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Abstract

In this note we construct two infinite snark families which have high oddness and
low circumference compared to the number of vertices. Using this construction, we
also give a counterexample to a suggested strengthening of Fulkerson’s conjecture
by showing that the Petersen graph is not the only cyclically 4-edge connected cubic
graph which require at least five perfect matchings to cover its edges. Furthermore
the counterexample presented has the interesting property that no 2-factor can be
part of a cycle double cover.

1 Introduction

A cubic graph is said to be colorable if it has a 3-edge coloring and uncolorable otherwise.
A snark is an uncolorable cubic cyclically 4-edge connected graph. It it well known that
an edge minimal counterexample (if such exists) to some classical conjectures in graph
theory, such as the cycle double cover conjecture [15, 18], Tutte’s 5-flow conjecture [19]
and Fulkerson’s conjecture [4], must reside in this family of graphs.

There are various ways of measuring how far a snark is from being colorable. One
such measure which was introduced by Huck and Kochol [8] is the oddness. The oddness
of a bridgeless cubic graph G is defined as the minimum number of odd components
in any 2-factor in G and is denoted by o(G). Another measure is the resistance of G,
r3(G), which was introduced by Steffen [17] and is defined as the minimal number of
edges that needs to be removed from G in order to obtain a 3-edge colorable graph, i.e.
r3(G) := min{|M | : M ⊂ E(G) and χ′(G−M) = 3}. It is easy to see that r3(G) 6 o(G).
It is also known that there exists families of snarks where these measures are arbitrary
large and arbitrary far apart [17].

Although snarks can be arbitrary far from being colorable in the sense of oddness and
resistance, this might not be the case when we consider other uncolorablilty measures.
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The perfect matching index τ(G) of a cubic graph G was introduced in [3] and is defined
as the minimum number of perfect matchings needed to cover E(G). A famous conjecture
by Fulkerson asserts that every bridgeless cubic graph has a double cover by six perfect
matchings [4], and if true, would imply that τ(G) 6 5 for every bridgeless cubic graph
G. Recently Mazzuoccolo showed that these two statements are in fact equivalent [12].
However it is not known if there exists a constant k such that τ(G) < k for all snarks G.

It is easy to see that τ(P ) = 5, where P is the Petersen graph. It has been proposed
[13, 3] that a possible strengthening of Fulkerson’s conjecture could be the assertion that
the Petersen graph is in fact the only snark with this property and that all other snarks
have τ = 4.

Conjecture 1.1 ( [13, 3]). Let G be a cyclically 4-edge connected cubic graph. If τ(G) = 5,
then G is the Petersen graph.

In this paper we present a counterexample to this conjecture. Furthermore we note
that this counterexample has the interesting property that no 2-factor can be part of a
cycle double cover. We also give simple constructions for two infinite families of snarks
with high oddness and resistance compared to the number of vertices.

2 The construction

The following simple lemma is well known (see e.g. [9, 14, 17]) and very useful when
studying edge colorability of cubic graphs.

Lemma 2.1 (Parity lemma). Let φ : E(G) → {1, 2, 3} be a 3-edge-coloring of a cubic
graph G. Then for every edge cut M in G we have that |φ−1(1) ∩M | ≡ |φ−1(2) ∩M | ≡
|φ−1(3) ∩M | ≡ |M |( mod 2)

Following the notation from [10] we say that a semiedge is an edge which is incident
to exactly one vertex or one vertex and another semiedge. In the latter case we simply
identify it with a normal edge. A multipole M is a triple M = (V,E, S) where V = V (M)
is the vertex set, E = E(M) is the edge set and S = S(M) is the set of semiedges. A
multipole with k semiedges is called a k-pole.

Let B be the 4-pole obtained by removing two adjacent vertices from the Petersen
graph (see Figure 1).

Lemma 2.2. In every 3-edge coloring of the 4-pole B the semiedges a1 and a2 receive the
same color.

Proof. Assume that a1 and a2 have different colors in a 3-edge coloring φ of B. W.l.o.g.
we may assume that φ(a1) = 1 and φ(a2) = 2. Now, by Lemma 2.1, one of b1 and b2 must
have color 1 and the other color 2. W.l.o.g. we can assume that φ(b1) = 1 and φ(b2) = 2.
Furthermore we can assume w.l.o.g. that φ(v1v2) = 2 and φ(v2v3) = 3. Then φ(v2v6) = 3,
but since one of the edges v6v7 and v5v6 must have color 3, we have a contradiction.
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Figure 1: The 4-pole B is constructed from the Petersen graph by removing two adjacent
vertices.

Figure 2: The 5-pole H1.

Figure 3: The 5-pole H2.

Now consider the 5-pole H1 obtained the following way: Take two copies B1 and B2

of B and identify the semiedges b1 from B1 with b1 from B2 to get an edge e1. Then add
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a vertex u which is connected with the semiedges b2 from both B1 and B2 and denote the
corresponding new edges by e2 and e′2 (see Figure 2). It is straightforward to verify that
this 5-pole cannot be 3-edge colorable.

Lemma 2.3. H1 is not 3-edge colorable.

Proof. Assume the opposite. Then by Lemma 2.2 e1 must have the same color as e2, but
e1 must also have the same color as e′2 which is impossible since e2 and e′2 are incident
edges.

The 5-pole H2 is formed in a similar way by joining two copies of B with three vertices
v1, v2 and u as shown in Figure 3.

Lemma 2.4. H2 is not 3-edge colorable.

Proof. Assume the the graph has a 3-edge coloring. Then by Lemma 2.2 e1 must have
the same color as e2 and e′1 must have the same color as e′2. W.l.o.g. we may assume that
e1 and e2 has color 1 and e′1 and e′2 has color 2. But then both v1u and v2u must have
color 3, which is impossible.

We can now use that fact that any cubic graph which contains either H1 or H2 as a
subgraph cannot be colorable to create two infinite families of snarks.

Construction 1.

Let G be any 2-edge connected cubic graph and let D be a 2-regular subgraph of G.
Let C = (v1, v2, . . . , vk) be a cycle in D. Now, form a graph by removing all edges vivi+1

(indices are taken modulo k). Then add k copies B1, . . . , Bk of the 4-pole B and denote
the semiedge edges in Bi by ail, b

i
l for l ∈ {1, 2}. Now, for all i ∈ {1, . . . , k}, connect vi

with the semiedge bi1, the semiedges ai2 with bi+1
2 and ai1 with vi+1. Repeat this process

for every cycle in D and denote the resulting proper graph by G′.
We call G′ a semi blowup of (G,D) and denote G′ by SemiBlowup(G,D).

Figure 4: An illustration of Construction 1.
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Construction 2.

The second construction is similar to the previous one. Let G be any 2-edge connected
cubic graph and let D be a 2-regular subgraph of G. Furthermore let C = (v1, v2, . . . , vk)
be a cycle in D and remove all edges vivi+1, i = 1, . . . , k and add k copies B1, . . . , Bk of
B. Now add two additional vertices ui and wi. Then add the edges {viui, viwi} and form
edges from the semiedges by connecting ui with bi1, wi with bi2, a

i
1 with ui+1 and ai2 with

wi+1. We continue this process for every cycle in D and call the resulting graph G′′. We
say that G′′ a blowup of D and G′′ is denoted by Blowup(G,D).

Figure 5: An illustration of construction 2.

Theorem 2.5. Let G be a 3-edge connected cubic graph with a 2-regular subgraph D.
Then Blowup(G,D) and SemiBlowup(G,D) are not 3-edge colorable. Furthermore if
D1, . . . , Dl are the disjoint cycles of D, we have that

o(Blowup(G,D)) > r3(Blowup(G,D)) >
l∑

i=1

⌈
|V (Di)|

2

⌉
and the same inequality holds for SemiBlowup(G,D).

Proof. Let G1 := SemiBlowup(G,D) and G2 := Blowup(G,D). Every pair of adjacent
edges on a cycle in D gives a subgraph isomorphic to H1 in G1 and a subgraph isomorphic
to H2 in SemiBlowup(G,D). Since a cubic graph cannot be colorable if either H1 or H2

are subgraphs, we have that r3(G1) and r3(G2) is at least the number of edges that needs
to be removed in order to make G1 H1-free or G2 H2-free. It is easy to see that this is at
least

∑l
i=1 β(Di) where β is the vertex cover number of a graph (the minimum number

of vertices needed to cover all the edges in a graph). Since an optimal vertex cover of an
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even cycle is to choose every second vertex we have that β(C2k) = k and for odd cycles
at least two adjacent vertices must be in the vertex cover, so β(C2k+1) = k + 1. Hence

o(Gj) > r3(Gj) >
l∑

i=1

β(Di) =
l∑

i=1

⌈
|V (Di)|

2

⌉
for j = 1, 2.

If G has no cyclic k-edge-cuts where k 6 3, then both blowup and semiblowup will
produce snarks. This also gives a simple construction of cyclically 4-edge connected snarks
with rather high oddness compared to the number of vertices.

By considering the semiblowup of a hamiltonian cycle in a hamiltonian cubic graph,
we get the following:

Corollary 2.6. For every k ∈ N, k > 2 there exists a snark Gk with |V (Gk)| = 18k and
o(Gk) > k.

This can be improved slightly by instead use many short cycles of odd lengths.

Corollary 2.7. For every k ∈ N there exists a snark Gk with |V (Gk)| = 90k and o(Gk) >
6k.

Proof. Given k ∈ N, let Fk be the 2-factor formed from 2k copies of C5. Then add
10k edges between the cycles in F in order to obtain a cubic graph G′k. Now let Gk :=
SemiBlowup(G′, F ). Since β(C5) = 3 we get o(Gk) > 2kβ(C5) = 6k.

In Corollary 2.7 the oddness of Gk grows linearly in the number of vertices. Obviously
it is impossible to construct a family of snarks where the oddness grows superlinearly. Let

qk := max
{ k

|V (G)|
: G ∈ G and o(G) > k

}
where G is the family of snarks. The Petersen graph is the smallest snark so q2 = 1

5
.

It is known that the smallest snark with oddness 4 has at least 38 vertices [1] and from
Theorem 2.5 we can construct a snark with oddness 4 on 46 vertices (use the semiblowup
construction on the cubic graph on 6 vertices which consists of a 5-cycle, a cord and a
K1,3). Hence, 2

23
6 q4 6 2

19
. From Corollary 2.7 we get q6k > 1

15
and from Corollary 2.6

we get qk > 1
18

. We pose the following two problems:

Problem 1. Let k be a given even number. Determine qk when k > 2.

Problem 2. What is the largest value c such that qk > c for all even k.
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3 Perfect matching covers

Let C be a cycle of length 3 in K4 and consider the graph Blowup(K4, C). By using a
computer, it is easy to see that this graph has perfect matching index 5. Note that this
graph was also observed in [1], as an example of a snark of minimum order for which
the removal of any vertex yields a graph homeomorphic to a non 3-edge colorable cubic
graph.

Observation 3.1. τ(Blowup(K4, C)) = 5.

Figure 6: An illustration of Blowup(K4, C).

It is possible to construct other snarks with this property. Another example is the
blowup of a 4-cycle in the prism depicted in Figure 7. However we do not have any
good characterization of the cubic graphs and 2-regular subgraphs for which the blowup-
construction yields snarks with perfect matching index 5.

Problem 3. Is it possible to give a simple characterization of cubic graphs G with τ(G) =
5?

Graphs constructed with the blowup-construction always contains cyclic 4-edge cuts,
and other than the Petersen graph, we do not know of any cyclically 5-edge connected
snarks G with τ(G) = 5.

Problem 4. Are there any cyclically 5-edge connected snarks G, different from the Petersen
graph, such that τ(G) = 5?

4 Cycle double covers

We say that a cycle double cover (abbreviated CDC) of a graph is multiset of cycles such
that every edge is covered by exactly two cycles. A k-CDC is a CDC where we can color
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Figure 7: An illustration of Blowup(Prism,C4).

assign k colors to the cycles in such a way that if two cycles share an edge, they will always
receive different colors. A famous conjecture by Seymour [15] and Szekeres [18] asserts
that every bridgeless cubic graph has a CDC, and a conjecture by Celmis [2] strengthen
this further by asserting that every such graph in fact has a 5-CDC. Celmins also observed
a connection between the perfect matching index and the existence of a 5-CDC where one
color class induces a 2-factor.

Theorem 4.1 (Celmins [2]). Let G be a cubic graph. Then τ(G) 6 4 if and only if G
has a 5-CDC where one color class induces a 2-factor in G.

From Theorem 4.1 and Observation 3.1 we see that Blowup(K4, C), where C is a
3-cycle in K4, also has the following interesting property.

Corollary 4.2. No 2-factor in Blowup(K4, C) can be part of a 5-CDC.

By a computer search we also make the following stronger observation.

Observation 4.3. No 2-factor in Blowup(K4, C) can be part of a CDC.

4.1 Circumference

It is known that cubic graphs with oddness 4 or less have cycle double covers [5, 7]. It is
also known that the cycle double cover conjecture holds for graphs with sufficiently long
cycles. Given a graph G, let the circumference of G be the length of the longest cycle. We
denote this by circ(G). In [6] it is shown that if a cubic graph G has circ(G) > |V (G)|−9,
then G has a cycle double cover. This result was further improved in [1] to |V (G)| − 10.
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We have already seen that the snarks constructed in Section 2 can have arbitrary high
oddness. We will now show that the same constructions also produces snarks with low
circumference compared to the number of vertices.

Given a cubic graph G, let ρ(G) denote the minimum number of vertices that needs
to be removed from G in order to obtain a 3-edge colorable graph. It was shown in [16]
that this number equals the resistance of the graph.

Theorem 4.4 (Steffen [16]). Let G be a cubic graph. Then ρ(G) = r3(G).

This theorem was later generalized in [11] to apply to all graphs with vertices of degee
at most 3. A simple consequence of this theorem is a bound on the circumference.

Lemma 4.5. Let G be a cubic graph. Then circ(G) 6 |V (G)| − r3(G) + 1.

Proof. Assume that G has a cycle C with |V (C)| > |V (G)|− r3(G) + 1. Now consider the
graph G′ = G − (V (G) − V (C)). If |V (C)| is even, then this graph is 3-edge colorable,
since we can color the edges of C alternating between colors 1 and 2, and the cords of C
with color 3. However this gives ρ(G) < r3(G)− 1 contradicting Theorem 4.4. If, on the
other hand, |V (C)| is odd, then obviously G′ − v is 3-edge colorable for any vertex v in
C. We now have ρ(G) < r3(G) which once again contradicts Theorem 4.4.

From Lemma 4.5 and Theorem 2.5 we can see that the graphs obtained from the
blowup and semiblowup constructions cannot have too long cycles.

Corollary 4.6. Given a cubic graph G and a 2-regular subgraph D with disjoint cycles
C1, C2, . . . , Ck, then

circ(Blowup(G,D)) 6 |V (G)| −
k∑

i=1

d|V (Ci)|
2
e+ 1

and the same holds for SemiBlowup(G,D).

5 Concluding remarks

There are other constructions of snarks that are far from 3-edge colorable that are similar
to the blowup and semiblowup constructions using other k-poles than B (any k-pole which
is either non-3-edge colorable or where the colors are forced as above works). See e.g. [10],
[17] and [14] for more comprehensive studies of this.

It is somewhat unsatisfactory to require the assistance of a computer to show that the
blowup of a 3-cycle in K4 has τ = 5. Given a good characterization of this property, it
might be possible to construct an infinite family of such snarks.
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