 1 and Lemmas 40 and 41.

9 Conclusion

We do not have an inverse theorem for tree-modeling. There are tree-modelings (as
pointed out by the referee) that satisfy the Strong Finitary Mass Transport Principle
and whose complete theory has the finite model property but are not modeling limits
of a sequence of finite trees, as witnessed by an acyclic 3-regular graphing (which is a
modelling). However, if the tree modeling required to be oriented in such a way that the
root is a sink and non-roots have outdegree one and if any finite subset of the complete
theory of the modeling has a connected finite model, we believe that the modeling is the
FO-limit of a sequence of finite rooted trees.

We believe that our approach can be used to obtain modeling limits of further classes of
graphs. In particular, we believe that the structure “residual limits grafted on a countable
skeleton” might well be universal for sequences of nowhere dense graphs.
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[17] J. Nešetřil and P. Ossona de Mendez. On nowhere dense graphs. European Journal
of Combinatorics, 32(4):600–617, 2011.
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[19] J. Nešetřil and P. Ossona de Mendez. Sparsity (Graphs, Structures, and Algorithms),
volume 28 of Algorithms and Combinatorics. Springer, 2012. 465 pages.
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