
The Total Acquisition Number of Random Graphs

Deepak Bal
Department of Mathematical Sciences

Montclair State University
Montclair, NJ 07043, U.S.A.
deepak.bal@montclair.edu

Patrick Bennett
Department of Methematics
Western Michigan University
Kalamazoo, MI 49008, U.S.A.
patrick.bennett@wmich.edu

Andrzej Dudek∗

Department of Methematics
Western Michigan University
Kalamazoo, MI 49008, U.S.A.
andrzej.dudek@wmich.edu

Pawe l Pra lat†

Department of Mathematics
Ryerson University

Toronto, ON, M5B 2K3, Canada
pralat@ryerson.ca

Submitted: Jun 12, 2015; Accepted: Jun 16, 2016; Published: Jun 24, 2016

Mathematics Subject Classifications: 05C80

Abstract

Let G be a graph in which each vertex initially has weight 1. In each step, the
weight from a vertex u to a neighbouring vertex v can be moved, provided that the
weight on v is at least as large as the weight on u. The total acquisition number
of G, denoted by at(G), is the minimum possible size of the set of vertices with
positive weight at the end of the process.

LeSaulnier, Prince, Wenger, West, and Worah asked for the minimum value of
p = p(n) such that at(G(n, p)) = 1 with high probability, where G(n, p) is a binomial

random graph. We show that p = log2 n
n ≈ 1.4427 logn

n is a sharp threshold for this
property. We also show that almost all trees T satisfy at(T) = Θ(n), confirming a
conjecture of West.

1 Introduction

Gossiping and broadcasting are two well studied problems involving information dissemi-
nation in a group of individuals connected by a communication network [8]. In the gossip
problem, each member has a unique piece of information which they would like to pass to
everyone else. In the broadcast problem, there is a single piece of information (starting

∗Supported in part by Simons Foundation Grant #244712 and by a grant from the Faculty Research
and Creative Activities Award (FRACAA), Western Michigan University.
†Supported in part by NSERC and Ryerson University

the electronic journal of combinatorics 23(2) (2016), #P2.55 1

at one member) which must be passed to every other member of the network. These
problems have received attention from mathematicians as well as computer scientists due
to their applications in distributed computing [2]. Gossip and broadcast are respectively
known as “all-to-all” and “one-to-all” communication problems. In this paper, we con-
sider the problem of acquisition, which is a type of “all-to-one” problem. Suppose each
vertex of a graph begins with a weight of 1 (this can be thought of as the piece of in-
formation starting at that vertex). A total acquisition move is a transfer of all the
weight from a vertex v onto a vertex u, provided that immediately prior to the move,
the weight on u is at least the weight on v. Suppose a number of acquisition moves are
made until no legal moves remain. Such a maximal sequence of moves is referred to as an
acquisition protocol and the vertices which retain positive weight after an acquisition
protocol is called a residual set. Note that any residual set is necessarily an independent
set. Given a graph G, we are interested in the minimum possible size of a residual set
and refer to this number as the total acquisition number of G, denoted at(G). We
are mainly concerned with the question, “for which graphs G is at(G) = 1?” i.e. when
can one special member of the network acquire all the information subject to the use
of total acquisition moves? The restriction to total acquisition moves can be motivated
by the so-called “smaller to larger” rule in disjoint set data structures. For example,
in the UNION-FIND data structure with linked lists, when taking a union, the smaller
list should always be appended to the longer list. This heuristic improves the amortized
performance over sequences of union operations.

The parameter at(G) was introduced by Lampert and Slater [11] and subsequently
studied in [15, 12]. In [11], it is shown that at(G) 6

⌊
n+1

3

⌋
for any connected graph G

on n vertices and that this bound is tight. Slater and Wang [15], via a reduction to the
three-dimension matching problem, show that it is NP-complete to determine whether
at(G) = 1 for general graphs G. In LeSaulnier et al. [12], various upper bounds on the
acquisition number of trees are shown in terms of the diameter and the number of vertices,
n. They also show that at(G) 6 32 log n log log n (throughout the paper, log n denotes the
natural logarithm) for all graphs with diameter 2 and conjecture that the true bound is
constant. For work on game variations of the parameter and variations where acquisition
moves need not transfer the full weight of vertex, see [17, 14, 16].

Randomness often plays a part in the study of information dissemination problems,
usually in the form of a random network or a randomized protocol, see e.g. [4, 5, 6]. In
this paper we study the total acquisition number of the Erdős-Rényi-Gilbert random
graph G(n, p) where potential edges among n vertices are added independently with
probability p. We also consider the total acquisition number of random trees. Our main
theorem is the following.

Theorem 1.1. Fix any ε > 0. If p = p(n) > 1+ε
log 2
· logn

n
, then with high probability,

at(G(n, p)) = 1.

In particular, by taking p = 1/2, our result implies that while the question “Is at(G) =
1?” is NP-complete, the answer is “yes” for almost all graphs.

the electronic journal of combinatorics 23(2) (2016), #P2.55 2

In [12], the authors mention that understanding the behaviour of at(G(n, p)) near the
connectivity threshold, p = logn

n
, would be of particular interest. In the theory of random

graphs it is usually the case that some obvious necessary condition is also a sufficient
one (for example, the threshold for connectivity coincides with the one for the minimum
degree at least 1; the threshold for hamiltonicity is the same as the one for the minimum
degree at least 2; etc.). Hence, one could expect that at(G(n, p)) = 1 already at the time
a random graph becomes connected. However, it turns out that connectivity is the wrong
“obvious” condition. Consider the following observation.

Observation 1.2. If vertex v is to acquire weight w (at any time during the process of
moving weight around), then v has degree at least log2w.

Proof. Note that v can only ever acquire 1 + 2 + . . .+ 2d(v)−1, in addition to the 1 it starts
with, so that is a total of 2d(v).

So if at(G) = 1 then the vertex which eventually acquires all the weight must have
degree at least log2 n. Now it is true that when p = logn

n
, there exist vertices of this degree

(see [3]). But just one such vertex does not suffice; a path of significant length consisting
of high degree vertices is necessary. Such a path does not exist until the expected degree
exceeds log2 n. So if p < log2 n/n, then at(G(n, p)) > 1. In fact we prove the following
stronger theorem.

Theorem 1.3. Suppose that p = c+o(1)
log 2

· logn
n

for some fixed c ∈ (0, 1). If 0 < ε <

min{c, 1− c}, then with high probability, n1−c−ε 6 at(G(n, p)) 6 n1−c+ε.

This result implies that at the connectivity threshold (p = logn
n

) the total acquisition
number is already of polynomial size, namely it is at least, say, n0.3. Theorems 1.1 and
1.3 together imply that p = log2 n

n
is the sharp threshold for the property at(G) = 1.

Moreover, we prove the following theorem, confirming a conjecture of West [18, 19].
Before we state the result, we need a few more definitions. For n ∈ N, let Tn be the family
of labelled trees on n vertices. We say that some given property P holds for almost all
trees if the ratio between the number of trees in Tn with property P and the total number
of trees in Tn tends to 1 as n→∞.

Theorem 1.4. For almost all trees T ∈ Tn,

at(T) >
n

3e3
.

1.1 Notation and Conventions

The random graph G(n, p) consists of the probability space (Ω,F ,P), where Ω is the
set of all graphs with vertex set {1, 2, . . . , n}, F is the family of all subsets of Ω, and for
every G ∈ Ω,

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

This space may be viewed as the set of outcomes of
(
n
2

)
independent coin flips, one for

each pair (u, v) of vertices, where the probability of success (that is, adding edge uv) is

the electronic journal of combinatorics 23(2) (2016), #P2.55 3

p. Note that p = p(n) may (and usually does) tend to zero as n tends to infinity. All
asymptotics throughout are as n → ∞ (we emphasize that the notations o(·) and O(·)
refer to functions of n, not necessarily positive, whose growth is bounded). We say that an
event in a probability space holds with high probability (or w.h.p.) if the probability
that it holds tends to 1 as n goes to infinity. We often write G(n, p) when we mean a
graph drawn from the distribution G(n, p).

For a vertex v in a graph, we write d(v) for the degree of v.

We will use the following Chernoff bound:

Theorem 1.5 (Chernoff Bound). If X is a binomial random variable with expectation
µ, and 0 < δ < 1, then

Pr[X < (1− δ)µ] 6 exp

(
−δ

2µ

2

)
and if δ > 0,

Pr [X > (1 + δ)µ] 6 exp

(
− δ2µ

2 + δ

)
.

In Section 2, we prepare the reader for the proof of the main result, Theorem 1.1,
that can be found in Section 3. Theorem 1.3 is proved in Section 4 and Theorem 1.4
in Section 5. We conclude the paper with some open problems that can be found in
Section 6.

2 Warming up before attacking Theorem 1.1

First note that in order to prove Theorem 1.1 it is enough to do it for p = 1+ε
log 2
· logn

n
for

an arbitrarily small ε > 0. This follows from that fact that at(G) = 1 is an increasing
graph property (see for example Lemma 1.10 in [9]).

In this section, in order to prepare for a delicate and technical argument, we show that
the result holds for p = 2

√
log n/n, which is much larger than the value of p in Theorem

1.1. The idea behind both this warm-up exercise and the more difficult proof of Theorem
1.1 is to embed a certain type of tree in the random graph. The embedded tree contains
all the edges that will be used for acquisition moves, and essentially specifies the entire
acquisition protocol that will be used.

Let i be the largest integer such that

2i 6 j =
⌈√

n/2
⌉
.

We construct a tree T rooted at vertex v in the following way. Vertex v has 1 + i + j
children v0, v1, . . . , vi+j. Vertex v0 is a leaf, and for every 1 6 ` 6 i we have that vertex
v` has 2` − 1 children; all remaining children of v have j children. Since the number of

the electronic journal of combinatorics 23(2) (2016), #P2.55 4

children of vertices v1, v2, . . . vi is at most 2i+1 = O(
√
n), the number of vertices in T

satisfies
n

2
6 j2 6 |V (T)| 6 j2 +O(

√
n) = (1 + o(1))

n

2
.

It is straightforward to see that vertices of T can move their weight to the root v. Indeed,
all grandchildren of v can move their weight to the corresponding parents, and then
vertices v0, v1, . . . , vi can send (one by one) the weight to the root (vertex v` sends the
weight of 2`, ` = 0, 1, . . . , i). At that point of the process, v has the weight of 2i+1 > j so
the remaining neighbours can move their weight to v.

Let v be any vertex in G(n, p). First, we will show that w.h.p. there exists a tree T
rooted at v that can be embedded in G(n, p). It follows from Chernoff Bound that w.h.p.
the degree of v is (2 + o(1))

√
n log n. We select (arbitrarily) 1 + i + j neighbours of v

and label them as v0, v1, . . . , vi+j. We continue discovering neighbours of v`s (one by one)
but not every neighbour of v` will be used for the tree T (there will be more neighbours
than children in the corresponding subtree). Since the total number of vertices in T is
(1 + o(1))n/2, there will always be at least n/3 vertices left that are not embedded yet.
Hence, the number of neighbours of v` that are not embedded yet is a random variable that
can be lower bounded by the binomial random variable Bin(n/3, p) with expected value
of p(n/3) = (2/3)

√
n log n. Hence, using Chernoff Bound, with probability 1 − o(n−1)

there will be enough neighbours of v` to continue the process. It follows from the union
bound that T can be embedded w.h.p.

As we already mentioned, vertices of T can move their weight to the root v. It is enough
to show that the remaining vertices can do that too. Let S be the set of neighbours of v
that are outside of T . Since

s = |S| = deg(v)− (1 + i+ j) = (2 + o(1))
√
n log n−O(

√
n) = (2 + o(1))

√
n log n,

there should be enough vertices in S to dominate the rest of the graph and push the
remaining weight to v. The important observation is that at this point of the process v
has weight at least n/2 so we do not have to control how much weight we push from a
vertex of S to v. It remains to show that S dominates the remaining vertices (i.e. each
remaining vertex is adjacent to a vertex in S) w.h.p. But this is straightforward to see,
since for a given vertex we have that the probability it is not dominated is equal to

(1− p)s = exp (−(1 + o(1))ps) = exp (−(4 + o(1)) log n) = o(n−1),

and the claim holds by the union bound.

In order to generalize these ideas to sparse graphs we have to deal with a number of
problems, each of which is relatively easy to overcome but addressing all of them requires
more careful argument. The spirit of the proof however, remains the same: we will define
a special rooted tree (recursively) which has the property that all the weight can be moved
to the root and we will show that this tree can be embedded in G(n, p) w.h.p. This tree
will not quite be spanning, but it will contain a set of vertices, B, which dominates the
remaining vertices, R, and can shift their weight to the root as well. Finding a matching

the electronic journal of combinatorics 23(2) (2016), #P2.55 5

from R to B which saturates R completes the proof. There have been numerous results
on embedding spanning and almost spanning trees in random graphs [1, 10, 13], but most
of these results are for embedding bounded degree trees and are not precise enough for
our purposes. Let us list the most important issues and briefly describe the way we want
to deal with them. Suppose that p = 1+ε

log 2
· logn

n
.

Problem 1: Small average degree
By Observation 1.2, in order for a vertex to be able to accumulate a weight of w, it has
to have degree at least log2w = 1

log 2
logw. Since the average degree is only 1+ε

log 2
log n, it

follows that (almost) every time a neighbour of the root v sends its weight to v, the weight
is (almost) doubled. In particular, some children of v must be able to send a large weight
to v, much more than the number of their children. Hence, we will need to define the tree
recursively. As we will see in Corollary 3.3, the tree will reach level m = (1 + o(1)) logn

log logn
.

Problem 2: Continuing to embed after a linear number of vertices
As we already mentioned, the root and some vertices on top levels must have degrees
close to the average degree in the graph. We will require that the number of children for
those vertices is (roughly) 1+ε/2

log 2
log n. However, once a positive fraction of all vertices are

already embedded in the tree, the number of available neighbours drops substantially, so
in order to be able to continue the process, we will have to decrease the required number
of children to β log n for some β. The bottom α logn

log logn
levels of the tree will have this

property. The number of children on level k will be denoted by cm−k−1. (As explained
below, it will be more convenient to count levels from the bottom; hence the notation
cm−k−1 instead of more natural ck.)

Problem 3: Vertices with degree smaller than average
Even though the average degree is 1+ε

log 2
log n, it is possible that a vertex does not have

the required number of children (either 1+ε/2
log 2

log n or β log n). This is not avoidable but
rare, and we will show that w.h.p. there are at most σ children of a given vertex that
have this undesired property (we will see in the proof of Lemma 3.8 that σ = Θ(1/ε2)).
Nevertheless, we have to take this into account while constructing the tree.

Before defining our tree, we first define a property of rooted trees which (as we will
see soon) guarantees that the root can acquire all the weight on the tree, given that each
vertex begins with weight 1.

Definition 2.1 (Cut-off Property). Let T be a tree rooted at r. We say T has the
cut-off property if the following holds: for each vertex v with children v1, v2, . . . , vk,
and denoting by Ti the subtree rooted at vi, there exists an i′ (which may depend on v) so
that |Ti| = 2i−1 for i 6 i′, and |Ti| 6 2i

′
for i > i′.

In this case, the vertices vi for i 6 i′ are called exact. A vertex with an exact ancestor
is called tight, and vertices that are not tight are loose.

Lemma 2.2. If T is a tree rooted at r which has the cut-off property, then at(T) = 1. In
particular, vertex r can acquire all the weight.

Proof. We proceed by induction on the depth of T . The base case (depth 0) is trivial.
To see the induction step, let r have children v1, v2, . . . , vk and let Ti be the subtree of T

the electronic journal of combinatorics 23(2) (2016), #P2.55 6

rooted at the vi. Then the Ti inherit the cut-off property, and all have depth strictly less
than the depth of T , and so by induction, all the weight from subtree Ti can be loaded
onto the root vi.

Now it is easy to see that by the cut-off property, r may acquire the weight of each
child vi, going in order of increasing index.

It is time to define our recursive construction of a tree which will have the cut-off
property.

Definition 2.3. For any ρ,m, σ ∈ N, and positive integer sequence cm−k−1, construct the
rooted tree Tρ by the following process:

(i) Initialize: The root vertex r = 〈〉, the weight w(r) = ρ, the level k = 0.

(ii) Iterate: In level k, for a vertex 〈i1, i2, . . . , ik〉 with weight w = w(〈i1, i2, . . . ik〉) > 1,

(a) If 1 < w 6 cm−k−1, then attach w − 1 leaves to vertex 〈i1, i2, . . . , ik〉 each with
weight 1.

(b) If w > cm−k−1, then attach c := cm−k−1 children to vertex 〈i1, i2, . . . , ik〉, labelled
〈i1, i2, . . . , ik, 1〉 , . . . , 〈i1, i2, . . . , ik, c〉. Let i′ be the minimum integer i > 0 such
that

w − 2i − σ
c− i− σ

6 2i + σ.

Assign weights to the children as follows

w(〈i1, i2, . . . , ik+1〉) =

2ik+1−1 if ik+1 6 i′

1 if i′ < ik+1 6 i′ + σ
w−2i

′−σ
c−i′−σ otherwise.

(1)

Here, we assume that w−2i
′−σ

c−i′−σ is an integer and that i′+σ < c so that i′ is well
defined.

2 4

2i
′−1

.

w−2i
′−σ

c−i′−σ
w−2i

′−σ
c−i′−σ

1 1 1 11

σ

Note that the tree Tρ has the cut-off property. In this definition, w(v) is meant to
represent the number of vertices which will end up in the subtree rooted at v. The

the electronic journal of combinatorics 23(2) (2016), #P2.55 7

sequence c provides a sort of threshold for the recursive part of the definition to come
into play. So if the weight on v is at most c, then the entire subtree appears in the form
of leaves. If the weight on v exceeds c, then v will have exactly c children and the weight
is distributed according to (1).

In Definition 2.3 it is convenient to work “from the top down,” starting with all the
weight at the root, and then iteratively assigning to each vertex the number of children
necessary to distribute its weight so as to achieve the cut-off property. However, the

assumption that w−2i
′−σ

c−i′−σ is always an integer may seem worrisome to the reader. We
will ultimately choose the parameters of Tρ so that this assumption holds. Our choice
of parameters will be made by working “from the bottom up,” i.e. specifying what the
bottom layer (the layer corresponding to the largest value of k in Definition 2.3) ought to
look like, and then working our way up layer by layer. See Definition 3.1 and Lemma 3.5.

Problem 4: Divisibility
In the recursive definition of the tree, we distribute the remaining weight equally among
some number of vertices. Hence, we will have to make sure that certain divisibility
conditions hold. Unfortunately, it is difficult to find the initial weight ρ that does it.
Hence, in order to do that, we first define c∗k to be the desired number of children of
vertices on level k + 1 (this time, counted from the bottom), and then assign weights
starting from the bottom level and doing calculations upwards. This issue is addressed
by Definition 3.1.

Problem 5: Finding the right size tree to embed
Our goal will be to construct a tree that consists of (8

5
+ o(1))n vertices, that is, a tree Tρ

with ρ = (8
5

+ o(1))n. (Of course, G(n, p) has only n vertices; Tρ is an abstract tree that
will be “trimmed” before embedding it into a random graph.) As we already mentioned,
for a fixed sequence of c∗k’s and σ, one can easily (recursively) calculate the weight ρk of
loose vertices on level k (again, counted from the bottom), and the weight of the root
ρ = ρm. However, it is hard to expect that the desired condition holds, namely, that
ρm = (8

5
+ o(1))n. In order to solve this problem we start with any sequence c∗k, take m

to be the largest integer such that ρm 6 8
5
n, and then modify the sequence slightly to

get the desired sequence ck with ρm = (8
5

+ o(1))n. Let us note that a non-constructive
argument is used here that shows only the existence; the sequence ck is not explicitly
defined. Lemmas 3.2 and 3.4 provide useful relationships between the sequences c and ρ
which aid in the proof of Lemma 3.5 which proves the existence of the desired sequence c.

Problem 6: Finishing the embedding
It is difficult to expect that a given tree on n vertices can be embedded in a random
graph. Hence, we are going to remove a number of leaves in Tρ to get another tree T ′ρ
on (4

5
+ o(1))n vertices that can be embedded in G(n, p) w.h.p. The important property

will be that parents of removed leaves can not only dominate the remaining (1
5

+ o(1))n
vertices but also can push all the weight to the root. This issue is addressed by Definition
3.6 and Lemma 3.7.

the electronic journal of combinatorics 23(2) (2016), #P2.55 8

3 Proof of Theorem 1.1

The proof will be similar to the warm-up exercise in Section 2, in that we will embed a
certain type of spanning tree. There has been some research in the problem of embedding
spanning (or almost spanning) trees into random graphs ([1, 10, 13]), but these results
will not quite achieve our goal. We are working with G(n, p) for p = Θ

(
logn
n

)
, and we

must embed a tree with maximum degree ∆ = Θ(log n). But the results in [1, 10, 13] all
require at least p = Ω

(
∆ log ∆

n

)
.

The main probabilistic tools we will use are Markov’s inequality and the Chernoff
bound. The difficulty lies in defining our spanning tree in such a manner that we can
argue that it embeds into G(n, p) using only these simple tools. There are two main
reasons why our tree is easier to embed than the trees from [1, 10, 13]. The first is that
we will embed a deterministic tree that spans some linear number of vertices (but not
all vertices), and then we will span the rest of the vertices in a non-deterministic way
that depends on the edges of G(n, p) (see Problem 6). This is easier than [10, 13], which
embed a completely deterministic tree. The second reason our tree is easier to embed is
that we construct it to have several leaves adjacent to each vertex. In this way we avoid
the problem of not finding enough neighbours with high enough degree. If a vertex v has
some neighbours whose degree is not high enough, we let those neighbours be the leaves
adjacent to v (see Problem 3).

We will now state a definition that will help us choose the parameters of Tρ so that it
has all the desired properties. As we mentioned before, we will work “from the bottom
up” here, which is in contrast to Definition 2.3 where we worked “from the top down.”
Specifically, in Definition 3.1 the index j is used to count layers of the tree similarly to
the index k in Definition 2.3, but j = 1 in Definition 3.1 corresponds to the bottom (i.e.
the leaves farthest from the root), whereas k = 0 in Definition 2.3 corresponds to the top
(i.e. the root). Set d = 1+ε

log 2
log n and let σ, β, α be constants.

Definition 3.1. Let

c∗j :=

{
β log n if j 6 α logn

log logn
1+ ε

2

log 2
log n otherwise.

and let c be a sequence such that c∗j 6 cj 6 c∗j(1 + o(1)). Define the function

i∗(x) :=

{
0 if x 6 σ

dlog2(x− σ)e otherwise.

Finally, define sequences ρ1, ρ2, . . . and b1, b2, . . . recursively by putting ρ1 := 2 and

ρj+1 := σ + 2i
∗(ρj) +

(
cj − i∗(ρj)− σ

)
· ρj,

b1 := 1 and

bj+1 :=
(
cj − i∗(ρj)− σ

)
· bj.

the electronic journal of combinatorics 23(2) (2016), #P2.55 9

Note that the sequences ρ, b depend on our choice of the sequence c (we assume that
constants ε, σ, β, α are fixed in advance). As was mentioned before (see Problem 4), the
main purpose of this recursive sequence is to calculate (for a given sequence c and depth
m) the weight of the root; in fact, ρj is the weight of each loose vertex at level j (counted
from the bottom) so the weight of the whole tree is ρm. Let us also mention that the
purpose of i′ in Definition 2.3 was to make sure that the total weight of subtrees rooted
at exact vertices together with the weight of the root is at least the weight of each subtree
rooted at non-exact children. It is straightforward to see that i∗ in Definition 3.1 has the
same purpose and so these values are always the same. Finally, let us point out that we
fix ρ1 = 2 which indicates that every loose vertex at the level directly above the bottom
has precisely one leaf. These leaves will play an important role in our argument and bj
counts how many such leaves we have in the tree rooted at loose vertices at level j (as
usual, counted from the bottom).

Let ρ∗ be the sequence obtained by setting c = c∗ in Definition 3.1. Let m be the
largest integer so that ρ∗m 6 8

5
n. Note that for every j > 2, ρj > ρ2 = Ω(log n) and so

ρj+1 =
(
cj − log2 ρj +O(1)

)
· ρj 6 cjρj. (2)

It follows that ρ∗m = Ω
(

n
logn

)
, since ρ grows by at most a log factor each time.

Henceforth we will keep m = m(n) as defined above (2) and consider the sequences
ρ, b only up to the terms ρm, bm. We will consider sequences c with terms that might be
larger than those of c∗. As a result, ρj > ρ∗j for all j. However, we will only consider

sequences c such that the corresponding sequence ρ has ρm = n1+o(1).

Lemma 3.2. Let c be any sequence such that c∗j 6 cj 6 c∗j(1 + o(1)) and the ρ-sequence

corresponding to c has ρm = n1+o(1). If α < β log 2
2

then

ρj = exp{(j − 1) log log n+O(j)}

for all 2 6 j 6 m.

Proof. Clearly, ρ2 = Θ(log n) and it follows immediately from (2) that for every 2 6 j < m
we have

ρj+1

ρj
6 cj 6 2c∗j 6 2 max

(
β,

1 + ε
2

log 2

)
log n.

Hence, ρj 6 exp{(j − 1) log log n+O(j)} for all j 6 m and so the upper bound holds. In
particular, as long as j 6 α logn

log logn
we have

ρj 6 ρα logn
log logn

6 nα·(1+o(1)). (3)

For the lower bound, we use (2) one more time and (3) to observe that for every j
such that 2 6 j 6 α logn

log logn
we have

ρj+1

ρj
>

(
β(1 + o(1))− α

log 2
(1 + o(1))

)
log n >

β

2
log n

the electronic journal of combinatorics 23(2) (2016), #P2.55 10

(by our choice of α). Since for every j 6 m we have ρj 6 ρm = n1+o(1), for every j such
that α logn

log logn
< j < m we have

ρj+1

ρj
>

(
1 + ε

2
+ o(1)

log 2
− 1 + o(1)

log 2

)
log n >

ε

4 log 2
log n.

It follows that ρj > exp{(j−1) log log n+O(j)} for all j 6 m and the proof is finished.

Henceforth, we assume that α < β log 2
2

. We immediately get the following corollary.

Corollary 3.3. m = (1 + o(1)) logn
log logn

.

In Definition 2.3, it was assumed that i′ was well defined, that is, that the condition
i′ + σ < c holds. Because of the relationship between the two definitions, this condition
is equivalent to the condition cj − i∗(ρj)− σ > 1 in Definition 3.1. In the next lemma, we
show that the same condition for α as in Lemma 3.2 is enough to guarantee that i′ is well
defined. The following is a useful property which we will use in the next few arguments.

Lemma 3.4. We have that i′ always exists. In fact, the following stronger property holds:
for every j such that 1 6 j 6 m we have

cj − log2 ρj = Ω(log n).

Proof. In order to show that i′ exists, we will show that the equivalent condition that
cj − i∗(ρj) − σ > 1 in Definition 3.1 holds. In fact, we will show something stronger,
namely, that cj − log2 ρj = Ω(log n) for every 1 6 j 6 m. For j 6 α logn

log logn
we have

cj − log2 ρj > cj − log2 ρα logn
log logn

= (1 + o(1))

(
β − α

log 2

)
log n = Ω(log n).

If j > α logn
log logn

, then

cj − log2 ρj > cj − log2 ρm = (1 + o(1))

(
1 + ε

2

log 2
− 1

log 2

)
log n = Ω(log n).

The proof is complete.

Our next task is to show that one can adjust a sequence c∗ slightly to get another
sequence c with ρm =

(
8
5

+ o(1)
)
n.

Lemma 3.5. There exists a sequence of integers cj with c∗j 6 cj 6 c∗j(1 + o(1)) and

ρm =
(

8
5

+ o(1)
)
n.

Proof. We will start by setting cj = c∗j for all j, and then apply a number of operations to
the sequence c. Each operation will consist of increasing a single term cj by 1 and leaving
all other terms the same.

the electronic journal of combinatorics 23(2) (2016), #P2.55 11

Suppose that the sequence c̃ agrees with sequence c except in the j0 term where we
have c̃j0 = cj0 + 1. Let ρ̃ and ρ be the corresponding sequences, which must then agree
for all j 6 j0. Then, it follows from (2) and Lemma 3.4 that

ρ̃j0+1

ρj0+1

=

(
(cj0 + 1)− log2 ρj0 +O(1)

)
· ρj0(

cj0 − log2 ρj0 +O(1)
)
· ρj0

= 1 +O

(
1

cj0 − log2 ρj0

)
= 1 +O

(
1

log n

)
.

Now, since ρ̃j > ρj, for j > j0 + 1 we have

ρ̃j+1

ρj+1

=

(
cj − log2 ρ̃j +O(1)

)
· ρ̃j(

cj − log2 ρj +O(1)
)
· ρj

6

(
cj − log2 ρj +O(1)

)
· ρ̃j(

cj − log2 ρj +O(1)
)
· ρj

=
ρ̃j
ρj
·
(

1 +O

(
1

cj − log2 ρj

))
=
ρ̃j
ρj
·
(

1 +O

(
1

log n

))
.

Hence,
ρ̃m
ρm

6

(
1 +O

(
1

log n

))m
= 1 +O

(
1

log log n

)
.

In other words, each time we increment a term of sequence c, the effect on ρm is negligible.
However we will now show that if we perform this operation on c enough times (while
still not changing it too much each time), the effect on ρm can be as much as we need it
to be.

Suppose now that c̃j = c∗j + logn
log log logn

= c∗j(1 + o(1)) for all j. Our goal is to show that

ρ̃m > 8
5
n. For a contradiction, suppose that it is not the case, that is, ρ̃m < 8

5
n. Note

that we have
log2 ρ̃j = log2 ρ

∗
j +O(j)

since from Lemma 3.2 it follows that both ρ̃j and ρ∗j are equal to exp{(j − 1) log log n +
O(j)}. Using (2) as usual, by Lemma 3.4 we get that

ρ̃j+1

ρ∗j+1

=

(
cj + logn

log log logn
− log2 ρ̃j +O(1)

)
· ρ̃j(

cj − log2 ρ
∗
j +O(1)

)
· ρ∗j

=
cj − log2 ρ

∗
j + logn

log log logn
+O(j)

cj − log2 ρ
∗
j +O(1)

· ρ̃j
ρ∗j

=
ρ̃j
ρ∗j

(
1 + Θ

(
log n

(cj − log2 ρ
∗
j) log log log n

))
=
ρ̃j
ρ∗j

(
1 + Θ

(
1

log log log n

))
=
ρ̃j
ρ∗j

exp

{
Θ

(
1

log log log n

)}

the electronic journal of combinatorics 23(2) (2016), #P2.55 12

And so we have

ρ̃m = ρ∗m · exp

{
Θ

(
m

log log log n

)}
= Ω

(
n

log n

)
· exp

{
Θ

(
log n

(log log n)(log log log n)

)}
� n

which is a contradiction and so the sequence c̃ is such that ρ̃m > 8
5
n.

Thus we can apply the operation “increment one term by 1” to the sequence c = c∗

several times so that each term gets increased by at most logn
log log logn

= o(log n), and we are

able to do so in such a manner that ρm =
(

8
5

+ o(1)
)
n. The proof is finished.

Definition 3.6. Define the tree T ′ρj to be the tree Tρj with each leaf in the bottom level
being removed if it has a loose parent. Call the parents that lose their children bereft.

Note that by induction and definition of ρj, bj, and T ′ρj , we see that T ′ρj has ρj − bj
many vertices, bj of which are bereft. It is not difficult to see that by construction, T ′ρj
has the cut-off property. Moreover, if we form another tree T ′′ρj by re-attaching at most
one leaf to each bereft parent of T ′ρj , then T ′′ρj still has the cut-off property.

Our next goal is to show that almost all vertices of T ′ρj are bereft. Since each bereft
vertex has exactly one child in Tρj , we get that |Tρj | = (2 + o(1))|T ′ρj |. In particular,

|T ′ρj | = (4
5

+ o(1))n.

Lemma 3.7. For all 1 6 j 6 m we have
bj

ρj−bj → 1 as n→∞.

Proof. Note that

ρj+1

bj+1

=
σ + 2i

∗(ρj) +
(
cj − i∗(ρj)− σ

)
· ρj(

cj − i∗(ρj)− σ
)
· bj

=

(
cj − log2 ρj +O(1)

)
· ρj(

cj − log2 ρj +O(1)
)
· bj

=
ρj
bj
·
(

1 +O

(
1

cj − log2 ρj

))
=
ρj
bj
·
(

1 +O

(
1

log n

))
,

since cj − log2 ρj = Ω(log n) by Lemma 3.4. Since ρ1
b1

= 2, we have

ρj
bj

= 2 ·
(

1 +O

(
j

log n

))
.

Finally, since j 6 m = o(log n), for all j 6 m we have that
ρj
bj
→ 2 as n → ∞, and the

result follows.

Now, we are ready to show that T ′ρm can be embedded into the random graph G(n, p).

Lemma 3.8. If β < 1
10 log 2

and 0 < α < β log 2
2

, then w.h.p. G(n, p) (with p = 1+ε
log 2
· logn

n
)

contains a copy of T ′ρm.

the electronic journal of combinatorics 23(2) (2016), #P2.55 13

Proof. We will embed T ′ρm in G(n, p). Select any vertex (arbitrarily) that will serve as a
root of the tree. The embedding is done greedily and from the top down, and at each
step we reveal the neighbourhood of one vertex. We group vertices in the same level (i.e.
distance from the root) consecutively. The embedding will be determined iteratively as we
reveal the random graph. We will not put a vertex of G(n, p) into our partial embedding
until we have exposed all of its children.

We say that a vertex in level k is bad if its neighbourhood (into the unexposed vertices)
contains less than cm−k−1. We will show that w.h.p. the root is not bad and no vertex
has more than σ bad children. Any bad children will be put into the partial embedding
as leaves, and the other vertices will be arbitrarily assigned (to non-leaves first and then
to leaves, if the number of bad children is smaller than σ).

The tree T ′ρm has at most

(
1 + ε

2

log 2
log n

)m−α logn
log logn

= n(1−α)(1+o(1)) = o(n)

vertices total in levels 0 through m − α logn
log logn

− 1. Thus, the expected degree (into the

unexposed vertices) of each vertex exposed in such a level k is

(1 + o(1))d = (1 + o(1))
1 + ε

log 2
log n > ck +

ε

3 log 2
log n (4)

and so it follows from Chernoff Bound that the probability that a fixed vertex is bad is
polynomially small, that is, at most n−Θ(ε2). For levels k farther to the bottom, note that
the number of vertices that are not embedded yet is always at least 1+o(1)

5
n and so the

expected degree of each exposed vertex in layer k is at least

1 + o(1)

5
d = (1 + o(1))

1 + ε

5 log 2
log n > ck +

1

10 log 2
log n,

again yielding that the probability that a fixed vertex is bad is polynomially small (this
time the exponent is a universal constant, not a function of ε).

Therefore if σ = Θ(1/ε2) is a large enough constant, then w.h.p. each vertex has at
most σ bad children. This proves that our embedding procedure is successful w.h.p. and
the proof is finished.

Let B be the set of bereft vertices in G(n, p) and R be the set of remaining, unexposed
vertices that are not embedded into tree yet. Note that |B| = bm =

(
4
5

+ o(1)
)
n and

|R| = n − (1 + o(1))bm =
(

1
5

+ o(1)
)
n. An important property is that no edge between

B and R is exposed at this point, so the next Lemma shows that w.h.p. set B dominates
set R but in such a way that at most one vertex of T is assigned to each bereft vertex.
This will finish the proof of the main theorem, Theorem 1.1.

Lemma 3.9. W.h.p. there is a matching from R to B which saturates R.

the electronic journal of combinatorics 23(2) (2016), #P2.55 14

Proof. We are going to use Hall’s theorem for bipartite graphs. It is enough to show that
for every subset S ⊆ R, Hall’s condition holds, that is, we have that |N(S) ∩B| > |S|.

We will use the following useful upper bound:

Pr [@ matching saturating R] (5)

6 Pr [∃v ∈ R : N(v) ∩B = ∅]
+ Pr [∃S ⊆ R, T ⊆ B : |S| = k > 2, |T | = k − 1, N(S) ∩B = T, e(S : T) > 2(k − 1)]

where e(S : T) represents the number of edges between S and T . The first term bounds
the probability that Hall’s condition fails for some set of size one. To see why the condition
in the second term is equivalent to the property that Hall’s condition fails for some set
of cardinality at least 2 is slightly more complicated. Take a smallest size S ⊆ R with
|S| > 2, which violates Hall’s condition, i.e. |S| > |T | where T = N(S) ∩ B. If |S| = k,
then |T | = k− 1, otherwise we could remove some vertex from S to get a smaller set that
violates Hall’s condition. Every vertex in T must have degree at least 2 into S, because
removing a degree 1 vertex from T and its unique neighbour in S gives us a smaller set
which violates Hall’s condition. So the number of edges between S and T must be at least
2(k − 1).

In order to bound the first term in (5), note that

Pr [∃v ∈ R : N(v) ∩B = ∅] 6 |R|(1− p)|B| 6 n exp

(
− 4

5 log 2
log n

)
6 n exp (−1.15 log n) = o(1).

To bound the second term in (5), let Y count the number of sets S and T satisfying the
condition in this term. Then we may bound the expectation of Y from above by

E [Y] 6
|R|∑
k=2

(
|R|
k

)(
|B|
k − 1

)(
k(k − 1)

2(k − 1)

)
p2(k−1)(1− p)k(|B|−(k−1))

6
|R|∑
k=2

(
|R|e
k

)k (|B|e
(k − 1)

)k−1(
kep

2

)2(k−1)

exp (−pk(|B| − (k − 1))) ,

since
(
a
b

)
6 (ae/b)b. It follows that

E [Y] 6
|R|∑
k=2

exp

(
(2k − 1) log

(n
k

)
+ 2(k − 1) log

(
k log n

n

)
− 4

5 log 2
k log n

(
1− k

4
5
n

+ o(1)

)
+O(k)

)

6
|R|∑
k=2

exp

(
log n+ 2(k − 1) log log n− 1.15k log n

(
1− 5k

4n
+ o(1)

)
+O(k)

)
.

the electronic journal of combinatorics 23(2) (2016), #P2.55 15

For each value of k such that 2 6 k 6 |R|, each term above is o(n−1.1). Since we are
summing over |R| = (1

5
+o(1))n many terms, we get E [Y] = o(1) and so Pr [Y > 0] = o(1)

by Markov’s inequality. It follows that the probability in (5) is o(1) and the proof is
finished.

4 Proof of Theorem 1.3

First, let us concentrate on the lower bound. In the rest of this section, set d = p(n−1) =
c log n where 0 < c < 1

log 2
. Let ε′, ε′′ > 0 be constants such that c + ε′ + ε′′ < 1

log 2
.

Set c′ = c + ε′ and c′′ = c′ + ε′′ so that c < c′ < c′′ < 1
log 2

. Also define the constant

γ :=
⌈
2
(

4c+2ε′

ε′2

)⌉
.

We will need the following property of a random graph G(n, p).

Lemma 4.1. The following properties hold w.h.p.

(i) G(n, p) has no vertices of degree at least 4 log n.

(ii) G(n, p) has no paths of length γ consisting of vertices of degree at least c′ log n.

Proof. (i) follows easily from Chernoff Bound.
For (ii), we first note that the expected number of paths on γ vertices is O(nγpγ−1) =

O(n · (log n)γ−1). Given such a path, we are looking for each vertex in the path to have
at least c′ log n − 2 additional neighbours among the n − γ other vertices. By Chernoff
Bound, the probability that one vertex in the path has enough neighbours is at most

exp

(
−

(ε
′

c
)2c log n

2 + ε′

c

· (1− o(1))

)
6 exp

(
− ε′2

4c+ 2ε′
log n

)
.

Hence the expected number of paths on γ vertices consisting of vertices with degree at
least c′ log n, is at most

O

(
n · (log n)γ−1 · exp

(
− ε′2

4c+ 2ε′
log n

)γ)
= O

(
n−1 · (log n)γ−1

)
= o(1).

So by Markov’s inequality, w.h.p., there are no such paths.

Now, we are ready to show the lower bound.

Proof of the lower bound in Theorem 1.3. Suppose that in any graph G of maximum de-
gree at most 4 log n, the vertex v can acquire nc

′′ log 2 weight. Then, it follows from Ob-
servation 1.2 that d(v) > log2

(
nc
′′ log 2

)
= c′′ log n. Furthermore, by averaging argument,

some neighbour u of v must have acquired at least nc′′ log 2

4 logn
weight, and so

d(u) > log2

[
nc
′′ log 2

4 log n

]
> c′′ log n−O(log log n).

the electronic journal of combinatorics 23(2) (2016), #P2.55 16

Applying the same reasoning inductively β = O(1) times, we find a path of length β of
vertices of degree at least c′′ log n−O(log log n) > c′ log n.

By Lemma 4.1, w.h.p. G(n, p) has max degree at most 4 log n and no long path of high
degree vertices, and so w.h.p. no vertex can ever get a weight more than nc

′′ log 2. Thus,
at least n1−c′′ log 2 vertices have nonzero weight after any legal sequence of moves and the
lower bound holds.

For the upper bound in Theorem 1.3, we must show that all the weight can be pushed
to at most n1−c+ε many vertices. To do this we basically follow the embedding proof from
Theorem 1.1 but this time with many roots. We sketch the idea of this process, and the
reader may check the details.

Proof sketch of the upper bound in Theorem 1.3. Suppose p = c+o(1)
log 2

· logn
n

for some c ∈
(0, 1). We would like to show that for any 0 < ε′ < min{c, 1 − c}, w.h.p., at(G(n, p)) 6
n1−c+ε′ . We let ε = ε′/2 and prove that at(G(n, p)) 6 n1−c+ε+o(1). Let α, β > 0 be any
two constants such that β < c

10 log 2
, α < β log 2

2
and let

c∗j :=

{
β log n if j 6 α logn

log logn
c− ε

2

log 2
log n otherwise.

Let ρ be the sequence defined as in Defintion 3.1 with respect to this sequence c∗. Let
m be the largest integer such that ρm 6 nc−ε. Then ρm = Ω(nc−ε/ log n) and m =
(c − ε + o(1)) logn

log logn
. At this point in the proof of Theorem 1.1, we would adjust the

sequence c∗ to get a precise value for ρm. However, in this case, this step is unnecessary
since we may simply adjust the number of copies of T ′ρm which we embed. Let L = L(n)

be an integer such that L · |T ′ρm| = L · (1/2+o(1))ρm = (4
5

+o(1))n. Then L = n1−c+ε+o(1).
We would like to grow L vertex disjoint copies of T ′ρm . To do this we must have L
roots. We begin with 2L many vertices which are candidate roots. The probability that
a fixed vertex has less than c−ε/2

log 2
log n neighbours (among the other n− 2L vertices) is at

most n−Θ(ε2) by Chernoff Bound. So by Markov’s inequality, w.h.p., at least L of these
2L vertices have at least c−ε/2

log 2
log n neighbours, and we take these L vertices to be the

roots. The other L vertices whose neighbourhoods were exposed now play no part in the
embedding and can retain their weight until the end.

We may now proceed as in Lemma 3.8. We embed the trees from the top down and
group vertices in the same level (this time, distance from their respective root) consecu-
tively. In levels 0 through m− α logn

log logn
− 1, the L trees have at most

L ·
(
c− ε

2

log 2
log n

)m−α logn
log logn

= n1−α+o(1) = o(n)

vertices total. So, as in (4), the probability that a fixed vertex is bad is polynomially

small. We also have that the number of unexposed vertices is always at least 1+o(1)
5

n, so
the polynomial bound on the probability that a vertex is bad holds for levels further down

the electronic journal of combinatorics 23(2) (2016), #P2.55 17

as well. So by taking σ to be a large enough constant, we successfully embed the L trees
w.h.p.

We are now in the situation where we have
(

4
5

+ o(1)
)
n bereft vertices B, and 1

5
+o(1)

unexposed vertices, R. Note that since p = c+o(1)
log 2

· logn
n

and c may be small here, we will
not be able to guarantee that there is a matching from R to B which saturates all vertices
in R. However, it is sufficient to find a matching which saturates all but n1−c+ε vertices in
R, since these remaining n1−c+ε vertices can keep their weight. Indeed, if such a matching
is found then we have shown that

at(G(n, p)) 6 L+ L+ n1−c+ε = n1−c+ε+o(1).

The first L represents the candidate roots which were discarded, the second L represents
the roots of the T ′ρm which were embedded and which receive all the weight from their
trees, and the last term represents the unmatched vertices from R.

To show that such a matching exists, we may use the defect version of Hall’s Theorem:
If |N(S) ∩ B| > |S| − q for all S ⊆ R, then there is a matching which saturates all but
q vertices of R. Emulating the proof of Lemma 3.9 using this version of Hall’s Theorem
with q = n1−c+ε proves the existence of the desired matching.

5 Proof of Theorem 1.4

Before we move to the proof of this result, let us mention that our goal is to provide a
simple proof of the conjecture and the constant can be easily improved with more effort.

Proof of Theorem 1.4. We say that a subgraph L = {v−w− x− y} of a tree T is a long
leaf if L is an induced path of length 3; in particular, deg(v) = 1, deg(w) = deg(x) = 2
in T . Observe that the acquisition number of every graph is bounded from below by the
number of long leaves. Indeed, it is straightforward to see that, regardless of a strategy
used, for every long leaf L we have that at least one vertex from {v, w, x} has to have
non-zero weight at the end of the process.

Consider the probability space Ω of all labelled trees of order n uniformly distributed.
Let T be a randomly chosen tree from Ω. Clearly |Ω| = nn−2, due to Cayley’s formula, so
for every fixed tree T0 on n vertices we have Pr(T = T0) = 1/nn−2. Our goal is to show
that a.a.s. the number of long leaves in T is at least n/(3e3).

Let Xv = Xv(T) be an indicator random variable defined as follows:

Xv =

{
1 if v is a vertex of degree 1 in a long leaf,

0 otherwise.

Let X = X(T) be a random variable counting the number of long leaves in T , that is,
X =

∑
v∈V (T) Xv. Note that for every v ∈ V (T)

E(Xv) = Pr(Xv = 1) =
(n− 1)(n− 2)(n− 3)(n− 3)n−5

nn−2

= (1 + o(1))

(
1− 3

n

)n
= (1 + o(1))

1

e3
,

the electronic journal of combinatorics 23(2) (2016), #P2.55 18

since there are (n− 1)(n− 2)(n− 3) choices for the vertices of the long leaf and there are
(n− 3)n−5 ways to embed a tree on remaining vertices. Hence,

E(X) =
∑

v∈V (T)

E(Xv) = (1 + o(1))
n

e3
. (6)

Now we are going to apply Chebyshev’s inequality to show that a.a.s. X > E(X)
2

> n
3e3

.
It follows that

Pr

(
X 6

E(X)

2

)
6 Pr

(
|X − E(X)| > E(X)

2

)
6

V ar(X)
1
4
(E(X))2

= 4

(
E(X2)

(E(X))2
− 1

)
.

Hence, it suffices to show that E(X2)
(E(X))2

tends to 1 as n→∞. Clearly,

E(X2) =
∑
v,v′

E(XvXv′) = E(X) +
∑
v 6=v′

E(XvXv′) = E(X) +
∑
v 6=v′

Pr(Xv = Xv′ = 1), (7)

where the sums are over ordered pairs. Now, for fixed vertices v 6= v′,

Pr(Xv = Xv′ = 1) =
(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)2(n− 6)n−8

nn−2
= (1 + o(1))

1

e6
,

(8)
since there are (n − 2)(n − 3)(n − 4)(n − 5) choices for vertices w, x, w′, x′ in the two
corresponding long leaves L = {v−w− x− y} and L′ = {v′−w′− x′− y′}, and (n− 6)2

choices for y, y′ (note that it might happen that y = y′ but other than that the two leaves
cannot overlap). Consequently, (6), (7), and (8) imply that

E(X2)

(E(X))2
=

(1 + o(1)) n
e3

+ (1 + o(1))n2 1
e6(

(1 + o(1)) n
e3

)2 = 1 + o(1),

as required. The proof of the theorem is finished.

6 Concluding Remarks

In this paper, we showed that p = 1
log 2
· logn

n
is the sharp threshold for the property

at(G(n, p)) = 1. However, precise behaviour of the total acquisition number in the critical
window is not determined and it is left as an open problem. For example one could study
when the total acquisition number becomes 2, or when it becomes ω(n). We analyzed
sparser graphs showing that for c ∈ (0, 1), w.h.p.

logn at

(
G
(
n,

c

log 2
· log n

n

))
∼ 1− c,

so the exponent of the total acquisition number is determined up to o(1) term. It also
remains to be analyzed and better understood. We have not bothered to explicitly state

the electronic journal of combinatorics 23(2) (2016), #P2.55 19

the o(1) term that can be obtained from our proof, and have no reason to believe it is
optimal.

On the other hand, it is not difficult to see when this graph parameter becomes sub-
linear. It was already anticipated by West [18, 19] that at(G) is linear for p = c/n for
any constant c > 0 and sub-linear for p � 1/n. This is true, since for p = c/n we have
Ω(n) isolated vertices w.h.p. (see, for example, [9]), and so the total acquisition number
is linear w.h.p. For p = ω/n, where ω →∞ the domination number is known to be equal
to (1 + o(1))n logω/ω = o(n) w.h.p. [7], so the total acquisition number is also sub-linear
w.h.p. An interesting related open question would be to study total acquisition on the
giant component of G(n, p) for p = c/n.

References

[1] N. Alon, M. Krivelevich, B. Sudakov, Embedding nearly-spanning bounded degree
trees. Combinatorica 27 (2007), no. 6, 629–644.

[2] J.C. Bermond, L. Gargano, A.A. Rescigno, U. Vaccaro, Fast gossiping by short mes-
sages. SIAM J. Comput. 27 (1998), no. 4, 917–941

[3] B. Bollobás, Random Graphs, Second Edition, Cambridge Studies in Advanced Math-
ematics, 73, 2001.

[4] S. Boyd, A. Ghosh,B. Prabhakar, D. Shah, Randomized gossip algorithms. IEEE
Trans. Inform. Theory 52 (2006), no. 6, 2508–2530.

[5] A. M. Frieze, M. Molloy, Broadcasting in random graphs. Discrete Appl. Math. 54
(1994), no. 1, 77–79.

[6] A. V. Gerbessiotis, Close-to-optimal and near-optimal broadcasting in random graphs.
Discrete Appl. Math. 63 (1995), no. 2, 129–150.

[7] R. Glebov, A. Liebenau and T. Szabo, On the concentration of the domination num-
ber of the random draph. SIAM J. Discrete Math. 29 (2015), no. 3, 1186–1206.

[8] S. M. Hedetniemi, S. T. Hedetniemi, A. L. Liestman, A survey of gossiping and
broadcasting in communication networks. Networks 18 (1988), 319–349.

[9] S. Janson, T. Luczak and A. Rucinski, Random Graphs, Wiley-Intersci. Ser. Discrete
Math. Optim., 2000.

[10] M. Krivelevich, Embedding spanning trees in random graphs. SIAM J. Discrete Math.
24 (2010), no. 4, 1495–1500.

[11] D. E. Lampert and P. J. Slater, The acquisition number of a graph, Congr. Numer.
109 (1995), 203–210.

[12] T. D. LeSaulnier, N. Prince, P. Wenger, D. B. West, and P. Worah, Total acquisition
in graphs, SIAM J. Discrete Math. 27 (2013), no. 4, 1800–1819.

[13] R. Montgomery, Embedding bounded degree spanning trees in random graphs,
preprint, arXiv:1405.6559.

[14] N. Prince, P. S. Wenger, and D. B. West, Unit acquisition number, preprint.

the electronic journal of combinatorics 23(2) (2016), #P2.55 20

http://arxiv.org/abs/1405.6559

[15] P. J. Slater and Y. Wang, Some results on acquisition numbers, J. Combin. Math.
Combin. Comput. 64 (2008), 65–78.

[16] P. J. Slater and Y. Wang, The competitive-acquisition numbers of paths, Congr. Nu-
mer. 167 (2004), 33–43.

[17] P. S. Wenger, Fractional acquisition in graphs, Discrete Appl. Math. 178 (2014),
142–148.

[18] D. B. West, Acquisition parameters of graphs (slides), at Graph Theory Workshop in
Jinhua, China, December 2013, http://www.math.uiuc.edu/~west/pubs/cumber.
pdf.

[19] D. B. West, personal communication.

the electronic journal of combinatorics 23(2) (2016), #P2.55 21

http://www.math.uiuc.edu/~west/pubs/cumber.pdf
http://www.math.uiuc.edu/~west/pubs/cumber.pdf

	Introduction
	Notation and Conventions

	Warming up before attacking Theorem 1.1
	Proof of Theorem 1.1
	Proof of Theorem 1.3
	Proof of Theorem 1.4
	Concluding Remarks

