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Abstract

The Total Colouring Conjecture suggests that ∆ + 3 colours ought to suffice in
order to provide a proper total colouring of every graph G with maximum degree
∆. Thus far this has been confirmed up to an additive constant factor, and the
same holds even if one additionally requires every pair of neighbours in G to differ
with respect to the sets of their incident colours, so called pallets. Within this paper
we conjecture that an upper bound of the form ∆ + C, for a constant C > 0 still
remains valid even after extending the distinction requirement to pallets associated
with vertices at distance at most r, if only G has minimum degree δ larger than a
constant dependent on r. We prove that such assumption on δ is then unavoidable
and exploit the probabilistic method in order to provide two supporting results for
the conjecture. Namely, we prove the upper bound (1 + o(1))∆ for every r, and
show that for any fixed ε ∈ (0, 1] and r, the conjecture holds if δ > ε∆, i.e., in
particular for regular graphs.

Keywords: Zhang’s Conjecture; adjacent vertex distinguishing total chromatic
number; total neighbour distinguishing index; d-strong total chromatic number; r-
adjacent strong total chromatic number; r-distant set distinguishing total number;
total neighbour distinguishing index by sums; Total Colouring Conjecture

1 Introduction

In [38] the following intriguing extension of proper edge colourings was introduced. Given
a graph G = (V,E), where by E(v) we shall understand the set of edges incident with a
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vertex v in G, and its edge colouring c : E → {1, 2, . . . , k}, denote by

Sc(v) := {c(e) : e ∈ E(v)} (1)

the pallet of colours incident with v ∈ V . This shall also be denoted by S(v) if c is unam-
biguous from context. A proper edge colouring c of G is called neighbour set distinguishing
or adjacent strong if S(u) 6= S(v) for every edge uv ∈ E. The least number of colours
in such a colouring is called the neighbour set distinguishing index or the adjacent strong
chromatic index and denoted by χ′a(G), see [2, 4, 10, 11, 38], also for other notations used.
Surprisingly, it was conjectured in [38] that just one more colour than the number stem-
ming from the Vizing’s Theorem on the sufficient number of colours to assure a proper
edge colouring of a graph is (almost) always enough to distinguish neighbours by colour
pallets as well.

Conjecture 1 (Zhang, Liu, and Wang, [38]). For every connected graph G, χ′a(G) 6
∆(G) + 2, unless G is isomorphic to K2 or C5.

The best general result corresponding to this conjecture is thus far the result of Hatami:

Theorem 2 (Hatami, [11]). If G is a graph with no isolated edges and maximum degree
∆ > 1020, then χ′a(G) 6 ∆ + 300.

Moreover, χ′a(G) 6 3∆(G) by [2], and χ′a(G) 6 ∆(G) + O(logχ(G)) by [4]. Conjec-
ture 1 was also verified e.g. for bipartite graphs and for graphs of maximum degree 3,
see [4].

We shall focus on a similar concept, resulting from translating the above to the setting
of total colourings. In this case, i.e., when c : E ∪ V → {1, 2, . . . , k} is a proper total
colouring (i.e., no two adjacent vertices get the same colour, no two incident edges get the
same colour, and no edge gets the same colour as one of its endpoints), the colour pallet
of v, Sc(v), shall be understood slightly differently for every v ∈ V , namely

Sc(v) := {c(e) : e ∈ E(v)} ∪ {c(v)} (2)

then. The total colouring c is called adjacent vertex distinguishing if Sc(u) 6= Sc(v)
for every edge uv ∈ E. The least number of colours in such a colouring is called the
adjacent vertex distinguishing total chromatic number and denoted by χ′′a(G). It was first
considered in [35].

Conjecture 3 (Zhang, Chen, Li, Yao, Lu and Wang, [35]). For every graph G, χ′′a(G) 6
∆(G) + 3.

Note that again the conjectured upper bound for this parameter exceeds only by one
the expected corresponding upper bound for the necessary number of colours in a proper
total colouring of a graph G, χ′′(G).

Conjecture 4 (The Total Colouring Conjecture). For every graph G, χ′′(G) 6 ∆(G) +2.
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Answering the question formulated in Conjecture 3 above seems however even more
challenging than verifying its correspondent concerning just edge colourings, as already the
Total Colouring Conjecture, posed by Vizing [30] in 1968 and independently by Behzad [5]
in 1965 is still far from being fully settled (unlike the edge colouring case, solved completely
by Vizing). The best result concerning this was delivered in 1998 by Molloy and Reed
[19], who designed a complex probabilistic argument implying that χ′′(G) 6 ∆(G) + C
for some (large) constant C.

Theorem 5 (Molloy and Reed, [19]). There exist constants ∆0 and C1 such that for every
graph G with ∆(G) > ∆0, χ′′(G) 6 ∆(G) + C1. In particular, C1 6 1026.

Basing on this result and the approach of Hatami [11], quite recently Coker and
Johannson proved the following.

Theorem 6 (Coker and Johannson, [9]). There exists a constant C ′ such that for every
graph G, χ′′a(G) 6 ∆(G) + C ′.

It is also known that Conjecture 3 holds e.g. for cycles, complete graphs, complete
bipartite graphs and trees, see [35], graphs of maximum degree at most three, see [31],
K4-minor free graphs, see [33], planar graphs with ∆(G) > 14 [32], and for graphs with
‘small’ average degree, see [34].

Similar results and upper bounds to some of those above are known to hold in a related
problem concerning proper total colourings c : E ∪ V → {1, 2, . . . , k} guaranteeing not
only that S(u) 6= S(v) for uv ∈ E, but also that the sums of elements in S(u) and S(v)
differ, see e.g. [22] (and [6, 10, 25, 26] for edge version of the same concept). The least k
guaranteeing existence of such colouring is denoted by χ′′∑(G). The definition of this, as
well as of other graph invariants discussed above was motivated by a line of earlier research
initiated by Chartrand, Erdős and Oellermann [7] and Chartrand et al. [8], where a key
seminal concept of the discipline, so called irregularity strength of graphs was defined, see
e.g. [1, 13, 21] for a few important results concerning this. Though the property within
the definition of χ′′∑(G) is much stronger than the corresponding one required in the case

of χ′′a(G), and obviously χ′′a(G) 6 χ′′∑(G), no examples of graphs are known (to me) for
which this inequality is not, in fact, an equality. In this paper, we wish to provide an
evidence that indeed the difference between the two properties is very significant. In order
to bring out this we however need to extend the notions and definitions above towards
distinguishing not only neighbours, but also vertices at a greater, yet limited distance
from each other.

For any fixed positive integer r, vertices u, v of G shall be called r-neighbours (or r-
adjacent) if 1 6 d(u, v) 6 r, where d(u, v) denotes the distance of u and v in G. Similarly
as in the concept of distant chromatic numbers (see [16] for a survey of this topic), the
least number of colours in a proper total colouring c of G such that Sc(u) 6= Sc(v) for
every pair of r-neighbours u, v ∈ V , so-called r-distant set distinguishing total colouring
(or r-adjacent strong total colouring), shall be called the r-distant set distinguishing total
number or r-adjacent strong total chromatic number, and denoted by χ′′a,r(G). This has
already been considered (with different notation used) in several papers, e.g. first in [37],
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where mainly the case of r = 2 was considered for several graph classes, or under the
name of the d-strong total chromatic number in [15], where the parameter was settled for
paths and cycles (for r 6 23), and a few bounds were given, in particular for cycles (in the
remaining cases) and circulant graphs. One of the main contribution of that paper relies
however on disproving a general conjecture from [37] concerning an upper bound for the
value of the investigated graph invariant via analysis of the cycles and circulant graphs,
see also [28, 37, 39] for some related supplementary results (and cf. [2, 14, 18, 24, 29, 36]
for results on edge correspondent of the same concept). As for the known general upper
bounds, it was proved in [27] that for every graph G with maximum degree ∆ and any
r > 2, χ′′a,r(G) 6 4∆r+2 if 3 6 ∆ 6 4, χ′′a,r(G) 6 2∆r+2 if 5 6 ∆ 6 6 and χ′′a,r(G) 6 ∆r+2 if
∆ > 7. We wish to strengthen these upper bounds significantly at a small, yet unavoidable
cost. Namely we believe that in order to distinguish not only neighbours, but also vertices
at distance at most r by colour pallets, it still suffices to use ∆ +C (instead of Ω(∆r+2))
colours, where C is some constant dependent on r, if only the minimum degree of G
is greater than some constant, linearly dependent on r, cf. the next section, where we
specify our main two results supporting our suspicion, and Section 5, where we provide a
construction of a family of graphs witnessing the necessity of the mentioned assumption
on the minimum degree of a graph. Note that if we wished to achieve the same using sums
instead of sets, one may quite easily construct a family of graphs with arbitrarily large
minimum and maximum degrees which would require using (at least) Ω(∆r−1) colours,
cf. [23] and the construction of graphs in Section 5. By our research we thus also want to
expose the leading impact of the required properness of the total colourings investigated
on the number of colours needed to distinguish vertices by their incident sets. Indeed, we
shall reveal that the number of these colours usually does not increase significantly even
if, as it might happen in our case, for every vertex v of G, the number of vertices from
whose associated sets we need to distinguish S(v) grows considerably (from at most ∆ in
the neighbourhood of v possibly to roughly ∆r in its r-neighbourhood). The same could
not hold in case of distinguishing by sums, see e.g. [23]. See also [11, 24, 38] for further
motivation of our research.

2 Results and Tools

We pose the following conjecture.

Conjecture 7. For each positive integer r there exist constants δ0 and C such that

χ′′a,r(G) 6 ∆(G) + C

for every graph with δ(G) > δ0.

In fact in Section 5 we present a construction of a family of graphs exemplifying that
in order an upper bound for χ′′a,r(G) of the form ∆ + C, or even (1 + o(1))∆ to hold, we
cannot avoid some assumption on graphs considered, e.g., that the minimum degree of G
is at least roughly (up to a small additive constant) r, see Observation 14. On the other
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hand, we believe that the conjecture above should hold with δ0 very close to r, though
we do not specify it explicitly. The following two main results of this paper support this
conjecture (where by o(1) we mean o(1) for ∆→∞).

Theorem 8. For every r > 2 there exists ∆0 such that for each graph G of maximum
degree ∆ > ∆0 with δ(G) > r + 2,

χ′′a,r(G) 6

⌈
∆

ln4 ∆

⌉
(dln4 ∆e+ 5dln3 ∆e+ 2),

hence for all graphs G of maximum degree ∆ with δ(G) > r + 2,

χ′′a,r(G) = (1 + o(1))∆.

For every fixed r, we then strengthen the thesis, proving a desired upper bound of the
form ∆ + const. under additional assumption that the minimum degree δ is not smaller
than some function of ∆, however disproportion between these two might be arbitrary
large. This encompasses in particular the family of regular graphs (for which Conjecture 7
thus holds).

Theorem 9. For every positive ε 6 1 and a positive integer r, there exist ∆0 and a
constant C such that for every graph G with δ(G) > ε∆(G) and ∆(G) > ∆0:

χ′′a,r(G) 6 ∆(G) + C

and C 6 ε−2(7r + 170) + r + 5 + C1 where C1 is the constant from Theorem 5.

The proof of this fact is inspired by the approaches in [9, 11, 24].
We shall exploit a few tools of the probabilistic method, in particular the Lovász Local

Lemma, see e.g. [3], combined with the Chernoff Bound, see e.g. [12] (Th. 2.1, page 26)
and Talagrand’s Inequality, see e.g. [20].

Theorem 10 (The Local Lemma). Let A1, A2, . . . , An be events in an arbitrary proba-
bility space. Suppose that each event Ai is mutually independent of a set of all the other
events Aj but at most D, and that Pr(Ai) 6 p for all 1 6 i 6 n. If

ep(D + 1) 6 1,

then Pr
(⋂n

i=1Ai

)
> 0.

Theorem 11 (Chernoff Bound). For any 0 6 t 6 np:

Pr(BIN(n, p) > np+ t) < e−
t2

3np and Pr(BIN(n, p) < np− t) < e−
t2

2np 6 e−
t2

3np

where BIN(n, p) is a binomial random variable.

Theorem 12 (Talagrand’s Inequality). Let X be a non-negative random variable, not
identically 0, which is determined by l independent trials T1, . . . , Tl, and satisfying the
following for some c, k > 0:

the electronic journal of combinatorics 23(2) (2016), #P2.54 5



1. changing the outcome of any one trial can affect X by at most c, and

2. for any s, if X > s then there is a set of at most ks trials whose outcomes certify
that X > s,

then for any 0 6 t 6 E(X),

Pr(|X − E(X)| > t+ 60c
√
kE(X)) 6 4e

− t2

8c2kE(X) .

Note that knowing only an upper bound E(X) 6 h (instead of the exact value of E(X))
we may still use Talagrand’s Inequality in order to upper-bound the probability that X is
large. It is sufficient to apply Theorem 12 above to the variable Y = X + h−E(X) with
E(Y ) = h, to obtain the following provided that the assumptions of Theorem 12 hold for
X (and t 6 h):

Pr(X > h+ t+ 60c
√
kh) 6 Pr(Y > h+ t+ 60c

√
kh) 6 4e−

t2

8c2kh .

Analogously, in the case of the Chernoff Bound, if X is a sum of n 6 k (where k does
not have to be an integer) random independent Bernoulli variables, each equal to 1 with

probability p 6 q, then Pr(X > kq+t) 6 e−
t2

3kq (for t 6 bkcq), and similarly, for n > k > 2

and p > q, Pr(X < kq − t) 6 e−
t2

2dkeq 6 e−
t2

3kq (for t 6 dkeq). (It is sufficient to consider
the variable Y with binomial distribution BIN(k, bqc) or BIN(k, dqe), respectively.)

We use the first two of these tools in the following section in order to prove Theorem 8.
Talagrand’s Inequality shall be used then in Section 4 to obtain a strengthening of the
thesis, cf. Theorem 9. We shall also use the following well known inequalities a few times:(a

b

)b
6

(
a

b

)
6
ab

b!
6
(ea
b

)b
. (3)

Within the constructions below, some colours shall be removed from randomly selected
edges. In each such case we shall obtain so called partial colouring c of the considered
graph, i.e., a mapping assigning colours only to some part of the edges and vertices of G.
For these, the colour pallets shall be understood the same as in (2) (or (1)), but only the
coloured edges and vertices shall be counted in the corresponding sets.

3 Proof of Theorem 8

Let r > 2 be a fixed integer and G = (V,E) be a graph with minimum degree δ(G) > r+2.
Whenever needed we shall assume that its maximum degree ∆ is sufficiently large. Set
t = d ∆

ln4 ∆
e and k = (dln4 ∆e + 5dln3 ∆e + 2)t. Partition the set of available colours

1, 2, . . . , k into t (disjoint) subsets C1, C2, . . . , Ct of equal size. Each Ci we also partition
into two subsets C ′i and C ′′i with |C ′i| = dln4 ∆e+ dln3 ∆e+ 1 and |C ′′i | = 4dln3 ∆e+ 1 for
i = 1, . . . , t.
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Let c : V → {1, 2, . . . , k} be any proper vertex colouring of G. We shall extend it to
a special total colouring of G, which shall assure no conflicts between vertices of small
degree in all further steps of the construction. Then we shall randomly recolour a small
portion of the edges so that also r-neighbours of larger degrees become distinguished as
well.

3.1 Initial Total Colouring and vertices of small degrees

For every edge uv with c(u) ∈ Ci and c(v) ∈ Cj let us randomly and independently choose
an integer {1, 2, . . . , t} r {i, j}, each with equal probability. We denote this integer by
q(e) for every edge e ∈ E. Note that the obtained auxiliary edge labelling q does not
have to be proper, but we shall require in the further part of the construction that every
e ∈ E has always assigned a colour from Cq(e) (by the choice of q this shall in particular
guarantee no colour conflicts between vertices and their incident edges). Now for every
v ∈ V , set q(v) = i iff c(v) ∈ Ci in order to make q a total labelling of G. For every pair
u, v of r-neighbours with d(u) = d(v) = d 6 ln3 ∆ in G, denote by

• A{u,v} - the event that Sq(u) = Sq(v)

(where the set Sq(v) is understood as in (2)). Then, since u and v might have at most
one common incident edge (and d > r + 2),

Pr(A{u,v}) 6

(
d+ 1

t− 2

)d−1

6

(
ln8 ∆

∆

)r+1

. (4)

(as for every edge e incident with v we must have q(e) ∈ Sq(u) if A{u,v} holds). We shall
also need a well distribution of colours around every vertex. Thus for every v ∈ V and
i ∈ {1, 2, . . . , t} let us denote by

• Av,i - the event that more than ln4 ∆+ln3 ∆ edges e incident with v belong to q−1(i)
(i.e., q(e) = i).

As d(v) 6 ∆ and Pr(q(e) = i) 6 1
t−2
6

ln4 ∆+ 1
2

ln3 ∆

∆
for every e ∈ E, then by the Chernoff

Bound,

Pr(Av,i) 6 exp

(
−

1
4

ln6 ∆

3(ln4 ∆ + 1
2

ln3 ∆)

)
6

(
ln8 ∆

∆

)r+1

. (5)

Note that every event Av,i is mutually independent of all other events of the both types
defined above (i.e. events A{u,w} and Au,j with u,w ∈ V and j ∈ {1, 2, . . . , t}), except
these indexed by some vertex which is at distance at most one from v, i.e., except at most
(∆ + 1)t+ ∆ ln3 ∆ ·∆r−1 6 2∆r ln3 ∆ such events. Analogously, every A{u,v} is mutually
independent of all other events of the both types except at most 2(ln3 ∆ + 1)t+ 2(ln3 ∆ +
1) ln3 ∆ · ∆r−1 6 2∆r ln3 ∆. Thus by (4) and (5), the Local Lemma implies that (with
positive probability) q may be chosen so that:

(1◦) Sq(u) 6= Sq(v) for every pair u, v of r-neighbours with d(u) = d(v) 6 ln3 ∆ in G;
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(2◦) at most ln4 ∆ + ln3 ∆ edges incident with v belong to q−1(i) for every v ∈ V and
i ∈ {1, 2, . . . , t}.

Then for every i, by (2◦) above, the edges in q−1(i) induce a subgraph of G with maximum
degree at most ln4 ∆ + ln3 ∆. By Vizing’s Theorem we may colour the edges of such
subgraph properly with the colours from C ′i consecutively for i = 1, 2, . . . , t. We denote
by c(e) the colour assigned to every edge e ∈ E in this manner. These, together with the
initial colours c(v) chosen for vertices, complete the construction of our special proper
total colouring c of G.

3.2 Recolouring and vertices of large degrees

Now we randomly and independently uncolour the edges, each with probability 2
ln ∆

.
Denote the resulting (partial) colouring by c′, and let Uc′ be the set of uncoloured edges.
Denote also by Uc′(v) the set of uncoloured edges incident with v. We shall show that with
positive probability the r-neighbours of sufficiently large degree are then distinguished.
In order to be able to complete our total colouring with relatively small number of colours
at the end, we however argue that uncoloured edges are also likely to be well distributed
in general and within particular colour classes beforehand.

Consider any vertex v ∈ V with d(v) = d > ln3 ∆. Then E(|Uc′(v)|) = 2d
ln ∆

, and thus
by the Chernoff Bound,

Pr

(∣∣∣∣|Uc′(v)| − 2d

ln ∆

∣∣∣∣ > d

ln ∆

)
< 2e−

d
6 ln ∆ 6 2e−

ln2 ∆
6 6

1

∆r+3
. (6)

Analogously, by (2◦) above, E(|Uc′(v)∩ q−1(i)|) 6 2(ln4 ∆+ln3 ∆)
ln ∆

6 3 ln3 ∆, and thus by the

Chernoff Bound,

Pr
(
|Uc′(v) ∩ q−1(i)| > 4 ln3 ∆

)
< e−

(ln3 ∆)2

9 ln3 ∆ 6
1

∆r+3
. (7)

Denote by Bv,0 the event that ||Uc′(v)| − 2d
ln ∆
| > d

ln ∆
, and for i = 1, . . . , t, denote by

Bv,i the event that |Uc′(v) ∩ q−1(i)| > 4 ln3 ∆ (for d > ln3 ∆). For any r-neighbours u, v
which are of the same degree d with ln3 ∆ 6 d 6 ∆ in G, denote by B{u,v} the event
that |Uc′(u)|, |Uc′(v)| ∈

[
d

ln ∆
, 3d

ln ∆

]
and Sc′(u) = Sc′(v). Since u and v have at most one

common incident edge, then:

Pr(B{u,v}) 6 Pr

(
Sc′(u) = Sc′(v) ∧ |Uc′(v)| ∈

[
d

ln ∆
,

3d

ln ∆

])
6 Pr

(
Sc′(u) = Sc′(v)

∣∣∣∣|Uc′(v)| ∈
[
d

ln ∆
,

3d

ln ∆

])
(8)
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6

b 3d
ln ∆
c∑

j=d d
ln ∆
e

Pr (Sc′(u) = Sc′(v) ||Uc′(v)| = j )

×Pr

(
|Uc′(v)| = j

∣∣∣∣|Uc′(v)| ∈
[
d

ln ∆
,

3d

ln ∆

])

6

b 3d
ln ∆
c∑

j=d d
ln ∆
e

(
2

ln ∆

)j−1

Pr

(
|Uc′(v)| = j

∣∣∣∣|Uc′(v)| ∈
[
d

ln ∆
,

3d

ln ∆

])

6

(
2

ln ∆

) d
ln ∆
−1 b 3d

ln ∆
c∑

j=d d
ln ∆
e

Pr

(
|Uc′(v)| = j

∣∣∣∣|Uc′(v)| ∈
[
d

ln ∆
,

3d

ln ∆

])

6

(
2

ln ∆

)ln2 ∆−1

· 1 6
(

1

e

)(r+3) ln ∆

=
1

∆r+3
. (9)

Analogously as above, every event Bv,i or B{u,v} is mutually independent of all other
events of these forms indexed by vertices each of which is at distance at least 2 from both
v and u (in the case of B{u,v}), i.e., of all but at most 2(t + 2)(∆ + 1)∆r 6 ∆r+2 other
events. At the same time, by (6), (7) and (9) each of these events occurs with probability
at most 1

∆r+3 . By the Local Lemma, with positive probability the uncoloured edges could
be chosen so that none of the events Bv,i and B{u,v} holds. As the events of the forms
Bv,0 or B{u,v} do not appear, every pair of r-neighbours of the same degree d > ln3 ∆ is
set distinguished in G then. Moreover, for every i = 1, 2, . . . , t, by nonappearance of the
events Bv,i, the subgraph induced by the edges in Uc′∩q−1(i) has maximum degree at most
4 ln3 ∆, and thus can be coloured properly with (so far spared) colours from C ′′i . Since we
have used new colours to paint the uncoloured edges, the obtained total colouring c′′ of
G is then proper, as the new colours still belonged to Cq(e) for every edge e ∈ E (cf. the
definition of q). Using new colours also guarantees preservation of distinction within pairs
of r-neighbours of large degrees. On the other hand, if u and v are r-neighbours with
d(u) = d(v) 6 ln3 ∆, then Sc′′(u) 6= Sc′′(v) by the condition (1◦). Therefore, the total
colouring c′′ is r-distant set distinguishing. The proof of Theorem 8 is thus completed. �

4 Proof of Theorem 9

Fix any ε ∈ (0, 1] and a positive integer r. Let G = (V,E) be a graph with δ > ε∆, where
∆ and δ are its maximum and minimum degrees, respectively. Whenever needed it shall
be assumed that ∆ is sufficiently large, i.e., we do not explicitly specify ∆0. We shall
assign to edges and vertices the colours 1, 2, . . . ,∆ + C1 + C2, where C1 is the constant
from Theorem 5 and C2 = bε−2(7r + 170) + r + 5c, in two stages in order to obtain an
r-distant set distinguishing total colouring of G.

We shall start from a given total colouring of G, and in the first stage of our randomized
construction, similarly as in the previous proof, we shall uncolour some of the edges. This
time, we shall however admit only a constant number of uncoloured edges from every E(v),

the electronic journal of combinatorics 23(2) (2016), #P2.54 9



v ∈ V . Analogously as above, r-neighbours with sufficiently many uncoloured incident
edges shall be very likely to be set distinguished, but we shall not avoid appearances of
troublesome vertices with very few uncoloured incident colours. Enhancing our argument
with Talagrand’s Inequality, we shall however be able to show that these should be rare
and well distributed. In the second stage we shall additionally uncolour a few edges
incident with every troublesome vertex, thus distinguishing it from its r-neighbours. In
order not to spoil distinctions from the first stage, these shall be required to be strong
enough, i.e., we shall require the sets of (not troublesome) vertices to differ in sufficiently
many elements from the sets associated with their r-neighbours of the same degree, see
(b) in Claim 3 on the symmetric difference of such sets below. A constant number of
extra colours shall be used to complete the total colouring at the end.

4.1 Stage One

Fix any proper total colouring c0 : V ∪ E → {1, 2, . . . ,∆ + C1} of G, guaranteed by
Theorem 5. From this base colouring we create a new (partial) total colouring c of G in
two steps as follows:

• uncolour each edge e ∈ E independently with probability 5r+90
ε2∆

; denote the set of
uncoloured edges in this step by U , and the subset of these incident with any given
v ∈ V by U(v);

• and then, for every vertex with more than ε−2(7r + 170) incident edges uncoloured
in the step above, we recover the removed colours of all its incident edges; call the
corresponding vertices recovered.

We shall also denote by Uc(v) the set of edges incident with v ∈ V which are not coloured
under c (where c is the resulting colouring after the two steps described above). Let L be
the set of all vertices v ∈ V with |Uc(v)| < 3r+ 15. We shall call them troublesome. Note
that if

• R is the set of all recovered vertices;

• LU is the set of vertices v with |U(v)| < 3r + 15;

• LR is the set of all vertices v adjacent with some vertex u ∈ R such that uv ∈ U ,

then:
L ⊆ R ∪ LU ∪ LR. (10)

We first provide a small, but useful technical observation, repeatedly exploited in the
further part of the argument.

Observation 13. For every ε ∈ (0, 1] and a positive integer r,

e10(1−ε−1) 6 e10(1−ε−1)ε−2 6 ε2, (11)

e−
4r+150

15 6 e−
4r+150

15 (5r + 90) 6
1

100r
. (12)
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Proof. The left-hand side inequalities above are straightforward. We shall justify the
remaining ones. The one from (11) is equivalent to the fact that

f(ε) = 10(1− ε−1)− 4 ln ε 6 0,

which is true, as

f ′(ε) =
4(2.5− ε)

ε2

(hence f is increasing for ε ∈ (0, 1]) and f(1) = 0.
The one from (12) is in turn equivalent to the inequality:

4r + 150

15
− ln[100r(5r + 90)] > 0, (13)

but since 100r(5r + 90) = (30r + 90)2 − (20r − 90)2 6 (30r + 90)2 (for r > 1), to prove
(13) it is then sufficient to observe that

g(r) =
4r + 150

15
− ln(30r + 90)2 > 0

for r > 1, as

g′(r) =
4

15
− 2

r + 3
=

4(r − 4.5)

15(r + 3)

(i.e., g is decreasing for r ∈ [1, 4.5] and increasing for r > 4.5) and g(4.5) ≈ 0.37 > 0.

Claim 1. For every vertex v ∈ V ,

Pr

(
|N(v) ∩ L| > ε2∆

10r

)
6

1

10∆r+4
. (14)

Proof. It is sufficient to prove the following three inequalities, as by (10), (N(v) ∩ L) ⊆
(N(v)∩R)∪ (N(v)∩LU)∪ (N(v)∩LR), and hence the probability in (14) can be upper-
bounded by the sum of the three probabilities in (15)–(17) below:

Pr

(
|N(v) ∩R| > ε2∆

30r

)
6

1

30∆r+4
, (15)

Pr

(
|N(v) ∩ LU | >

ε2∆

30r

)
6

1

30∆r+4
, (16)

Pr

(
|N(v) ∩ LR| >

ε2∆

30r

)
6

1

30∆r+4
. (17)

Since for any given vertex u ∈ V , the random variable |U(u)| has binomial distribution
with parameters d(u) 6 ∆ and 5r+90

ε2∆
, by the Chernoff Bound,

Pr(u ∈ R) = Pr(|U(u)| > ε−2(7r + 170)) 6 exp

(
− [ε−2(7r + 170)− ε−2(5r + 90)]2

3ε−2(5r + 90)

)
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= exp

(
−ε
−2(2r + 80)2

3(5r + 90)

)
6 exp

(
−2ε−2(2r + 80)

15

)
= exp

(
−4r + 160

15
(ε−2 − 1)

)
· exp

(
−4r + 160

15

)
6 exp

(
10(1− ε−1)

)
· exp

(
−4r + 150

15

)
6 ε2 · 1

100r
, (18)

where the last inequality above holds by Observation 13. Analogously, as d(u) > ε∆,
then by the Chernoff Bound,

Pr(u ∈ LU) = Pr(|U(u)| < 3r + 15) 6 Pr(|U(u)| < ε−1(3r + 15))

6 exp

(
− [ε−1(5r + 90)− ε−1(3r + 15)]2

3ε−1(5r + 90)

)
= exp

(
−ε
−1(2r + 75)2

3(5r + 90)

)
6 exp

(
−2ε−1(2r + 75)

15

)
(19)

= exp

(
−4r + 150

15
(ε−1 − 1)

)
· exp

(
−4r + 150

15

)
6 exp

(
10(1− ε−1)

)
· exp

(
−4r + 150

15

)
6 ε2 · 1

100r
, (20)

again due to Observation 13. Additionally, if w is any neighbour of u, then by the Chernoff
Bound (similarly as in (18)), as |E(u) r {uw}| 6 ∆− 1 6 ∆,

Pr(w ∈ R| uw ∈ U) 6 exp

(
− [ε−2(7r + 170)− 1− ε−2(5r + 90)]2

3ε−2(5r + 90)

)
6 exp

(
−ε
−2(2r + 79)2

3(5r + 90)

)
,

hence,

Pr(w ∈ R ∧ uw ∈ U) = Pr(w ∈ R| uw ∈ U) ·Pr(uw ∈ U)

6 exp

(
−ε
−2(2r + 79)2

3(5r + 90)

)
· ε
−2(5r + 90)

∆
.

Consequently,

Pr(u ∈ LR) 6 ∆ · exp

(
−ε
−2(2r + 79)2

3(5r + 90)

)
· ε
−2(5r + 90)

∆

6 exp

(
−2ε−2(2r + 79)

15

)
· ε−2(5r + 90)

= exp

(
−4r + 158

15
(ε−2 − 1)

)
ε−2 · exp

(
−4r + 158

15

)
(5r + 90)

6 exp
(
10(1− ε−1)

)
ε−2 · exp

(
−4r + 150

15

)
(5r + 90)
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6 ε2 · 1

100r
, (21)

where the last inequality follows by Observation 13.
With inequalities (18)-(21) at hand we shall now use Talagrand’s Inequality in order

to prove (15)-(17). For every vertex v ∈ V , by (18), E(|N(v) ∩ R|) 6 ε2∆
100r

. Note also
that the random variable |N(v) ∩ R| is being determined by the outcomes of Bernoulli
trials associated with all edges incident with neighbours of v, each of which sets down
whether a colour is removed from a given edge in the first step of the construction or not
(i.e., whether the edge belongs to U or not). Moreover, changing the outcome of any one
such trial may affect |N(v) ∩ R| by at most 2, while the fact that |N(v) ∩ R| > s can be
certified by the outcomes of at most (ε−2(7r + 170) + 1)s trials. Therefore,

Pr

(
|N(v) ∩R| > ε2∆

30r

)
6 Pr

(
|N(v) ∩R| > ε2∆

100r
+
ε2∆

100r
+ 120

√
(ε−2(7r + 170) + 1)

ε2∆

100r

)

6 4 · exp

(
−

( ε2∆
100r

)2

8 · 4 · (ε−2(7r + 170) + 1) ε2∆
100r

)
<

1

30∆r+4

(for ∆ sufficiently large), hence inequality (15) holds.

Analogously, for each vertex v, by (21), E(|N(v)∩LR|) 6 ε2∆
100r

. This time the variable
|N(v) ∩ LR| is determined by the outcomes of Bernoulli trials associated with all edges
incident with neighbours of v or their neighbours (determining belongingness of these in
U). Changing the outcome of any such trial may affect |N(v)∩LR| by at most 2(ε−2(7r+
170) + 1), while the fact that |N(v)∩LR| > s can be certified by the outcomes of at most
(ε−2(7r + 170) + 1)s trials. Thus,

Pr

(
|N(v) ∩ LR| >

ε2∆

30r

)
6 Pr

(
|N(v) ∩ LR| >

ε2∆

100r
+
ε2∆

100r
+ 120(ε−2(7r + 170) + 1)

√
(ε−2(7r + 170) + 1)

ε2∆

100r

)

6 4 · exp

(
−

( ε2∆
100r )2

8 · 4 · (ε−2(7r + 170) + 1)3 ε2∆
100r

)
<

1

30∆r+4
,

i.e., inequality (17) holds.
We shall be a slightly more careful with inequality (16) though. In fact we shall bound

the probability that the random variable X = d(v)−|N(v)∩LU | is small instead. By (20)
we have:

∆ > E(X) = d(v)− E(|N(v) ∩ LU |) > d(v)− ε2∆

100r
.

As previously, the variable X is determined by the outcomes of Bernoulli trials associated
with all edges incident with neighbours of v, changing the outcome of each of which may
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affect X by at most 2. As the fact that X > s can be certified by the outcomes of at
most (3r + 15)s trials, by Talagrand’s Inequality we obtain:

Pr

(
d(v)− |N(v) ∩ LU | < d(v)− ε2∆

30r

)
6 Pr

(
X <

(
d(v)− ε2∆

100r

)
− ε2∆

100r
− 120

√
(3r + 15)∆

)
6 Pr

(
|X − E(X)| > ε2∆

100r
+ 120

√
(3r + 15)E(X)

)
6 4 · exp

(
−

( ε2∆
100r

)2

8 · 22(3r + 15)E(X)

)
6 4 · exp

(
−

( ε2∆
100r

)2

8 · 22(3r + 15)∆

)
6

1

30∆r+4
,

(for ∆ sufficiently large), hence (16) follows.

For any sets A and B, let A4B := (ArB)∪(BrA) denote their symmetric difference.

Claim 2. For every pair of r-neighbours u, v with d(u) = d(v) and 1 6 d(u, v) 6 r in G,

Pr(u /∈ L ∧ |Sc(u)4Sc(v)| < 2r + 10) <
1

10∆r+4
.

Proof. Let u, v ∈ V , d(u) = d(v) and 1 6 d(u, v) 6 r. Note that u /∈ L, i.e. |Uc(u)| >
3r + 15 implies in particular that 3r + 15 6 |U(u)| 6 ε−2(7r + 170), hence

Pr(u /∈ L ∧ |Sc(u)4Sc(v)| < 2r + 10)

= Pr(|Uc(u)| > 3r + 15 ∧ 3r + 15 6 |U(u)| 6 ε−2(7r + 170) ∧ |Sc(u)4Sc(v)| 6 2r + 9)

6 Pr(|Uc(u)| > 3r + 15 ∧ |Sc(u)4Sc(v)| 6 2r + 9 | 3r + 15 6 |U(u)| 6 ε−2(7r + 170)).

Now, since the random uncolourings of the edges within our process are independent,
suppose we first perform the corresponding experiments (determining whether a given
edge is uncoloured or not) for the edges incident with u, and that 3r + 15 6 |U(u)| 6
ε−2(7r + 170). After executing only these, there are at least |U(u)| (or |U(u)| − 1 if
uv ∈ E and uv was uncoloured) elements incident with v (i.e., edges incident with v
or v itself) whose colours do not belong to the pallet of u. Out of these choose |U(u)|
(|U(u)| − 1, resp.) coloured with the least integers and denote them by E ′v (where this
set might include v). Since we wish to have |Uc(u)| > 3r + 15 within the investigated
conditional event, at most |U(u)|−3r−15 edges in U(u) might have their colours recovered
eventually (some or all of which might be assigned to the edges or vertex in E ′v). As
|E ′v| − (|U(u)| − 3r − 15) > 3r + 14, in order to have |Sc(u)4Sc(v)| 6 2r + 9 at the
end, still at least r + 5 edges from E ′v must be uncoloured in our random process. Since
|U(u)| 6 ε−2(7r + 170), hence |E ′v| 6 ε−2(7r + 170), we finally obtain that:

Pr(u /∈ L ∧ |Sc(u)4Sc(v)| < 2r + 10) 6

(
bε−2(7r + 170)c

r + 5

)(
ε−2(5r + 90)

∆

)r+5

<
1

10∆r+4

(for ∆ sufficiently large).
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Claim 3. With positive probability, we have:

(a) |N(v) ∩ L| 6 ε2∆
10r

for every vertex v ∈ V , and

(b) |Sc(u)4Sc(v)| > 2r + 10 for every pair of r-neighbours u, v with d(u) = d(v) and
u /∈ L (or v /∈ L).

Proof. For any vertex v ∈ V , let Av be the event that |N(v) ∩ L| > ε2∆
10r

. For every
u, v ∈ V with d(u) = d(v) and 1 6 d(u, v) 6 r, let Bu,v be the event that u /∈ L
and |Sc(u)4Sc(v)| < 2r + 10 (note that we must distinguish Bu,v from Bv,u according
to this definition). In order to apply Theorem 10, let us first notice that every event
Av is mutually independent of all events Av′ and Bu,w with d(v, v′) > 5, d(v, u) > 4
and d(v, w) > 4, i.e., of all other events of these forms but at most ∆5 + ∆4 · ∆r · 2 6
3∆r+4. Similarly, each event Bu,v is mutually independent of all events Aw and Bu′,v′ with
d(u,w) > 4, d(v, w) > 4 and d(u, u′) > 3, d(u, v′) > 3, d(v, u′) > 3, d(v, v′) > 3, i.e., of all
other events of these forms but at most 2∆4 + 2 · ∆3 · ∆r · 2 6 3∆r+4. As by Claims 1
and 2, each of these events occurs with probability at most 1

10∆r+4 , the thesis follows by
the Lovász Local Lemma.

4.2 Stage Two

Suppose c is a partial (proper) total colouring constructed in Stage One and satisfying
the thesis of Claim 3 above. Prior to completing this we still need to distinguish the
troublesome vertices in L from their r-neighbours of the same degrees. For this aim we
now independently for every such vertex v ∈ L randomly uncolour its r+5 incident edges
which were coloured under c and joined v with vertices outside L. The partial colouring
obtained is then denoted by c′, and the set of uncoloured within this stage edges by
U ′. We also denote the set of edges from U ′ which are incident with any given v ∈ V
by U ′(v). In the following claim we shall argue that the colouring c′ does not have to
influence the colour pallets of vertices outside L significantly (and thus the condition (b)
of Claim 3 above shall suffice to keep them distinguished from their r-neighbours of the
same degrees), and at the same time c′ might guarantee distinction between vertices in L.

Claim 4. With positive probability,

(i) |U ′(u)| 6 r + 4 for every vertex u ∈ V r L, and

(ii) Sc′(u) 6= Sc′(v) for every u, v ∈ L with d(u) = d(v) and 1 6 d(u, v) 6 r.

Proof. Let us define two kinds of (bad) events corresponding to (i) and (ii), respectively:

• for any r + 5 neighbours v1, . . . , vr+5 ∈ L of a given vertex u ∈ V r L such that
uvi /∈ Uc(u) for i = 1, . . . , r + 5, let Au,{v1,...,vr+5} be the event that uvi ∈ U ′ for
i = 1, . . . , r + 5;

• for every vertices u, v ∈ L with d(u) = d(v) and 1 6 d(u, v) 6 r, let B{u,v} be the
event that Sc′(u) = Sc′(v).
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Since by Stage One, every vertex v ∈ L has at least ε∆ − ε2∆
10r
− (3r + 15) > 4

5
ε∆

neighbours w /∈ L such that vw /∈ Uc(v), then:

Pr(Au,{v1,...,vr+5}) 6

(
r + 5
4
5
ε∆

)r+5

and (22)

Pr(B{u,v}) 6
1(d 4

5
ε∆e

r+5

) 6 1(
4
5
ε∆

r+5

)r+5 =

(
r + 5
4
5
ε∆

)r+5

. (23)

Note also that every event Au,{v1,...,vr+5} is mutually independent of all such events (of
the both types) except for theseAu′,{v′1,...,v′r+5} andB{u′,v′} for which we have {v1, . . . , vr+5}∩
{v′1, . . . , v′r+5} 6= ∅ or {v1, . . . , vr+5} ∩ {u′, v′} 6= ∅, resp., i.e., of all other events except at

most (r+5)∆
(b ε2∆

10r
c

r+4

)
+(r+5)∆r. Analogously, every event B{u,v} is mutually independent

of all such events except for these Au′,{v1,...,vr+5} and B{u′,v′} for which we have {u, v} ∩
{v1, . . . , vr+5} 6= ∅ or {u, v} ∩ {u′, v′} 6= ∅, resp., i.e., of all other events except at most

2∆
(b ε2∆

10r
c

r+4

)
+ 2∆r 6 (r + 5)(∆

(b ε2∆
10r
c

r+4

)
+ ∆r). As

e

(
r + 5
4
5
ε∆

)r+5

[(r + 5)(∆

(
b ε2∆

10r
c

r + 4

)
+ ∆r) + 1] 6 4

(
r + 5
4
5
ε∆

)r+5

(r + 5)∆

(
ε2∆
10r

)r+4

(r + 4)!

6
5(r + 5)r+6

(r + 4)!(8r)r+4
< 1

(where the last inequality can be checked directly for r = 1, while for r > 2 we obviously
have: (r + 5)r+4 < (8r)r+4 and 5(r + 5)2 < (r + 4)!), this together with inequalities (22)
and (23) suffices to apply the Local Lemma, and thus obtain the thesis.

Let c′ be a partial (proper) colouring of G guaranteed to exist by Claim 4. By (b) from
Claim 3 and (i),(ii) from Claim 4, all r-neighbours of the same degrees are distinguished
under c′. By our construction, every vertex v /∈ L is incident with at most ε−2(7r +
170) + (r + 4) uncoloured edges under c′, while every v ∈ L is incident with no more
than (3r + 15) + (r + 5) 6 ε−2(7r + 170) + (r + 4) such edges. By Vizing’s Theorem, we
thus need at most bε−2(7r + 170) + (r + 4)c + 1 extra colours in order to extend c′ to a
proper total colouring of G (all together using at most ∆ + C1 + ε−2(7r + 170) + r + 5
colours). As these new colours shall not spoil distinction between the pallets associated
to r-neighbours, we have obtained a desired total colouring of G. The proof of Theorem 9
is thus completed. �

5 Construction

In order to provide a family of examples witnessing the necessity of minimum degree
assumption in Conjecture 7 (and Theorems 8, 9), we shall make use of so called undirected
de Bruijn graph of type (t, k), denoted by Dt,k and defined as follows. The vertex set of
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Dt,k is formed of all sequences of length k the entries of which are taken from a fixed
alphabet consisting of t distinct letters. The edges of such graph are in turn formed
by any two distinct vertices (a1, . . . , ak) and (b1, . . . , bk) for which either ai = bi+1 for
1 6 i 6 k − 1, or ai+1 = bi for 1 6 i 6 k − 1 (or k = 1). Note that Dt,k has maximum
degree ∆(Dt,k) 6 2t, order tk and diameter k. It thus provides a nontrivial lower bound
in the study of the so called Moore bound, concerning the largest order of a graph with
given maximum degree and diameter, see e.g. a survey by Miller and Širáň [17].

Now we construct our family of examples. Given positive integers N (which shall be
required to be large enough later on) and r > 4, we define G1

r,N (and G0
r,N) to be the

graph obtained by taking one copy of DN(r−2)2,r−2, which has [N(r− 2)2]r−2 vertices, and
2N [N(r − 2)2]r−2 disjoint copies of Kr−1 (or Kr−2, resp.), and identifying exactly one
vertex from each of these complete graphs with some vertex of our fixed DN(r−2)2,r−2 so
that its every vertex is incident with exactly 2N copies of Kr−1 (Kr−2 resp.). Note that
such graph has diameter r, i.e., every two its vertices are r-neighbours, maximum degree
at most 2N(r − 2)2 + 2N(r − 2) = 2N(r − 1)(r − 2) (or 2N(r − 2)2 + 2N(r − 3), resp.),
and contains at least 2N [N(r− 2)2]r−2(r− 2) (or 2N [N(r− 2)2]r−2(r− 3), resp.) vertices
of degree r − 2 (r − 3, resp.).

Observation 14. Let r > 3 be an integer. Suppose χ′′a,r(G) 6 ∆ + C (or at least
χ′′a,r(G) 6 (1 + o(1))∆) for every graph G with δ(G) > δ0 and ∆(G) = ∆, where C is
some constant. Then we must have δ0 > r − 1 if r > 7, or at least δ0 > r − 2 otherwise.

Proof. For every graph G and an integer d, let nd = nd(G) be the number of vertices of
degree d in G.

Assume first that r > 9, G is the graph G1
r,N (for some sufficiently large N) and

suppose we wish to construct an r-distant set distinguishing total colouring of G using at
most ∆+C (or (1+o(1))∆) colours, where C is some constant. Note that with these many
colours admitted, there are at most

(
∆+C
r−1

)
6
(

2N(r−1)(r−2)+C
r−1

)
potential pallets for vertices

of degree r − 2 in G. Therefore, in order to prove that there is no desired colouring, it is
sufficient to prove that nr−2 is larger than this quantity in our graph, i.e., that:

2N [N(r − 2)2]r−2(r − 2) >

(
2N(r − 1)(r − 2) + C

r − 1

)
. (24)

Since by (3),(
2N(r − 1)(r − 2) + C

r − 1

)
6

(
e[2N(r − 1)(r − 2) + C]

r − 1

)r−1

6 [5.5N(r − 2)]r−1 (25)

(for N sufficiently large), by (24) and (25) it is then sufficient to prove the inequality

2N r−1(r − 2)2r−3 > [5.5N(r − 2)]r−1,

or equivalently (
r − 2

5.5

)r−2

> 2.75,

the electronic journal of combinatorics 23(2) (2016), #P2.54 17



which holds for r > 9 (the left hand side above is an increasing function of r for r > 9, as
r − 2 > 5.5 then and (9−2

5.5
)9−2 ≈ 5.41 > 2.75).

Note that the same argument holds even if we admit ∆(1 + o(1)) instead of ∆ + C
colours (as inequality (25) holds also after such substitution, i.e. after substituting 2N(r−
1)(r − 2) + C with 2N(r − 1)(r − 2)(1 + o(1)) in it, where o(1) = o∆(1) or equivalently
o(1) = oN(1) for our fixed r). Moreover, by more careful estimations, one can easily show
that in both cases the same is also true already for r > 7 (by proving directly that (24)
holds for r = 7, 8 and N sufficiently large).

In the remaining cases, i.e., for r ∈ {4, 5, 6}, to show that we need the assumption
δ(G) > r − 2, it is sufficient to consider G = G0

r,N (instead of G1
r,N), and observe that

nr−3 = Ω(∆r−1) for such graph, while with only ∆ + C or ∆(1 + o(1)) colours admitted,
there would be just O(∆r−2) available colour pallets for vertices of degree r − 3 in it (for
N tending to infinity).

6 Concluding Remarks

As mentioned earlier, Theorem 9 implies Conjecture 7 for regular graphs. It suffices to
substitute ε = 1 in the thesis of this theorem to obtain the following.

Corollary 15. For every positive integer r, there exists d0 such that:

χ′′a,r(G) 6 ∆(G) + 8r + 175 + C1

for every d-regular graph G with d > d0, where C1 is the constant from Theorem 5.

In fact this further proves that for each fixed r, χ′′a,r(G) 6 ∆(G) +C for every regular
graph, where C is some constant dependent on r. For large degrees it follows by Corol-
lary 15 above. In the remaining cases, i.e., for any graph G with ∆(G) < d0 one can
easily prove that χ′′a,r(G) 6 C0, where C0 = C0(d0, r) is some (large enough) constant. It
is e.g. sufficient to colour the edges properly first, and then greedily, one by one choose
a colour for every vertex so that it is set distinguished from its r-neighbours (since the
number of these is bounded by a function of r and d0, we shall not need more colours
than some constant dependent on these two quantities), or use some other more clever
approach. Note that a similar reasoning can be applied for every other ε from Theorem 9
(not just for ε = 1).

Conjecture 7 still remains open in general. On the other hand, if we skipped the
assumption δ(G) > δ0 in it, i.e., we admitted vertices of (very) small degrees in graphs
considered, in particular vertices of degree 1, then a general upper bound for χ′′a,r(G) could
not be smaller than Ω(∆r−1) for every r. To prove that we need these many colours it is
e.g. sufficient to use a construction similar to the one presented in the previous section,
but this time using always complete graphs K2 instead of Kr−1 (i.e., gluing appropriate
number of hanging edges to vertices of DN(r−2)2,r−2). Investigating this general setting
might also result in obtaining interesting new results.
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[28] O. Schäfer, d-starke Totalfärbungen von Graphen (Master thesis), TU Braunschweig,
2012.

[29] J.J. Tian, X. Liu, Z. Zhang, F. Deng, Upper bounds on the D(β)-vertex-distinguishing
edge-chromatic-numbers of graphs, LNCS 4489 (2007) 453–456.

[30] V. Vizing, Some Unsolved Problems in Graph Theory, Russian Math Surveys 23
(1968) 125–141.

[31] H. Wang, On the adjacent vertex distinguishing total chromatic number of the graphs
with ∆(G) = 3, J. Comb. Optim. 14 (2007) 87–109.

[32] W. Wang, D Huang, The adjacent vertex distinguishing total coloring of planar
graphs, J. Comb. Optim. 27 (2014) 379–396.

[33] W. Wang, P. Wang, On adjacent-vertex-distinguishing total coloring of K4-minor free
graphs, Sci China Ser A Math 39(12) (2009) 1462–1472.

[34] W. Wang, Y. Wang, Adjacent vertex distinguishing total colorings of graphs with
lower average degree, Taiwanese Journal of Mathematics 12(4) (2008) 979–990.

[35] Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu, J. Wang, On adjacent-vertex-distinguishing
total coloring of graphs, Sci China Ser A Math 48(3) (2005) 289–299.

[36] Z. Zhang, J. Li, X. Chen, et al., D(β)-vertex-distinguishing proper edge-coloring of
graphs, Acta Math. Sinica Chin. Ser. 49 (2006) 703–708.

[37] Z. Zhang, J. Li, X. Chen, B. Yao, W. Wang, P. Qiu, D(β)-vertex-distinguishing total
coloring of graphs, Science China Ser. A: Mathematics 49 (2006) 1430–1440.

[38] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett.
15 (2002) 623–626.

[39] Y. Zu, X. Chen, D(5)-vertex distinguishing total coloring of cycle, J. Jiamusi Univ.
(Nat. Science Edition) 26 (2008) 677–679 (in Chinese).

the electronic journal of combinatorics 23(2) (2016), #P2.54 20


	Introduction
	Results and Tools
	Proof of Theorem 8
	Initial Total Colouring and vertices of small degrees
	Recolouring and vertices of large degrees

	Proof of Theorem 9
	Stage One
	Stage Two

	Construction
	Concluding Remarks

