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Abstract

Let Fq be a finite field with q elements and let X be a set of matrices over Fq.
The main results of this paper are explicit expressions for the number of pairs (A,B)
of matrices in X such that A has rank r, B has rank s, and A + B has rank k in
the cases that (i) X is the set of alternating matrices over Fq and (ii) X is the
set of symmetric matrices over Fq for odd q. Our motivation to study these sets
comes from their relationships to quadratic forms. As one application, we obtain the
number of quadratic Boolean functions that are simultaneously bent and negabent,
which solves a problem due to Parker and Pott.

1 Introduction

Let Fq be a finite field with q elements. Let X be a set of matrices of the same size over Fq
and let Xk contain all matrices in X of rank k. Define

NX(r, s, k) =
∣∣{(A,B) ∈ Xr ×Xs : A+B ∈ Xk}

∣∣, (1)
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which is the number of pairs (A,B) of matrices in X such that A has rank r, B has rank
s, and A + B has rank k. We are interested in the numbers NX(r, s, k) when X is the
set of m × m alternating matrices over Fq and when X is the set of m × m symmetric
matrices over Fq (recall that a matrix is alternating if it is skew-symmetric and its diagonal
contains only zeros). Our motivation to study these sets comes from their relationships
to quadratic forms over finite fields. Some consequences of our results for quadratic forms
are discussed later in this section.

Our main results are explicit expressions for the numbers NX(r, s, k), which involve
the q2-binomial coefficient given by[

x

k

]
=

k∏
i=1

(q2x−2i+2 − 1)/(q2i − 1)

for real x and nonnegative integral k (see [1] and [8], for example, for elementary properties
of these numbers). For now we state our results for the most important case when
r = s = k = m. The general results are postponed to later sections.

We begin with the case that X is the set of alternating matrices over Fq. Recall that
every alternating matrix has even rank (see [8, Lemma 10], for example). We have the
following result, which holds for finite fields of arbitrary characteristic.

Theorem 1. Let m be even and let X be the set of m×m alternating matrices over Fq.
Writing n = m/2, we have

NX(m,m,m) =
v

qn

n∑
i=0

(−1)i qi(i−1)
[
n

i

] n−i∏
k=1

(q2k−1 − 1)2,

where

v = qn(n−1)
n∏
k=1

(q2k−1 − 1)

is the number of nonsingular matrices in X.

For the symmetric matrices we have the following result for finite fields of odd char-
acteristic.

Theorem 2. Let q be an odd prime power and let X be the set of m × m symmetric
matrices over Fq. Write n = b(m+ 1)/2c. Then, for odd m, we have

NX(m,m,m) =
v

qn

n∑
i=0

(−1)i qi(i−1)
[
n

i

] n−i∏
k=1

(q2k−1 − 1)2,

and for even m, we have

NX(m,m,m) =
v

qn

n∑
i=0

(−1)i qi(i−1)
[
n

i

] n−i∏
k=1

(q2k − q)2,
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where

v =


qn(n−1)

n∏
k=1

(q2k−1 − 1) for odd m

qn(n+1)
n∏
k=1

(q2k−1 − 1) for even m

is the number of nonsingular matrices in X.

It can be shown that Theorem 2 also holds for even q and odd m. In particular, it can
be shown that, if q is even and X is the set of m×m symmetric matrices over Fq and Y
is the set of m+ 1×m+ 1 alternating matrices over Fq, then

NX(m,m,m) = NY (m+ 1,m+ 1,m+ 1),

and so NX(m,m,m) can be obtained from Theorem 1. This follows from a relationship
between two association schemes (see [16, Section 5], for example) and our discussion
on association schemes in Section 2. We could not prove, but conjecture based on its
verification for m ∈ {2, 4, 6}, that Theorem 2 also holds for even q and even m.

A quadratic form on Fmq that is nonsingular is also called bent or a quadratic bent
function. (There is a more general definition [2] of the bent property for arbitrary functions
from Fmq to Fq, which however is not required here.) Recall that there is a one-to-one
correspondence between quadratic forms on Fmq and m×m alternating matrices over Fq
if q = 2 and m ×m symmetric matrices over Fq if q is odd. Thus, for q = 2 or odd q, a
quadratic form on Fmq is bent if the corresponding matrix is nonsingular.

Vector spaces of bent functions are important in cryptography and coding theory
(see [2] and [3], for example) and m-dimensional spaces of bent functions on Fmp for odd
prime p (also called planar functions) are equivalent to commutative semifields of odd
characteristic [5]. Our results give the number of 2-dimensional spaces of quadratic bent
functions on Fm2 . A related and more difficult problem is the determination of the number
of inequivalent 2-dimensional spaces of quadratic bent functions on Fmq . This number is
known for odd q and m ∈ {2, 3} and equals 1 in these cases [13], [14].

A quadratic form on Fm2 is negabent if its associated alternating matrix M is such that
M + I is nonsingular, where I is the identity matrix [15] (again there is a more general
definition of negabent functions from Fm2 to F2 [15], which we do not require here). A
quadratic form on Fm2 is bent-negabent if it is simultaneously bent and negabent. Hence
bent-negabent quadratic forms on Fm2 can only exist if m is even. It has been shown in [15,
Theorem 8] that a quadratic form on Fm2 is bent-negabent if and only if its associated
alternating matrix M is such that M and M + I + J are both nonsingular, where I and
J are the identity and the all-ones matrix, respectively.

Let X be the set of m×m alternating matrices over F2 and let Xk contain all matrices
in X of rank k. Since X0, X1, . . . , Xm are the fibres of an association scheme (see Sections 2
and 3), we find by a general property of association schemes that, for fixed A ∈ Xr, the
number of B ∈ Xs such that A + B ∈ Xk is independent of the particular choice of
A. Therefore, Theorem 1 gives the number of bent-negabent quadratic forms, solving a
problem due to Parker and Pott [15, Problem 2].
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Corollary 3. The number of bent-negabent quadratic forms on F2n
2 is

1

2n

n∑
i=0

(−1)i 2i(i−1)
[
n

i

] n−i∏
k=1

(22k−1 − 1)2.

2 A general method

Suppose that (X,+) is an abelian group of matrices over Fq (which is certainly true
when X is the set of m×m alternating or symmetric matrices over Fq). In this case the
numbers NX(r, s, k) can be computed as follows. Recall that the characters of (X,+) are
the homomorphisms from (X,+) to the multiplicative group of the complex numbers and
form themselves a group, which is isomorphic to (X,+).

Lemma 4. Let (X,+) be an abelian group of matrices over Fq and let Xk contain all
matrices in X of rank k. Then the numbers defined in (1) satisfy

NX(r, s, k) =
1

|X|
∑
φ

∑
A∈Xr

φ(A)
∑
B∈Xs

φ(B)
∑
C∈Xk

φ(C),

where the first sum ranges over all characters φ of (X,+).

Proof. Indeed, by an elementary property of characters, the sum

1

|X|
∑
φ

φ(A+B − C)

equals 1 if A+B = C and is zero otherwise. The lemma follows easily from this.

The computation of the numbers NX(r, s, k) is particularly simple in the case that X
has the structure of a (symmetric) translation scheme, which is an association scheme with
additional properties. Let X0, X1, . . . , Xm be a partition of X. Then X is a translation
scheme with fibres X0, X1, . . . , Xm if the following properties are satisfied:

(P1) X0 contains only the identity of (X,+).

(P2) For all r ∈ {1, . . . ,m}, we have x ∈ Xr if and only if −x ∈ Xr.

(P3) If x− y ∈ Xr, then the number of z ∈ X such that z − y ∈ Xs and x− z ∈ Xk is a
constant p(r, s, k) (called the intersection numbers) depending only on r, s, and k,
but not on the particular choice of x and y.

We refer to [6] and [9] for background on association schemes and in particular to [9,
Section V] for background on translation schemes.

Let Xk contain all matrices in X of rank k and suppose that X0, X1, . . . , Xm are the
fibres of a translation scheme. Then by taking y equal to the zero matrix in (P3), it
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is readily verified that the numbers NX(r, s, k) can be computed from the intersection
numbers p(r, s, k) via

NX(r, s, k) = |Xr| · p(r, s, k). (2)

Let X̂ be the group of characters of (X,+). There is a unique partition X̂0, X̂1, . . . , X̂m

of X̂ with the property that ∑
A∈Xk

φ(A) (3)

is constant for each φ ∈ X̂i. The numbers (3), denoted by Pk(i), are the eigenvalues of
the translation scheme. It then follows from Lemma 4 that

NX(r, s, k) =
1

|X|

m∑
i=0

|X̂i| Pr(i)Ps(i)Pk(i),

which, via (2), gives a well known formula for the intersection numbers (see [10, p. 227],

for example). Hence, to compute NX(r, s, k), it is sufficient to know the multiplicities |X̂i|
and the eigenvalues Pk(i) of the translation scheme.

This principle can be applied for example when X is the set of m × n matrices over
Fq. Without loss of generality, assume that m 6 n, in which case, X0, X1, . . . , Xm are the
fibres of an association scheme whose multiplicities and eigenvalues are given in [7]. The
principle can also be applied in the case that X is the set of m×m alternating matrices
over Fq, which is discussed in Section 3. However, in general, the principle cannot be
applied in the case that X is the set of m × m symmetric matrices over Fq since then
(P3) in the definition of a translation scheme does not hold. We can however still apply
Lemma 4 in this case, which we shall do in Section 4.

3 Alternating matrices

Throughout this section, let X be the set of m×m alternating matrices over Fq and write

n =

⌊
m

2

⌋
and c = q

m(m−1)
2n ,

so that |X| = cn. Let Xk contain all matrices in X of rank k. It is well known that
X0, X1, . . . , Xm are the fibres of a translation scheme [8].

Let v(k) be the cardinality of Xk. (It turns out that these numbers are the multi-
plicities of the translation scheme.) It is known (see [12, Theorem 3], for example) that
v(k) = 0 for odd k and

v(2i) =

[
n

i

] i−1∏
k=0

(c− q2k) (4)

for each i ∈ {0, . . . , n}. Let A, S ∈ X and write aij and sij for their entries, respectively
(indexed from 1 to m). Let χ be a nontrivial character of (Fq,+) and define φS : X → C
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by

φS(A) = χ

( ∑
16i<j6m

sijaij

)
.

Since X is an Fq-vector space of dimension m(m− 1)/2, the mapping φS ranges through
all characters of (X,+) as S ranges over X. For S ∈ X2i, the numbers

Pk(i) =
∑
A∈X2k

φS(A)

are well defined. They are the eigenvalues of the translation scheme and given by [8]

Pk(i) =
k∑
j=0

(−1)k−jq(k−j)(k−j−1)
[
n− j
n− k

][
n− i
j

]
cj. (5)

The following result is now a straightforward consequence of Lemma 4.

Theorem 5. Let X be the set of m×m alternating matrices over Fq. Then the numbers
defined in (1) satisfy

NX(r, s, k) =
1

|X|

n∑
i=0

v(2i)Pr(i)Ps(i)Pk(i),

where v(2i) and Pk(i) are given in (4) and (5), respectively.

To obtain Theorem 1 from Theorem 5, let m be even, so that m = 2n, and observe
that in this case

Pn(i) = (−1)iqn(n−1)
n−i∏
k=1

(q2k−1 − 1). (6)

This formula can be either obtained from (5) by a tedious calculation using the q-binomial
theorem

h∑
j=0

qj(j−1)
[
h

j

]
xh−j yj =

h−1∏
k=0

(x+ q2ky) for real x, y (7)

or by observing that Pn(0) = v(2n) and Pn(i) satisfies the recurrence

Pn(i)(1− q2n−2i+1) = Pn(i− 1),

which can be obtained from [8, Lemma 12] and (5). From (4) we find that

v(2i) = qi(i−1)
[
n

i

] n∏
k=n−i+1

(q2k−1 − 1). (8)

Theorem 1 is now easily obtained from Theorem 5 using (6) and (8).
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4 Symmetric matrices

Throughout this section, let q be an odd prime power and let η be the quadratic character
of Fq. Let X be the set of m×m symmetric matrices over Fq and write

n =

⌊
m+ 1

2

⌋
and c = q

m(m+1)
2n ,

so that |X| = cn. As usual, let Xk be the subset of X containing all matrices of rank k.
Let A, S ∈ X and write aij and sij for their entries, respectively (indexed from 1 to

m). Let χ be a nontrivial character of (Fq,+) and define φS : X → C by

φS(A) = χ

( m∑
i,j=1

sijaij

)
.

Since X is an Fq-vector space of dimension m(m+ 1)/2 and q is odd, the mapping φS(A)
ranges through all characters of (X,+) as S ranges over X.

Two matrices A,B ∈ X are equivalent if there exists a nonsingular matrix L such
that LALT = B. We recall some well known facts (see [11, Section 6.2], for example).
Every matrix A ∈ X of rank r is equivalent to a diagonal matrix with main diagonal
[d1, . . . , dr, 0, . . . , 0], where d1, . . . , dr are nonzero. The value η(d1 · · · dr) is preserved under
equivalence and is called the type of A (an empty product equals 1 by convention and so
the all-zero matrix has type 1). Two matrices in X are equivalent if and only if they have
the same rank and the same type.

Our further analysis crucially relies on the following lemma.

Lemma 6. The number ∑
A∈Xk

φS(A)

depends only on the type and rank of S.

Proof. Let L be an arbitrary m × m matrix over Fq. For A ∈ X, we readily verify the
identity

φLSLT (A) = φS(LTAL).

If L is nonsingular, then the mapping A 7→ LTAL induces a permutation on Xk and hence∑
A∈Xk

φLSLT (A) =
∑
A∈Xk

φS(LTAL) =
∑
A∈Xk

φS(A),

as required.

In view of Lemma 6, we may write

Pk(i, δ) =
∑
A∈Xk

φS(A),
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where S is of rank i and of type δ.
The equivalence relation defined above partitions X into 2m + 1 equivalence classes.

Let v(i, δ) be the cardinality of the equivalence class containing matrices of rank i and
type δ. It will be convenient to write v(0,−1) = 0 and Pk(0,−1) = 1.

The following result is a consequence of Lemmas 4 and 6.

Theorem 7. Let q be an odd prime power and let X be the set of m × m symmetric
matrices over Fq. Then the numbers defined in (1) satisfy

NX(r, s, k) =
1

|X|

m∑
i=0

∑
δ∈{−1,1}

v(i, δ) Pr(i, δ)Ps(i, δ)Pk(i, δ).

To apply Theorem 7 efficiently, we need to find explicit expressions for the numbers
v(i, δ) and Pk(i, δ). The numbers v(i, δ) were computed by Carlitz [4] and will be given in
Proposition 8. The numbers Pk(i, δ) will be given in Proposition 9. (These results depend
on η(−1), which equals 1 if q ≡ 1 (mod 4) and equals −1 otherwise.)

Proposition 8 (Carlitz [4, Theorem 3]). We have

v(2s, δ) =
(qs + η(−1)sδ)

2

(qm − 1)(qm − q) · · · (qm − q2s−1)
(q2s − 1)(q2s − q2) · · · (q2s − q2s−2)

,

v(2s+ 1, δ) =
1

2qs
(qm − 1)(qm − q) · · · (qm − q2s)

(q2s − 1)(q2s − q2) · · · (q2s − q2s−2)
.

In what follows let v(i) be the number of m×m symmetric matrices of rank i, so that
v(i) = v(i, 1) + v(i,−1).

Proposition 9. Write ` = bk/2c. Let

F (m, k, s) = (−1)k
∑̀
j=0

(−1)`−jq(`−j)(`−j+1)

[
n− j − 1

n− `− 1

][
n− s− 1

j

]
cj

whenever this expression is defined and let F (m, k, s) = 0 otherwise. Then P0(i, δ) = 1
and Pk(0, δ) = v(k), and for k, i > 1, the numbers Pk(i, δ) are given by

Pk(2s+ 1, δ) = F (m, k, s), (9)

and

Pk(2s, δ) = F (m, k, s− 1) + δ η(−1)s qm−sF (m− 1, k − 1, s− 1). (10)

To prove Proposition 9, we require the following recurrence relation for the numbers
Pk(i, δ). Henceforth, we write P

(m)
k (i, δ) and v(m)(i) for Pk(i, δ) and v(i), respectively, to

indicate dependence on m.
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Lemma 10. For 1 6 i, k 6 m, we have

P
(m)
k (i, δ) = P

(m)
k (i− 1, 1)− (−δ)i+1 η(−1)s qm−s P

(m−1)
k−1 (i− 1, 1),

where s = bi/2c.

We first deduce Proposition 9 from Lemma 10 and then prove Lemma 10.

Proof of Proposition 9. From the definition of Pk(i) we see that P0(i, δ) equals 1 and
Pk(0, δ) is the number of symmetric m×m matrices of rank k, namely v(k).

From this last identity and Lemma 10 we find that

P
(m)
k (1, δ) = v(m)(k)− qm v(m−1)(k − 1).

With elementary manipulations we then deduce from Proposition 8 that

P
(m)
k (1, δ) =

(−1)k

q`
(qm − q)(qm − q2) · · · (qm − q2`)

(q2` − 1)(q2` − q2) · · · (q2` − q2`−2)
,

which we can write as

P
(m)
k (1, δ) = (−1)k

[
n− 1

`

]∏̀
j=1

(c− q2j). (11)

Using [
n− j − 1

n− `− 1

][
n− 1

j

]
=

[
`

j

][
n− 1

`

]
,

we find that

F (m, k, 0) = (−1)k
[
n− 1

`

]∑̀
j=0

qj(j−1)
[
`

j

]
(−1)j q2j c`−j.

Applying the q-binomial theorem (7), we then see from (11) that

P
(m)
k (1, δ) = F (m, k, 0), (12)

as required. Now substitute the recurrence in Lemma 10 into itself to obtain

P
(m)
k (2s+ 1, δ) = P

(m)
k (2s− 1, 1)− c q2(n−s−1) P (m−2)

k−2 (2s− 1, 1). (13)

Using [
n− s
j

]
− q2(n−s−j)

[
n− s− 1

j − 1

]
=

[
n− s− 1

j

]
,

it is readily verified that
P

(m)
k (2s+ 1, δ) = F (m, k, s)

satisfies the recurrence (13) for all s > 1. Combination with (12) proves (9). The iden-
tity (10) is a then straightforward consequence of Lemma 10 and (9).
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We now prove Lemma 10.

Proof of Lemma 10. Fix i ∈ {1, . . . ,m} and δ ∈ {−1, 1}. Let S be an m ×m diagonal
matrix of rank i with diagonal [z, 1, . . . , 1, 0, . . . , 0] such that η(z) = δ, and let S ′ be an
(m− 1)× (m− 1) diagonal matrix of rank i− 1 with diagonal [1, . . . , 1, 0, . . . , 0]. We have

P
(m)
k (i− 1, 1)− P (m)

k (i, δ) =
∑

A∈X(m)
k

(
φS′(B)− φS(A)

)
(14)

=
∑

A∈X(m)
k

φS′(B)
(
1− χ(za)

)
, (15)

where we write A as

A =

[
a vT

v B

]
(16)

for some a ∈ Fq, some v ∈ Fm−1q , and some (m− 1)× (m− 1) symmetric matrix B over
Fq. The summand in (15) is zero for a = 0, so assume that a is nonzero. Writing

L =

[
1 −a−1vT
0 I

]
,

we have

LTAL =

[
a 0
0 C

]
, where C = B − a−1vvT .

Note that L is nonsingular. Therefore, as a ∈ F∗q, C ∈ X
(m−1)
k−1 , and v ∈ Fm−1q range over

their possible values, the matrix A, given in (16), ranges over all elements of X
(m)
k , except

for those matrices (16) satisfying a = 0. Hence, using the homomorphism property of φS′ ,
the sum (15) becomes∑

a∈F∗q

(
1− χ(za)

) ∑
C∈X(m−1)

k−1

φS′(C)
∑

v∈Fm−1
q

φS′(a
−1vvT ). (17)

By definition we have ∑
C∈X(m−1)

k−1

φS′(C) = P
(m−1)
k−1 (i− 1, 1). (18)

Furthermore, ∑
v∈Fm−1

q

φS′(a
−1vvT ) = qm−i

∑
v1,...,vi−1∈Fq

χ(a−1(v21 + · · ·+ v2i−1))

= qm−i

(∑
v∈Fq

χ(a−1v2)

)i−1

. (19)
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Putting η(0) = 0, the summation becomes∑
v∈Fq

χ(a−1v2) =
∑
y∈Fq

(1 + η(y))χ(a−1y)

=
∑
y∈Fq

(1 + η(ay))χ(y)

= η(a)G(η, χ), (20)

where
G(η, χ) =

∑
y∈Fq

η(y)χ(y)

is a Gauss sum. Substitute (20) into (19) and then (19) and (18) into (17), we find
that (14) equals

P
(m−1)
k−1 (i− 1, 1) qm−iG(η, χ)i−1

∑
a∈F∗q

(
1− χ(za)

)
η(a)i−1.

The inner summation equals q for odd i and, by an argument similar to that leading
to (20), equals −η(z)G(η, χ) for even i. Hence, since η(z) = δ, we have

P
(m)
k (i− 1, 1)− P (m)

k (i, δ) = (−δ)i+1 qm−2sG(η, χ)2s P
(m−1)
k−1 (i− 1, 1)

(where s = bi/2c). The proof is completed by recalling that

G(η, χ)2 = η(−1)q

(see [11, Theorem 5.12 (iv)], for example).

In the remainder of this section we sketch how Theorem 2 follows from Theorem 7
and Propositions 8 and 9.

We first consider the case that m is odd, thus m = 2n−1. In this case, the expression
F (m− 1,m− 1, s) in Proposition 9 equals 0 for all s and we find that

Pm(2i, 1) = Pm(2i,−1) = Pm(2i− 1, 1) = Pm(2i− 1,−1).

Using the q-binomial theorem (7), we see that these numbers equal

(−1)iqn(n−1)
n−i∏
k=1

(q2k−1 − 1).

Furthermore, from Proposition 8 we find that

v(2i, 1) + v(2i,−1) + v(2i− 1, 1) + v(2i− 1,−1)

equals

qi(i−1)
[
n

i

] n∏
k=n−i+1

(q2k−1 − 1). (21)
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It then follows from Theorem 7 that

NX(m,m,m) =
v(m)

qn

n∑
i=0

(−1)iqi(i−1)
[
n

i

] n−i∏
k=1

(q2k−1 − 1)2,

where v(m), the number of nonsingular matrices in X, is given by

v(m) = qn(n−1)
n∏
k=1

(q2k−1 − 1)

(which can be obtained from (21) by putting i = n).
Next we consider the case that m is even, thus m = 2n. In this case, the expression

F (m,m, s) in Proposition 9 equals 0 for all s and therefore we have

Pm(2i+ 1, δ) = 0

and

Pm(2i, δ) = δ η(−1)i (−1)iqn
2
n−i∏
k=1

(q2k − q).

Hence, by Theorem 7,

NX(m,m,m) =
1

|X|

n∑
i=0

(v(2i, 1)− v(2i,−1))Pm(2i, 1)3.

From Proposition 8 we find that

v(2i, 1)− v(2i,−1) = η(−1)iqi(i−1)
[
n

i

] n∏
k=n−i+1

(q2k − q),

and therefore,

NX(m,m,m) =
v(m)

qn

n∑
i=0

(−1)iqi(i−1)
[
n

i

] n−i∏
k=1

(q2k − q)2,

where v(m) is given by

v(m) = qn
2

n∏
k=1

(q2k − q).
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