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Abstract

The aim of this note is a classification of all nice and all inductively factored re-
flection arrangements. It turns out that apart from the supersolvable instances only
the monomial groups G(r, r, 3) for r > 3 give rise to nice reflection arrangements.
As a consequence of this and of the classification of all inductively free reflection
arrangements from Hoge and Röhrle (2015) we deduce that the class of all induc-
tively factored reflection arrangements coincides with the class of all supersolvable
reflection arrangements. Moreover, we extend these classifications to hereditarily
factored and hereditarily inductively factored reflection arrangements.

Keywords: Complex reflection groups, reflection arrangements, factored arrange-
ments, inductively factored arrangements

1 Introduction

Let K be a field and let V = K`. LetA = (A, V ) be a central `-arrangement of hyperplanes
in V and let L(A) be its intersection lattice. Let π = (π1, . . . , πs) be a partition of A.
Then π is called nice for A or a factorization of A if roughly speaking it partitions A into
mutually linearly independent sets and these are compatible with the intersection lattice
L(A), see Definition 2.12 below.

In 1992, Terao [Ter92] introduced the notion of a nice or factored arrangement to
provide a necessary and sufficient condition for the Orlik-Solomon Algebra A(A) of A to
admit a tensor factorization as a graded K-vector space. More precisely, let [πi] be the
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K-subspace of A(A) spanned by 1 and the generators of A(A) corresponding to πi. In
[Ter92, Thm. 2.8] (cf. [OT92, Thm. 3.87]), Terao proved that the map

κ : [π1]⊗ · · · ⊗ [πs]→ A(A)

given by multiplication is an isomorphism of graded K-vector spaces if and only if π is
nice for A, see Theorem 2.14 below. As a consequence, if π = (π1, . . . , πs) is nice for A,
then s = r, the rank of A, and the Poincaré polynomial of the Orlik-Solomon algebra
A(A) of A factors into linear terms as follows:

Poin(A(A), t) =
r∏
i=1

(1 + |πi|t),

[Ter92] (cf. [OT92, Cor. 3.88]). Note that if A is free, then the Poincaré polynomial
π(A, t) of L(A) factors into linear terms as follows:

π(A, t) =
∏̀
i=1

(1 + bit),

where expA = {b1, . . . , b`} are the exponents of A, [OT92, Thm. 4.137], see Theorem 2.5
below. It is natural to pose the question whether every nice arrangement is free, [Ter92].
This however is not the case; likewise, a free arrangement need not be factored in general,
[Ter92].

In [HR16, Thm. 1.5], we gave an analogue of Terao’s celebrated addition-deletion
theorem for free arrangements for the class of nice arrangements, see Theorem 2.20 below.

Terao [Ter92] showed that every supersolvable arrangement is factored, see Proposition
2.18. Indeed, every supersolvable arrangement is inductively factored, see Proposition
2.24. Moreover, Jambu and Paris showed that each inductively factored arrangement
is inductively free, see Proposition 2.26 ([JP95, Prop. 2.2]). Each of these classes of
arrangements is properly contained in the other, see [HR16, Rem. 3.33].

Suppose that W is a finite, unitary reflection group acting on the complex vector space
V . Let A(W ) = (A(W ), V ) be the associated hyperplane arrangement of W . We refer to
A(W ) as a reflection arrangement. The aim of this paper is to classify all factored and
all inductively factored reflection arrangements A(W ).

In view of the aforementioned containments, we first recall the classifications of the
inductively free and the supersolvable reflection arrangements, from [HR15, Thm. 1.1] and
[HR14, Thm. 1.2], respectively. Here and later on we use the classification and labelling
of the irreducible unitary reflection groups due to Shephard and Todd, [ST54].

Theorem 1.1. For W a finite complex reflection group, the reflection arrangement A(W )
of W is inductively free if and only if W does not admit an irreducible factor isomorphic
to a monomial group G(r, r, `) for r, ` > 3, G24, G27, G29, G31, G33, or G34.

The case for Coxeter groups in Theorem 1.1 is due to Barakat and Cuntz [BC12].
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Theorem 1.2. For W a finite complex reflection group, A(W ) is supersolvable if and
only if any irreducible factor of W is of rank at most 2, is isomorphic either to a Coxeter
group of type A` or B` for ` > 3, or to a monomial group G(r, p, `) for r, ` > 3 and p 6= r.

We can now state our main classification results. Thanks to Proposition 2.29, the
question whether A is nice reduces to the case when A is irreducible. Therefore, we may
assume that W is irreducible. In view of Theorem 1.2 and Proposition 2.24, we can state
our classification results as follows:

Theorem 1.3. For W a finite, irreducible, complex reflection group, A(W ) is nice if and
only if either A(W ) is supersolvable or W = G(r, r, 3) for r > 3.

Thanks to Proposition 2.30, the question whether A is inductively factored reduces
to the case when A is irreducible. The classification of the inductively factored reflection
arrangements is thus an immediate consequence of Theorems 1.1, 1.3 and Proposition
2.26.

Corollary 1.4. For W a finite, complex reflection group, A(W ) is inductively factored if
and only if it is supersolvable.

In contrast to Corollary 1.4, [HR16, Ex. 3.19] shows that among restrictions of reflec-
tion arrangements there are inductively factored instances which are not supersolvable.

A special case of a result due to Stanley implies that supersolvability of A is inherited
by all restrictionsAX , cf. [Sta72, Prop. 3.2]. While arbitrary inductively free arrangements
are not hereditary, cf. [HR15, Ex. 2.16] and likewise for inductively factored arrangements,
cf. [HR16, Ex. 3.28], for reflection arrangements, inductive freeness is hereditary, [HR15,
Thm. 1.2]. Thus it is rather natural to ask whether the properties of being factored or
inductively factored are also hereditary among reflection arrangements. These questions
are answered in our next results:

Theorem 1.5. For W a finite complex reflection group, A(W ) is factored if and only if
A(W ) is hereditarily factored.

The following is an easy consequence of Corollary 1.4 and Stanley’s result [Sta72,
Prop. 3.2].

Corollary 1.6. For W a finite complex reflection group, A(W ) is inductively factored if
and only if A(W ) is hereditarily inductively factored.

The paper is organized as follows. Sections 2.1 and 2.2 recall basic notions and re-
sults for general hyperplane arrangements and their associated Orlik-Solomon algebras.
Subsequently, we recall relevant concepts of free, inductively free and supersolvable ar-
rangements in Sections 2.3 and 2.4. All this is taken from [OT92]. Sections 2.5 and
2.6 revisit the concepts and main results on nice and inductively factored arrangements
from [Ter92], [JP95], and [HR16]. This is followed by a short recollection on hereditarily
(inductively) factored arrangements in Section 2.7 from [HR16]. In Section 2.8, we dis-
cuss some required results on reflection arrangements. Finally, Theorems 1.3 and 1.5 are
proved in Section 3.

For general information about arrangements and reflection groups we refer the reader
to [OT92], [Bou68], [OS82] and [OT92, §4, §6].

the electronic journal of combinatorics 23(2) (2016), #P2.9 3



2 Recollections and Preliminaries

2.1 Hyperplane Arrangements

Let V = K` be an `-dimensional K-vector space. A hyperplane arrangement is a pair
(A, V ), where A is a finite collection of hyperplanes in V . Usually, we simply write A in
place of (A, V ). We only consider central arrangements, i.e. 0 ∈ H for every H ∈ A. We
write |A| for the number of hyperplanes in A. The empty arrangement in V is denoted
by Φ`.

The lattice L(A) of A is the set of subspaces of V of the form H1 ∩ · · · ∩ Hr where
{H1, . . . , Hr} is a subset of A. For X ∈ L(A), we have two associated arrangements,
firstly the subarrangement AX := {H ∈ A | X ⊆ H} ⊆ A of A and secondly, the
restriction of A to X, (AX , X), where AX := {X ∩ H | H ∈ A \ AX}. Note that V
belongs to L(A) as the intersection of the empty collection of hyperplanes and AV = A.
The lattice L(A) is a partially ordered set by reverse inclusion: X 6 Y provided Y ⊆ X
for X, Y ∈ L(A). We have a rank function on L(A): r(X) := codimV (X). The rank r(A)
of A is the rank of a maximal element in L(A) with respect to the partial order. With
this definition L(A) is a geometric lattice, [OT92, p. 24]. Let TA = ∩H∈AH be the center
of L(A). If A is central, then 0 ∈ TA. The `-arrangement A is called essential provided
r(A) = `. If A is essential and central, then TA = {0}.

Let A be central and let X, Y ∈ L(A) with X < Y . We recall the following sublattices
of L(A) from [OT92, Def. 2.10], L(A)Y := {Z ∈ L(A) | Z 6 Y }, L(A)X := {Z ∈ L(A) |
X 6 Z}, and the interval [X, Y ] := L(A)Y ∩ L(A)X = {Z ∈ L(A) | X 6 Z 6 Y }.

For A 6= Φ`, let H0 ∈ A. Define A′ := A\{H0}, and A′′ := AH0 = {H0∩H | H ∈ A′}.
Then (A,A′,A′′) is a triple of arrangements, [OT92, Def. 1.14].

The product A = (A1 ×A2, V1 ⊕ V2) of two arrangements (A1, V1), (A2, V2) is defined
by

A = A1 ×A2 := {H1 ⊕ V2 | H1 ∈ A1} ∪ {V1 ⊕H2 | H2 ∈ A2},

see [OT92, Def. 2.13].
Note that A × Φ0 = A for any arrangement A. If A is of the form A = A1 × A2,

where Ai 6= Φ0 for i = 1, 2, then A is called reducible, else A is irreducible, [OT92, Def.
2.15].

2.2 The Orlik-Solomon Algebra of an Arrangement

The most basic algebraic invariant associated with an arrangement A is its so called
Orlik-Solomon algebra A(A), introduced by Orlik and Solomon in [OS80]. The K-algebra
A(A) is a graded and anti-commutative. It is generated by 1 in degree 0 and by a set
of degree 1 generators {aH | H ∈ A}, e.g. see [OT92, §3.1]. Let A(A) = ⊕ri=0A(A)i
be the decomposition of A(A) into homogeneous components, so that Poin(A(A), t) =∑r

i=0(dimA(A)i)t
i, where r = r(A) is the rank of A. In particular, A(A)0 = K and

A(A)1 =
∑

H∈AKaH .
Thanks to a fundamental result due to Orlik and Solomon [OS80, Thm. 2.6] (cf. [OT92,

Thm. 3.68]), the Poincaré polynomial of A(A) coincides with the combinatorially defined
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Poincaré polynomial π(A, t) of A,

Poin(A(A), t) = π(A, t). (2.1)

The geometric significance of A(A) stems from the fact that in case K = C is the field
of complex numbers, Orlik and Solomon showed in [OS80, Thm. 5.2] that as an associative,
graded C-algebra A(A) is isomorphic to the cohomology algebra of the complement M(A)
of the complex arrangement A (cf. [OT92, §5.4]):

A(A) ∼= H∗(M(A)).

In particular, the Poincaré polynomial Poin(M(A), t) of M(A) is given by Poin(A(A), t).
Let π = (π1, . . . , πs) be a partition of A and let

[πi] := K +
∑
H∈πi

KaH

be the K-subspace of A(A) spanned by 1 and the set of K-algebra generators aH of A(A)
corresponding to the members in πi. So the Poincaré polynomial of the graded K-vector
space [πi] is just Poin([πi], t) = 1 + |πi|t. Consider the canonical K-linear map

κ : [π1]⊗ · · · ⊗ [πs]→ A(A) (2.2)

given by multiplication. We say that π gives rise to a tensor factorization of A(A) if κ
is an isomorphism of graded K-vector spaces. In this case s = r, as r is the top degree
of A(A), and thus we get a factorization of the Poincaré polynomial of A(A) into linear
terms

Poin(A(A), t) =
r∏
i=1

(1 + |πi|t).

For A = Φ` the empty arrangement, we set [∅] := K, so that κ : [∅] ∼= A(Φ`).
In [OST84, Thm. 5.3], Orlik, Solomon and Terao showed that a supersolvable arrange-

ment A admits a partition π which gives rise to a tensor factorization of A(A) via κ in
(2.2) (cf. [OT92, Thm. 3.81]); see Proposition 2.18 below.

In [Ter92, Thm. 2.8], Terao proved that π gives rise to a tensor factorization of the
Orlik-Solomon algebra A(A) via κ as in (2.2) if and only if π is nice forA (Definition 2.12),
see Theorem 2.14 (cf. [OT92, Thm. 3.87]). So nice arrangements are a generalization of
supersolvable ones. Note that κ is not an isomorphism of K-algebras.

2.3 Free and inductively free Arrangements

Free arrangements play a crucial role in the theory of arrangements. See [OT92, §4] for
the definition and basic properties of free arrangements. If A is free, then we can associate
with A the multiset of its exponents, denoted expA.

Owing to [OT92, Prop. 4.28], free arrangements behave well with respect to the prod-
uct construction for arrangements.
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Proposition 2.3. Let A1,A2 be two arrangements. Then A = A1 × A2 is free if and
only if both A1 and A2 are free and in that case the multiset of exponents of A is given
by expA = {expA1, expA2}.

Terao’s celebrated Addition-Deletion Theorem [Ter80] plays a pivotal role in the study
of free arrangements, [OT92, Thm. 4.51].

Theorem 2.4. Suppose that A 6= Φ`. Let (A,A′,A′′) be a triple of arrangements. Then
any two of the following statements imply the third:

(i) A is free with expA = {b1, . . . , b`−1, b`};

(ii) A′ is free with expA′ = {b1, . . . , b`−1, b` − 1};

(iii) A′′ is free with expA′′ = {b1, . . . , b`−1}.

Terao’s Factorization Theorem [Ter81] shows that the Poincaré polynomial π(A, t) of
a free arrangement A factors into linear terms given by the exponents of A (cf. [OT92,
Thm. 4.137]):

Theorem 2.5. Suppose that A is free with expA = {b1, . . . , b`}. Then

π(A, t) =
∏̀
i=1

(1 + bit).

Theorem 2.4 motivates the notion of inductively free arrangements, [OT92, Def. 4.53].

Definition 2.6. The class IF of inductively free arrangements is the smallest class of
arrangements subject to

(i) Φ` ∈ IF for each ` > 0;

(ii) if there exists a hyperplane H0 ∈ A such that both A′ and A′′ belong to IF , and
expA′′ ⊆ expA′, then A also belongs to IF .

In [HR15, Prop. 2.10], we showed that the compatibility of products with free arrange-
ments from Proposition 2.3 restricts to inductively free arrangements.

Proposition 2.7. Let A1,A2 be two arrangements. Then A = A1 × A2 is induc-
tively free if and only if both A1 and A2 are inductively free and in that case expA =
{expA1, expA2}.

2.4 Supersolvable Arrangements

Let A be an arrangement. Following [OT92, §2], we say that X ∈ L(A) is modular
provided X + Y ∈ L(A) for every Y ∈ L(A), cf. [OT92, Def. 2.32, Cor. 2.26].

The following notion is due to Stanley [Sta72].
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Definition 2.8. Let A be a central (and essential) `-arrangement. We say that A is
supersolvable provided there is a maximal chain

V = X0 < X1 < . . . < X`−1 < X` = {0}

of modular elements Xi in L(A).

Remark 2.9. By [OT92, Ex. 2.28], V , {0} and the members in A are always modular in
L(A). It follows that all 0- 1-, and 2-arrangements are supersolvable.

Note that supersolvable arrangements are always inductively free, [OT92, Thm. 4.58].
In [HR14, Prop. 2.6], we showed that the compatibility of products with inductively

free arrangements from Proposition 2.7 restricts further to supersolvable arrangements.

2.5 Nice Arrangements

The notion of a nice or factored arrangement goes back to Terao [Ter92]. It generalizes
the concept of a supersolvable arrangement, see Proposition 2.18. We recall the relevant
notions and results from [Ter92] (cf. [OT92, §2.3]).

Definition 2.10. Let π = (π1, . . . , πs) be a partition of A. Then π is called independent,
provided for any choice Hi ∈ πi for 1 6 i 6 s, the resulting s hyperplanes are linearly
independent, i.e. r(H1 ∩ . . . ∩Hs) = s.

Definition 2.11. Let π = (π1, . . . , πs) be a partition of A and let X ∈ L(A). The induced
partition πX of AX is given by the non-empty blocks of the form πi ∩ AX .

Definition 2.12. The partition π of A is nice for A or a factorization of A provided

(i) π is independent, and

(ii) for each X ∈ L(A) \ {V }, the induced partition πX admits a block which is a
singleton.

If A admits a factorization, then we also say that A is factored or nice.

Remark 2.13. (i). Vacuously, the empty partition is nice for the empty arrangement Φ`.
(ii). If A 6= Φ`, π is a nice partition of A and X ∈ L(A) \ {V }, then the non-empty

parts of the induced partition πX form a nice partition of AX ; cf. the proof of [Ter92,
Cor. 2.11].

(iii). Since the singleton condition in Definition 2.12(ii) also applies to the center TA
of L(A), a factorization π of A 6= Φ` always admits a singleton as one of its parts. Also
note that for a hyperplane, the singleton condition trivially holds.

We recall the main results from [Ter92] (cf. [OT92, §3.3]) that motivated Definition
2.12.
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Theorem 2.14. Let A be a central `-arrangement and let π = (π1, . . . , πs) be a partition
of A. Then the K-linear map κ defined in (2.2) is an isomorphism of graded K-vector
spaces if and only if π is nice for A.

Corollary 2.15. Let π = (π1, . . . , πs) be a factorization of A. Then the following hold:

(i) s = r = r(A) and

Poin(A(A), t) =
r∏
i=1

(1 + |πi|t);

(ii) the multiset {|π1|, . . . , |πr|} only depends on A;

(iii) for any X ∈ L(A), we have

r(X) = |{i | πi ∩ AX 6= ∅}|.

Remark 2.16. It follows from (2.1) and Corollary 2.15 that the question whether A is
factored is a purely combinatorial property and only depends on the lattice L(A).

Remark 2.17. Suppose that A is free of rank r. Then A = Φ`−r × A0, where A0 is an
essential, free r-arrangement (cf. [OT92, §3.2]), and so, thanks to Proposition 2.3, expA =
{0`−r, expA0}. Suppose that π = (π1, . . . , πr) is a nice partition of A. Then by the
factorization properties of the Poincaré polynomials for free and factored arrangements,
Theorem 2.5, respectively Corollary 2.15(i) and (2.1) we have

expA = {0`−r, |π1|, . . . , |πr|}.

In particular, if A is essential, then

expA = {|π1|, . . . , |π`|}.

Finally, we record [Ter92, Ex. 2.4], which shows that nice arrangements generalize
supersolvable ones (cf. [OST84, Thm. 5.3], [J90, Prop. 3.2.2], [OT92, Prop. 2.67, Thm.
3.81]).

Proposition 2.18. Let A be a central, supersolvable arrangement of rank r. Let

V = X0 < X1 < . . . < Xr−1 < Xr = TA

be a maximal chain of modular elements in L(A). Define πi = AXi
\AXi−1

for 1 6 i 6 r.
Then π = (π1, . . . , πr) is a nice partition of A. In particular, the K-linear map κ defined
in (2.2) is an isomorphism of graded K-vector spaces.

2.6 Inductively factored Arrangements

Following Jambu and Paris [JP95], we introduce further notation.
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Definition 2.19. Suppose A 6= Φ`. Let π = (π1, . . . , πs) be a partition of A. Let H0 ∈ π1
and let (A,A′,A′′) be the triple associated with H0. We say that H0 is distinguished
(with respect to π) provided π induces a factorization π′ of A′, i.e. the non-empty subsets
πi ∩ A′ form a nice partition of A′. Note that since H0 ∈ π1, we have πi ∩ A′ = πi 6= ∅
for i = 2, . . . , s.

Also, associated with π and H0, we define the restriction map

% := %π,H0 : A \ π1 → A′′ given by H 7→ H ∩H0

and set
π′′i := %(πi) = {H ∩H0 | H ∈ πi} for 2 6 i 6 s.

In general % need not be surjective nor injective. However, since we are only concerned
with cases when π′′ = (π′′2 , . . . , π

′
s) is a partition of A′′, % has to be onto and %(πi)∩%(πj) =

∅ for i 6= j. As we have observed in [HR16], the crucial condition in this context is the
injectivity of %.

In [HR16, Thm. 1.5, Thm. 1.7], we gave the following analogues of Terao’s Addition-
Deletion Theorem 2.4 for free arrangements for the class of nice arrangements.

Theorem 2.20. Suppose that A 6= Φ`. Let π = (π1, . . . , π`) be a partition of A. Let
H0 ∈ π1 and let (A,A′,A′′) be the triple associated with H0. Suppose that % : A\π1 → A′′
is bijective. Then any two of the following statements imply the third:

(i) π is nice for A;

(ii) π′ is nice for A′;

(iii) π′′ is nice for A′′.

As indicated above, nice arrangements need not be free and vice versa, as observed
by Terao [Ter92]. Combining Theorem 2.20 with Terao’s Addition-Deletion Theorem 2.4
for free arrangements, in [HR16, Thm. 1.7] we obtain the following Addition-Deletion
Theorem for the proper subclass of free and nice arrangements.

Theorem 2.21. Suppose that A 6= Φ`. Let π = (π1, . . . , π`) be a partition of A. Let
H0 ∈ π` and let (A,A′,A′′) be the triple associated with H0. Suppose that % : A\π1 → A′′
is bijective. Then any two of the following statements imply the third:

(i) π is nice for A and A is free;

(ii) π′ is nice for A′ and A′ is free;

(iii) π′′ is nice for A′′ and A′′ is free.

Worth noting is the fact that in Theorem 2.21 we do not need to explicitly require
the containment conditions on the sets of exponents of the arrangements involved, see
Theorem 2.4. This is a consequence of the presence of the underlying factorizations.
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We also note that the bijectivity condition on % in both theorems is necessary, see
[HR16, Ex. 3.3, Ex. 3.20].

The Addition-Deletion Theorem 2.20 for nice arrangements motivates the following
stronger notion of factorization, cf. [JP95], [HR16, Def. 3.8].

Definition 2.22. The class IFAC of inductively factored arrangements is the smallest
class of pairs (A, π) of arrangements A together with a partition π subject to

(i) (Φ`, (∅)) ∈ IFAC for each ` > 0;

(ii) if there exists a partition π of A and a hyperplane H0 ∈ π1 such that for the triple
(A,A′,A′′) associated with H0 the restriction map % = %π,H0 : A \ π1 → A′′ is
bijective and for the induced partitions π′ of A′ and π′′ of A′′ both (A′, π′) and
(A′′, π′′) belong to IFAC, then (A, π) also belongs to IFAC.

If (A, π) is in IFAC, then we say that A is inductively factored with respect to π, or
else that π is an inductive factorization of A. Sometimes, we simply say A is inductively
factored without reference to a specific inductive factorization of A.

Our definition of inductively factored arrangements in Definition 2.22 differs slightly
from the one by Jambu and Paris [JP95]; see [HR16, Rem. 3.9].

Definition 2.23. In analogy to hereditary freeness and hereditary inductive freeness,
[OT92, Def. 4.140, p. 253], we say that A is hereditarily factored provided AX is fac-
tored for every X ∈ L(A) and that A is hereditarily inductively factored provided AX is
inductively factored for every X ∈ L(A).

In [HR16, Prop. 3.11], we strengthened Proposition 2.18 as follows.

Proposition 2.24. If A is supersolvable, then A is inductively factored.

Remark 2.25. Since any 1- and 2-arrangement is supersolvable, Remark 2.9, each such
is inductively factored, by Proposition 2.24.

In [JP95, Prop. 2.2], Jambu and Paris showed that inductively factored arrangements
are always inductively free; see also [HR16, Prop. 3.14]. (Jambu and Paris only claimed
freeness but their proof actually does give the stronger result.)

Proposition 2.26. Let π = (π1, . . . , πr) be an inductive factorization of A. Then A is
inductively free with exponents expA = {0`−r, |π1|, . . . , |πr|}.
Remark 2.27. The converse of Proposition 2.26 is false, Terao has already noted that
the reflection arrangement A(D4) of the Coxeter group of type D4 is not factored. But
A(D4) is inductively free, [JT84, Ex. 2.6].

Remark 2.28. Jambu and Paris observed that the reflection arrangement A(G(3, 3, 3))
of the complex reflection group G(3, 3, 3) is factored but not inductively factored [JP95].
Note that A(G(3, 3, 3)) is not inductively free, [HR15, Thm. 1.1]. In particular, a free
and factored arrangement need not be inductively factored; see also [HR16, Ex. 3.20].
Not even an inductively free and factored arrangement need be inductively factored, see
[HR16, Ex. 3.22].
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In [HR16, Prop. 3.29], we showed that the product construction behaves well with
factorizations.

Proposition 2.29. Let A1,A2 be two arrangements. Then A = A1 × A2 is nice if and
only if both A1 and A2 are nice.

And in [HR16, Prop. 3.30], we strengthened Proposition 2.29 further by showing that
the compatibility with products restricts to the class of inductively factored arrangements.

Proposition 2.30. Let A1,A2 be two arrangements. Then A = A1 × A2 is inductively
factored if and only if both A1 and A2 are inductively factored and in that case the multiset
of exponents of A is given by expA = {expA1, expA2}.

2.7 Hereditarily factored Arrangements

While a 2-arrangement is always inductively factored, by Remark 2.9, in general, a fac-
tored 3-arrangement need not be inductively factored, not even if it is a reflection ar-
rangement, see Remark 2.28. Nevertheless, for a 3-arrangement, we have the following
counterpart to [HR15, Lem. 2.15] in our setting; see [HR16, Lem. 3.27].

Lemma 2.31. Suppose that ` = 3. Then A is (inductively) factored if and only if it is
hereditarily (inductively) factored.

The compatibility from Propositions 2.29 and 2.30 restricts further to the classes of
hereditarily factored and hereditarily inductively factored arrangements, respectively; see
[HR16, Cor. 3.32].

Corollary 2.32. Let A1,A2 be two arrangements. Then A = A1 × A2 is hereditarily
(inductively) factored if and only if both A1 and A2 are hereditarily (inductively) factored.
In case of inductively factored arrangements the multiset of exponents of A is given by
expA = {expA1, expA2}.

2.8 Reflection Groups and Reflection Arrangements

The irreducible finite complex reflection groups were classified by Shephard and Todd,
[ST54]. Let W ⊆ GL(V ) be a finite complex reflection group. For w ∈ W , we write
Fix(w) := {v ∈ V | wv = v} for the fixed point subspace of w. For U ⊆ V a subspace,
we define the parabolic subgroup WU of W by WU := {w ∈ W | U ⊆ Fix(w)}.

The reflection arrangement A = A(W ) of W in V is the hyperplane arrangement
consisting of the reflecting hyperplanes of the elements in W acting as reflections on V .
By Steinberg’s Theorem [Ste60, Thm. 1.5], for U ⊆ V a subspace, the parabolic subgroup
WU is itself a complex reflection group, generated by the unitary reflections in W that
are contained in WU . Thus, we identify the reflection arrangement A(WU) of WU as a
subarrangement of A.

First we record a consequence of the classification of the inductively free reflection
arrangements, Theorem 1.1:
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Corollary 2.33. Let A = A(W ) be an inductively free reflection arrangement. Then
A(WX) is also inductively free for any parabolic subgroup WX of W .

Proof. The result follows readily from Theorem 1.1 and the classification of the parabolic
subgroups of the irreducible complex reflection groups, [OT92, §6.4, App. C].

Next we record an elementary but nevertheless very useful inductive tool.

Lemma 2.34. Let A = A(W ) be a nice reflection arrangement. Then A(WX) is also
nice for any parabolic subgroup WX of W .

Proof. Note that for X ∈ L(A), we have A(WX) = AX , cf. [OT92, Thm. 6.27, Cor. 6.28].
The desired result follows from Remark 2.13(ii).

Using Corollary 1.4, Lemma 2.34 restricts to inductively factored reflection arrange-
ments:

Corollary 2.35. Let A = A(W ) be an inductively factored reflection arrangement. Then
A(WX) is also inductively factored for any parabolic subgroup WX of W .

Proof. As noted above, for X ∈ L(A), we have A(WX) = AX , cf. [OT92, Thm. 6.27,
Cor. 6.28]. Moreover, since L(AX) = L(A)X = [V,X] is an interval in L(A), [OT92, Def.
2.10], the result follows from Corollary 1.4 and Stanley’s result [Sta72, Prop. 3.2].

3 Nice Reflection Arrangements

In this section we provide proofs of Theorems 1.3 and 1.5.

3.1 Proof of Theorem 1.3.

It follows from Proposition 2.18 that if A is supersolvable, then it is nice. Thus, by
Proposition 2.29, we may assume that W is irreducible so that A(W ) is not supersolvable.
Then in view of Theorem 1.2, Theorem 1.3 follows from Lemmas 3.1 – 3.10 below.

Lemma 3.1. Let W = G(r, r, 3) for r > 3. Then A(W ) is nice.

Proof. Let r > 3, W = G(r, r, 3) and A = A(W ). We denote the coordinate functions
of C3 by x, y and z. Furthermore, let ζ be a primitive r-th root of 1. There are three
families of hyperplanes in A given as follows. For i = 0, . . . , r − 1, we set

Ai := ker(x− ζ iy), Bi := ker(x− ζ iz), and Ci = ker(y − ζ iz).

We also consider the hyperplanes Ai, Bi, and Ci for i ∈ Z, simply by taking i modulo r.
One readily checks that the members X of rank 2 of L(A) are given by the following

subarrangements AX of A (i.e. X = ∩H∈AX
H) :

{A0, A1, . . . , Ar−1}, {B0, B1, . . . , Br−1}, {C0, C1, . . . , Cr−1},
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and
{Ai, Bj, Ck | i, j ∈ {0, . . . , r − 1} and k = j − i mod r}.

Note that expA(G(r, r, 3)) = {1, r+ 1, 2(r− 1)}, cf. [OT92, Cor. 6.86]. We claim that
the following partition π is a factorization of A:

π = (π1, π2, π3) := ({A0}, {A1, . . . , Ar−1, B0, C0}, {B1, . . . , Br−1, C1, . . . , Cr−1}).

First we check the singleton condition from Definition 2.12(ii). Thanks to Remark
2.13(iii), we only need to check this for X of rank 2.

If AX = {A0, A1, . . . , Ar−1}, then π1 ∩AX = {A0}. Likewise, if AX = {B0, . . . , Br−1},
respectively AX = {C0, C1, . . . , Cr−1}, then π2∩AX = {B0}, respectively π2∩AX = {C0},
is the desired singleton. If AX = {A0, Bj, C0−j}, then π1 ∩ AX = {A0}. Finally, let
AX = {Ai, Bj, Ci−j} for i, j 6= 0 mod r. If i 6= j, then π2 ∩AX = {Ai}, else if i = j, then
π3 ∩ AX = {Bj}, and if AX = {Ai, B0, Ci} for i 6= 0 mod r, then π3 ∩ AX = {Ci} is the
desired singleton.

Finally, we need to show that π is independent. Up to interchanging the roles of Bj

and Cj, we only have to check three cases: If Y1 := A0 ∩ Ai ∩ Bj where i, j > 0, then we
have

r(Y1) = r(A0 ∩ . . . ∩ Ar−1 ∩Bj) = r(A0 ∩ . . . ∩ Ar−1) + 1 = 3.

If Y2 := A0 ∩B0 ∩Bi for i > 0, then as in the case for Y1, we see

r(Y2) = r(A0 ∩B0 ∩ . . . ∩Br−1) = r(B0 ∩ . . . ∩Br−1) + 1 = 3

and likewise if Y3 := A0 ∩ C0 ∩ Ci for i > 0, then we get

r(Y3) = r(A0 ∩ C0 ∩ . . . ∩ Cr−1) = r(C0 ∩ . . . ∩ Cr−1) + 1 = 3.

Finally, for i > 0, it is immediate that A0 ∩B0 ∩ Ci = {0} has rank 3.

Jambu and Paris [JP95] already observed that the reflection arrangement A(G(3, 3, 3))
is factored but not inductively factored, see Remark 2.28 above. Note that A(G(3, 3, 3))
is not inductively free, cf. Theorem 1.1 and Proposition 2.26. See also [HR16, Ex. 3.20].

Lemma 3.2. Let W = G(r, r, `) for r > 2 and ` > 4. Then A(W ) is not nice. In
particular, the Coxeter arrangement of W (D`) = G(2, 2, `) for ` > 4 is not nice.

Proof. Let ` > 4 and r > 2. It suffices to show the result for G(r, r, 4). For, let W =
G(r, r, `) for ` > 5. Then noting that G(r, r, 4) is a parabolic subgroup of W , the result
follows for W from Lemma 2.34.

So let r > 2, W = G(r, r, 4) and A = A(W ). We denote the coordinate functions of
C4 by x, y, z and t. Furthermore, let ζ be a primitive r-th root of 1. Out of six families
of hyperplanes in A we consider the following four, given as follows. For i = 0, . . . , r− 1,
set

Ai := ker(x− ζ iy), Bi := ker(z − ζ it), Ci = ker(x− ζ iz), and Di := ker(y − ζ it).
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We also consider the hyperplanes Ai, Bi, Ci and Di for i ∈ Z simply by taking i modulo r.
One readily checks that the following subarrangements AX of A define members X of

rank 2 of L(A):

{A0, A1, . . . , Ar−1}, {B0, B1, . . . , Br−1}, {C0, C1, . . . , Cr−1}, {D0, D1, . . . , Dr−1},

{Ai, Bj | i, j ∈ {0, . . . , r − 1}} and, {Ci, Dj | i, j ∈ {0, . . . , r − 1}}.

Suppose π = (π1, π2, π3, π4) is a factorization of A. The singleton condition from
Definition 2.12(ii) applied to X = Ai ∩ Bj for i, j ∈ {0, . . . , r − 1} shows that the Ai
and Bj are in distinct parts of π. Likewise, the singleton condition applied to X =
A0 ∩A1 ∩ . . .∩Ar−1 shows that not all the Ai are in the same part of π. The same holds
for B0 ∩ B1 ∩ . . . ∩ Br−1. Thus, since r > 2, each part πi contains at least one of the
hyperplanes A0, A1, . . . , Ar−1, B0, B1, . . . , Br−1.

Applying the same argument to the hyperplanes C0, C1, . . . , Cr−1, D0, D1, . . . , Dr−1
implies that each part of π contains at least two hyperplanes. This contradicts the fact
that π admits a part of cardinality 1, cf. Remark 2.13(iii). Thus A does not admit a nice
partition.

In [Ter92], Terao already pointed out that the Coxeter arrangement of W (D4) =
G(2, 2, 4) does not admit a factorization, see Remark 2.27 above.

Lemma 3.3. Let W be of type G33, G34, E6, E7, or E8. Then A(W ) is not nice.

Proof. Let W be as in the statement. Then W admits a parabolic subgroup of type D4;
for G33, G34, see [OT92, Table C.14 - C.23]. By Lemma 3.2, A(W (D4)) is not nice. It
thus follows from Lemma 2.34 that A(W ) is not nice either.

Lemma 3.4. Let W be one of H3, G25, H4, or G32. Then A(W ) is not nice.

Proof. First we show that A(H3) and A(G25) are not nice. It then follows from Lemma
2.34 and [OT92, Table C.13] that A(H4) and A(G32) aren’t nice either.

First let A = A(H3) and let x, y and z be the variables in S and let ζ be a primitive
5th root of unity. We have

Q(H3) = xyz(x+ y)(y + z)(x− (ζ3 + ζ2)y)(x− (ζ3 + ζ2 + 1)y)

(x− (ζ3 + ζ2)y − (ζ3 + ζ2)z)(x− (ζ3 + ζ2 + 1)y − (ζ3 + ζ2 + 1)z)

(x+ y + z)(x− (ζ3 + ζ2)y − (ζ3 + ζ2 + 1)z)(x− (ζ3 + ζ2)y + z)

(x+ y + (ζ3 + ζ2 + 2)z)(x+ y − (ζ3 + ζ2 + 1)z)

(x− 2(ζ3 + ζ2 + 1)y − (ζ3 + ζ2 + 1)z).

Set

H1 = kerx,H2 = ker y,H3 = ker z,H4 = ker(x− (ζ3 + ζ2)y − (ζ3 + ζ2)z),

H5 = ker(x+ y + (ζ3 + ζ2 + 2)z), and H6 = ker(x− 2(ζ3 + ζ2 + 1)y − (ζ3 + ζ2 + 1)z).

the electronic journal of combinatorics 23(2) (2016), #P2.9 14



One checks that each of the following intersections describes a rank 2 member X ∈ L(A)
with |AX | = 2: H1 ∩ H3, H1 ∩ H6, H3 ∩ H6, H2 ∩ H4, H2 ∩ H5, and H4 ∩ H5. Suppose
π is a factorization of A. Then applying the singleton condition of Definition 2.12(ii)
to each of these elements of L(A) implies that each of H1, H3, H6, respectively each of
H2, H4, H5 must belong to a distinct part of π. However, as one of the parts of π has to
have cardinality 1, cf. Remark 2.13(iii), this is a contradiction. Consequently, A is not
nice.

Next let A = A(G25) and again let x, y and z be the variables in S and let ζ be a
primitive 3rd root of unity. We have

Q(G25) = xyz(x+ y + z)(x+ y + ζz)(x+ y − (ζ + 1)z)

(x+ ζy + z)(x+ ζy + ζz)(x+ ζy − (ζ + 1)z)

(x− (ζ + 1)y + z)(x− (ζ + 1)y + ζz)(x− (ζ + 1)y − (ζ + 1)z).

Set H1 = ker(x + y + z), H2 = ker(x + y + ζz), H3 = ker(x + ζy + z), H4 = ker(x +
ζy − (ζ + 1)z), H5 = ker(x− (ζ + 1)y + ζz), and H6 = ker(x− (ζ + 1)y − (ζ + 1)z). One
checks that each of the following intersections describes a rank 2 member X ∈ L(A) with
|AX | = 2: H1 ∩H4, H1 ∩H5, H4 ∩H5, H2 ∩H3, H2 ∩H6, and H3 ∩H6. Suppose π is a
factorization of A. Then, as above, applying the singleton condition of Definition 2.12(ii)
to each of these elements of L(A) implies that each of H1, H4, H5, respectively each of
H2, H3, H6 must belong to a distinct part of π. However, as one of the parts of π has to
have cardinality 1, cf. Remark 2.13(iii), this is a contradiction. Consequently, A is not
nice.

Lemma 3.5. Let W = G24. Then A(W ) is not nice.

Proof. Let A = A(G24) and let x, y and z be the variables in S and let ζ be a primitive
7th root of unity. We have

Q(G24) = (x+ (2ζ4 + 2ζ2 + 2ζ + 1)y)(x+ (−2ζ4 − 2ζ2 − 2ζ − 1)y)

(3x+ (−ζ4 − ζ2 − ζ + 3)y − 2(ζ4 + ζ2 + ζ)z) x

(3x− (ζ4 + ζ2 + ζ + 4)y − 2(ζ4 + ζ2 + ζ + 1)z)

(3x− 7y + 4z) (3x+ 7y − 4z)

(3x+ (2ζ4 + 2ζ2 + 2ζ + 1)y − 2(ζ4 + ζ2 + ζ − 1)z)

(7y + (−3ζ4 − 3ζ2 − 3ζ + 2)z)

(3x+ (−2ζ4 − 2ζ2 − 2ζ − 1)y − 4(ζ4 + ζ2 + ζ − 1)z)

(3x+ (ζ4 + ζ2 + ζ + 4)y + 2(ζ4 + ζ2 + ζ + 1)z)

(3x+ (ζ4 + ζ2 + ζ − 3)y + 2(ζ4 + ζ2 + ζ)z)

(7y + (3ζ4 + 3ζ2 + 3ζ + 5)z)

(3x+ (2ζ4 + 2ζ2 + 2ζ + 1)y − 2(ζ4 + ζ2 + ζ + 2)z)

(3x+ (−2ζ4 − 2ζ2 − 2ζ − 1)y + 2(ζ4 + ζ2 + ζ + 2)z)

(7y + (−6ζ4 − 6ζ2 − 6ζ − 10)z)
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(3x+ (−2ζ4 − 2ζ2 − 2ζ − 1)y + 2(ζ4 + ζ2 + ζ − 1)z)

(3x+ (−2ζ4 − 2ζ2 − 2ζ − 1)y − 4(ζ4 + ζ2 + ζ + 2)z)

(3x+ (2ζ4 + 2ζ2 + 2ζ + 1)y + 4(ζ4 + ζ2 + ζ + 2)z)

(3x+ (2ζ4 + 2ζ2 + 2ζ + 1)y + 4(ζ4 + ζ2 + ζ − 1)z)

(7y + (6ζ4 + 6ζ2 + 6ζ − 4)z).

For simplicity, we enumerate the members of A in the order they appear as factors in
Q(G24), i.e., H1 = ker

(
x+ (2ζ4 + 2ζ2 + 2ζ + 1)y

)
, H2 = ker

(
x+ (−2ζ4− 2ζ2− 2ζ − 1)y

)
,

etc. Suppose A admits a nice partition π = {π1, π2, π3}. Since W acts transitively
on A, we may assume that π1 = {H1}. The following four subsets AX of A describe
rank 2 members X of L(A): {H1, H6, H11, H15}, {H1, H7, H12, H17}, {H1, H8, H10, H13},
{H1, H9, H14, H18}, {H1, H2, H4}, {H1, H3, H5}, {H1, H16, H20} and {H1, H19, H21}. It fol-
lows from Corollary 2.15(iii) that each of A := {H6, H11, H15}, B := {H7, H12, H17}, C :=
{H8, H10, H13}, D := {H9, H14, H18}, E := {H2, H4}, F := {H3, H5}, G := {H16, H20}
and H := {H19, H21} has to be contained in one part of π.

Clearly, as only π2 and π3 are candidates, at least two of the sets A, B, C, D have to
be in one part. Applying the singleton condition in Definition 2.12(ii) to each of AX1 =
{H6, H9, H10}, AX2 = {H6, H14, H17}, AX3 = {H7, H8, H15} and AX4 = {H7, H13, H18},
we conclude that

A ∪B ∈ π2 ⇔ C ∪D ∈ π3,
A ∪ C ∈ π2 ⇔ B ∪D ∈ π3, and

A ∪D ∈ π2 ⇔ B ∪ C ∈ π3.

As the cardinality of the union of two sets in {A,B,C,D} is even and as each of the
remaining pairs of hyperplanes {E,F,G,H} has to be added to either π2 or π3, it follows
that |π2| is even. But this is a contradiction, since |π2| ∈ {9, 11} is odd (as expA(G24) =
{1, 9, 11}, cf. Remark 2.17). It follows that A(W ) is not nice, as claimed.

Lemma 3.6. Let W = G26. Then A(W ) is not nice.

Proof. Let A = A(G26) and let x, y and z be the variables in S and let ζ be a primitive
3rd root of unity. We have

Q(G26) = xyz(x− y)(x− ζy)(x− ζ2y)(x− z)(x− ζz)(x− ζ2z)

(y − z)(y − ζz)(y − ζ2z)(x+ y + z)(x+ ζy + z)(x+ ζ2y + z)

(x+ y + ζz)(x+ y + ζ2z)(x+ ζ2y + ζ2z)(x+ ζy + ζ2z)

(x+ ζ2y + ζz)(x+ ζy + ζz).

Again, for simplicity, we enumerate the members of A in the order they appear as factors
in Q(G26), i.e., H1 = kerx, H2 = ker y, etc. Suppose A admits a nice partition π =
{π1, π2, π3}. There are two W -orbits in A, represented by H1 and H4. So we may assume
that the singleton of π is either π1 = {H1} or π1 = {H4}, respectively. Without loss, we
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may assume that H5 ∈ π2. Consider the rank 2 elements X1, . . . , X4 of L(A) given by
AX1 = {H5, H3}, AX2 = {H5, H14}, AX3 = {H5, H19} and AX4 = {H5, H21}, respectively.
It follows from Corollary 2.15(iii) that H3, H14, H19, H21 ∈ π3. But this is a contradiction
to Remark 2.13(iii), since AH3∩H14∩H19∩H21 = {H3, H14, H19, H21}. It follows that A(W )
is not nice, as desired.

Lemma 3.7. Let W = G27. Then A(W ) is not nice.

Proof. Let A = A(G27) and let x, y and z be the variables in S and let ζ be a primitive
15th root of unity. We have

Q(G27) = (15x+
(
24ζ7 − 18ζ6 − 6ζ5 + 18ζ4 − 6ζ3 + 12ζ2 − 6ζ − 15

)
y

+
(
−4ζ7 + 8ζ6 − 4ζ5 + 2ζ4 − 4ζ3 − 12ζ2 + 6ζ

)
z)

(3y +
(
ζ7 + 3ζ5 − ζ4 − ζ3 + ζ2 − ζ + 2

)
z)

(15x+
(
−18ζ6 + 6ζ5 + 12ζ4 − 6ζ3 + 12ζ2 − 24ζ − 3

)
y

+
(
−12ζ6 + 4ζ5 + 8ζ4 − 4ζ3 + 8ζ2 − 16ζ − 2

)
z)

(15x+
(
−12ζ7 − 18ζ6 + 12ζ5 − 6ζ4 − 6ζ3 + 12ζ2 − 18ζ + 3

)
y

+
(
2ζ7 + 8ζ6 − 2ζ5 + 6ζ4 + 6ζ3 − 2ζ2 − 2ζ + 2

)
z)

(15x+
(
12ζ7 − 18ζ6 − 6ζ3 + 12ζ2 − 9

)
y

+
(
−2ζ7 + 28ζ6 − 10ζ5 + 6ζ3 − 22ζ2 + 20ζ + 4

)
z)

(15x+
(
9ζ7 − 12ζ6 − 3ζ5 + 9ζ4 − 9ζ3 + 3ζ2 − 3ζ − 9

)
y

+
(
ζ7 − 8ζ6 + 3ζ5 − 4ζ4 − ζ3 + 7ζ2 − 2ζ − 1

)
z)

(15x+
(
12ζ7 − 18ζ6 − 6ζ3 + 12ζ2 − 9

)
y

+
(
−22ζ7 + 8ζ6 + 10ζ5 + 6ζ3 − 2ζ2 − 20ζ + 14

)
z)

(15x+
(
6ζ7 + 6ζ6 + 12ζ3 + 6ζ2 + 3

)
y

+
(
14ζ7 − 16ζ6 + 10ζ4 − 2ζ3 + 14ζ2 − 10ζ − 8

)
z)

(15x+
(
−3ζ7 − 6ζ6 + 6ζ5 − 3ζ4 + 3ζ3 + 9ζ2 − 9ζ + 3

)
y

+
(
3ζ7 + 6ζ6 − ζ5 − 2ζ4 + 7ζ3 + ζ2 + 4ζ + 2

)
z)

(15x+
(
12ζ7 + 18ζ6 − 12ζ5 + 6ζ4 + 6ζ3 − 12ζ2 + 18ζ − 3

)
y

+
(
−2ζ7 − 8ζ6 + 2ζ5 − 6ζ4 − 6ζ3 + 2ζ2 + 2ζ − 2

)
z)

(15x+
(
30ζ7 − 6ζ6 − 18ζ5 + 24ζ4 − 12ζ3 − 6ζ2 + 12ζ − 21

)
y

+
(
20ζ7 − 4ζ6 − 12ζ5 + 16ζ4 − 8ζ3 − 4ζ2 + 8ζ − 14

)
z)

(15x+
(
6ζ7 + 6ζ6 + 12ζ3 + 6ζ2 + 3

)
y

+
(
−26ζ7 + 4ζ6 + 10ζ5 − 20ζ4 − 2ζ3 − 6ζ2 + 12

)
z)

(3y +
(
−2ζ7 − 2ζ5 − ζ4 + 2ζ3 − 2ζ2 − ζ + 1

)
z)

(15x+
(
3ζ7 + 6ζ6 − 6ζ5 + 3ζ4 − 3ζ3 − 9ζ2 + 9ζ − 3

)
y

+
(
−3ζ7 − 6ζ6 + ζ5 + 2ζ4 − 7ζ3 − ζ2 − 4ζ − 2

)
z)
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(x+
(
2ζ6 + 2ζ3 + 1

)
y)

(15x+
(
−12ζ7 + 6ζ5 − 3ζ4 − 9ζ + 6

)
y

+
(
−3ζ7 − ζ5 − 2ζ4 − 5ζ3 − 5ζ2 + 4ζ − 1

)
z)

(15x+
(
−6ζ7 + 6ζ6 + 6ζ5 − 18ζ4 + 12ζ3 + 6ζ2 + 6ζ + 9

)
y

+
(
−14ζ7 + 4ζ6 + 4ζ5 − 2ζ4 − 2ζ3 − 6ζ2 − 6ζ + 6

)
z)

(15x+
(
−12ζ7 + 18ζ6 + 6ζ3 − 12ζ2 + 9

)
y

+
(
22ζ7 − 8ζ6 − 10ζ5 − 6ζ3 + 2ζ2 + 20ζ − 14

)
z)

(15x+
(
−6ζ7 − 6ζ6 − 12ζ3 − 6ζ2 − 3

)
y

+
(
−14ζ7 + 16ζ6 − 10ζ4 + 2ζ3 − 14ζ2 + 10ζ + 8

)
z)

(x+
(
2ζ7 − 2ζ6 + 2ζ2 − 1

)
y) (x+

(
−2ζ6 − 2ζ3 − 1

)
y)

(3y +
(
−ζ7 + 2ζ5 + ζ4 + ζ3 − ζ2 + ζ + 2

)
z)

(15x+
(
6ζ7 + 6ζ6 + 12ζ3 + 6ζ2 + 3

)
y

+
(
14ζ7 − 16ζ6 − 10ζ5 + 20ζ4 − 22ζ3 − 6ζ2 − 18

)
z)

(15x+
(
−6ζ7 + 3ζ5 − 9ζ4 + 3ζ + 3

)
y

+
(
11ζ7 − 10ζ6 − 3ζ5 + 4ζ4 − 5ζ3 + 5ζ2 + 2ζ − 8

)
z)

(15x+
(
18ζ6 − 6ζ5 − 12ζ4 + 6ζ3 − 12ζ2 + 24ζ + 3

)
y

+
(
12ζ6 − 4ζ5 − 8ζ4 + 4ζ3 − 8ζ2 + 16ζ + 2

)
z)

(15x+
(
−6ζ7 − 6ζ6 − 12ζ3 − 6ζ2 − 3

)
y

+
(
26ζ7 − 4ζ6 − 10ζ5 + 20ζ4 + 2ζ3 + 6ζ2 − 12

)
z)

(15x+
(
−12ζ7 + 18ζ6 + 6ζ3 − 12ζ2 + 9

)
y

+
(
−18ζ7 + 12ζ6 + 10ζ5 − 10ζ4 + 14ζ3 + 2ζ2 − 10ζ + 16

)
z)

(15x+
(
−9ζ7 + 12ζ6 + 3ζ5 − 9ζ4 + 9ζ3 − 3ζ2 + 3ζ + 9

)
y

+
(
−ζ7 + 8ζ6 − 3ζ5 + 4ζ4 + ζ3 − 7ζ2 + 2ζ + 1

)
z)

x (x+
(
−2ζ7 + 2ζ6 − 2ζ2 + 1

)
y)

(15x+
(
−24ζ7 + 18ζ6 + 6ζ5 − 18ζ4 + 6ζ3 − 12ζ2 + 6ζ + 15

)
y

+
(
4ζ7 − 8ζ6 + 4ζ5 − 2ζ4 + 4ζ3 + 12ζ2 − 6ζ

)
z)

(15x+
(
−18ζ7 + 6ζ6 + 12ζ5 − 6ζ4 + 12ζ3 + 6ζ2 − 18ζ + 15

)
y

+
(
8ζ7 − 16ζ6 − 2ζ5 + 6ζ4 − 12ζ3 + 4ζ2 − 2ζ − 10

)
z)

(15x+
(
6ζ7 − 3ζ5 + 9ζ4 − 3ζ − 3

)
y

+
(
−11ζ7 + 10ζ6 + 3ζ5 − 4ζ4 + 5ζ3 − 5ζ2 − 2ζ + 8

)
z)

(15x+
(
18ζ7 − 6ζ6 − 12ζ5 + 6ζ4 − 12ζ3 − 6ζ2 + 18ζ − 15

)
y

+
(
−8ζ7 + 16ζ6 + 2ζ5 − 6ζ4 + 12ζ3 − 4ζ2 + 2ζ + 10

)
z)

(15x+
(
−6ζ7 − 6ζ6 − 12ζ3 − 6ζ2 − 3

)
y

+
(
−4ζ7 − 4ζ6 + 10ζ4 − 8ζ3 − 4ζ2 − 10ζ − 2

)
z)
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(15x+
(
−12ζ7 + 18ζ6 + 6ζ3 − 12ζ2 + 9

)
y

+
(
12ζ7 + 12ζ6 − 10ζ5 + 10ζ4 + 4ζ3 − 8ζ2 + 10ζ − 4

)
z)

(15x+
(
−12ζ7 + 18ζ6 + 6ζ3 − 12ζ2 + 9

)
y

+
(
2ζ7 − 28ζ6 + 10ζ5 − 6ζ3 + 22ζ2 − 20ζ − 4

)
z)

(15x+
(
−30ζ7 + 6ζ6 + 18ζ5 − 24ζ4 + 12ζ3 + 6ζ2 − 12ζ + 21

)
y

+
(
−20ζ7 + 4ζ6 + 12ζ5 − 16ζ4 + 8ζ3 + 4ζ2 − 8ζ + 14

)
z)

(15x+
(
6ζ7 + 6ζ6 + 12ζ3 + 6ζ2 + 3

)
y

+
(
4ζ7 + 4ζ6 − 10ζ4 + 8ζ3 + 4ζ2 + 10ζ + 2

)
z)

(15x+
(
12ζ7 − 18ζ6 − 6ζ3 + 12ζ2 − 9

)
y

+
(
−12ζ7 − 12ζ6 + 10ζ5 − 10ζ4 − 4ζ3 + 8ζ2 − 10ζ + 4

)
z)

(15x+
(
−6ζ7 − 6ζ6 − 12ζ3 − 6ζ2 − 3

)
y

+
(
−14ζ7 + 16ζ6 + 10ζ5 − 20ζ4 + 22ζ3 + 6ζ2 + 18

)
z)

(15x+
(
12ζ7 − 6ζ5 + 3ζ4 + 9ζ − 6

)
y

+
(
3ζ7 + ζ5 + 2ζ4 + 5ζ3 + 5ζ2 − 4ζ + 1

)
z)

(15x+
(
6ζ7 − 6ζ6 − 6ζ5 + 18ζ4 − 12ζ3 − 6ζ2 − 6ζ − 9

)
y

+
(
14ζ7 − 4ζ6 − 4ζ5 + 2ζ4 + 2ζ3 + 6ζ2 + 6ζ − 6

)
z)

(15x+
(
12ζ7 − 18ζ6 − 6ζ3 + 12ζ2 − 9

)
y

+
(
18ζ7 − 12ζ6 − 10ζ5 + 10ζ4 − 14ζ3 − 2ζ2 + 10ζ − 16

)
z)

(3y +
(
2ζ7 − 3ζ5 + ζ4 − 2ζ3 + 2ζ2 + ζ − 2

)
z).

For simplicity, once again we enumerate the members of A in the order they appear
as factors in Q(G27). Suppose A admits a nice partition π = {π1, π2, π3}. Since W
acts transitively on A(W ), we can assume without loss that π1 = {H1}. We derive a
contradiction by considering the following 25 rank 2 members Xi of L(A):

AX1 = {H1, H2, H3, H4, H5}, AX2 = {H1, H6, H7, H8, H9},
AX3 = {H1, H10, H11, H12, H13}, AX4 = {H1, H14, H15, H16, H17},
AX5 = {H4, H6, H18}, AX6 = {H3, H9, H19},
AX7 = {H2, H7, H20}, AX8 = {H5, H8, H21},
AX9 = {H3, H7, H22}, AX10 = {H5, H6, H23},
AX11 = {H19, H23, H24}, AX12 = {H18, H22, H25},

AX13 = {H21, H22, H26}, AX14 = {H20, H23, H27},
AX15 = {H24, H25, H26, H27}, AX16 = {H11, H17, H18},
AX17 = {H11, H16, H20}, AX18 = {H10, H16, H21},
AX19 = {H10, H17, H19}, AX20 = {H12, H15, H22},
AX21 = {H13, H15, H23}, AX22 = {H4, H12, H25},
AX23 = {H8, H14, H25}, AX24 = {H3, H15, H24},
AX25 = {H9, H13, H24}.
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Applying the singleton condition from Definition 2.12(ii) toAX1 ,AX2 ,AX3 , andAX4 shows
that each of the sets

A := {H2, H3, H4, H5}, B := {H6, H7, H8, H9},
C := {H10, H11, H12, H13} and D := {H14, H15, H16, H17}

is a subset of π2 or π3. First suppose that A ∪ B ⊂ π2. Then the singleton condi-
tion Definition 2.12(ii) applied to each of AX5 ,AX6 ,AX7 ,AX8 ,AX9 , and AX10 shows that
H18, H19, H20, H21, H22, H23 ∈ π3. The same argument applied to AX11 ,AX12 ,AX13 , and
AX14 shows that H24, H25, H26, H27 ∈ π2. This now leads to a contradiction, since AX15

then violates the singleton condition. Now suppose that C ∪ D ⊂ π2. Then Remark
2.13(iii) applied to AX16 ,AX17 ,AX18 ,AX19 ,AX20 , and AX21 shows that H18, H19, H20, H21,
H22, H23 ∈ π3. This however leads again to the same contradiction as in the case
A ∪ B ⊂ π2. It follows that exactly two of the sets A,B,C,D have to be contained
in π2. Now suppose that A ∪ C ⊂ π2 and B ∪D ⊂ π3. The singleton condition applied
to AX22 and AX23 implies that H25 ∈ π2 ∩ π3, which is absurd. Finally, suppose that
A ∪D ⊂ π2 and B ∪ C ⊂ π3. The singleton condition applied to AX24 and AX25 implies
that H24 ∈ π2 ∩ π3, which is absurd. It follows that A(G27) is not nice.

Lemma 3.8. Let W be of type F4. Then A(W ) is not nice.

Proof. Let A = A(F4) and let u, x, y and z be the variables in S. We have

Q(F4) = uxyz(u+ x)(x+ y)(y + z)(u+ x+ y)(x+ 2y)(x+ y + z)

(u+ x+ 2y)(u+ x+ y + z)(x+ 2y + z)(u+ 2x+ 2y)(u+ x+ 2y + z)

(x+ 2y + 2z)(u+ 2x+ 2y + z)(u+ x+ 2y + 2z)(u+ 2x+ 3y + z)

(u+ 2x+ 2y + 2z)(u+ 2x+ 3y + 2z)(u+ 2x+ 4y + 2z)

(u+ 3x+ 4y + 2z)(2u+ 3x+ 4y + 2z).

For simplicity, we enumerate the members of A in the order they appear as factors in
Q(F4), i.e., H1 = keru, H2 = kerx, etc. Suppose that π = (π1, π2, π3, π4) is a nice
partition of A. The following argument holds for every choice of a singleton π1 = {Hi}.
Without loss, let π1 = {H1}. Consider the following rank 2 members of L(A):

AX1 = {H1, H2, H5},AX2 = {H1, H6, H8, H14},
AX3 = {H1, H10, H12, H20}, and AX4 = {H1, H13, H15, H22}.

The singleton condition from Definition 2.12(ii) applied to each of X1, X2, X3, and X4

shows that each of the sets A := {H2, H5}, B := {H6, H8, H14}, C := {H10, H12, H20},
and D := {H13, H15, H22} is a subset of π2, π3 or π4. Now, applying the singleton condition
to

AX5 = {H2, H8},AX6 = {H2, H12},AX7 = {H2, H13},
AX8 = {H6, H20},AX9 = {H6, H22}, and AX10 = {H10, H22}

shows that A,B,C and D have to be in different blocks of the factorization. This contra-
dicts the fact that π1 = {H1}. It follows that A is not nice.
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Lemma 3.9. Let W = G29. Then A(W ) is not nice.

Proof. Let A = A(G29) and let u, x, y and z be the variables in S. We have

Q(G29) = z(u− x+ iy + iz)(u− x)(x− y)(u− x+ iy − iz)(y + z)(u+ ix− y + iz)

(u− x− iy − iz)(u− y)(u− x− iy + iz)(u− ix+ iy + z)(u+ ix− y − iz)

(x+ z)(u− ix− y − iz)(u− ix− y + iz)(u+ ix− iy + z)(y − z)(u− ix+ iy − z)

(x− z)(u+ ix− iy − z)y(u+ z)(u+ ix+ y + iz)(u+ ix+ iy + z)(u+ ix+ iy − z)

(u− z)(u− ix− iy + z)(u− ix+ y − iz)(u− ix+ y + iz)x(u+ x+ iy + iz)

(u+ x− iy − iz)(u+ x− iy + iz)(u+ ix+ y − iz)(u− ix− iy − z)

(u+ x+ iy − iz)(x+ y)u(u+ y)(u+ x).

Again, for simplicity, we enumerate the members ofA in the order they appear as factors in
Q(G29), i.e., H1 = ker z, H2 = ker(u− x+ iy + iz), etc. Suppose that π = (π1, π2, π3, π4)
is a nice partition of A. We may assume that π1 = {H1} is the singleton, since W is
transitive on A. Corollary 2.15(iii) applied to AH1∩H6 = {H1, H6, H17, H21}, AH1∩H22 =
{H1, H22, H26, H38} and AH1∩H13 = {H1, H13, H19, H30} shows that each of the sets A :=
{H6, H17, H21}, B := {H22, H26, H38} and C := {H13, H19, H30} is contained in one of the
parts of π. Moreover, these sets are in different parts of π, thanks to Remark 2.13(iii)
applied to AH6∩H38 = {H6, H38}, AH6∩H30 = {H6, H30} and AH13∩H38 = {H13, H38}. So
lets assume that A ⊂ π2, B ⊂ π3 and C ⊂ π4. Consider AX = {H,H ′}, where H ∈ A
and H ′ is one of the following hyperplanes H2, H3, H5, H8, H10, H13, H19, H22, H26, H30,
H31, H32, H33, H36, H38 and H40. Thanks to Definition 2.12(ii), it follows that none of the
H ′ is contained in π2. Using the same argument, considering AX = {H,H ′}, where this
time H ∈ C and H ′ is one of the following hyperplanes H6, H7, H9, H12, H14, H15, H17,
H21, H22, H23, H26, H28, H29, H34, H38 and H39, it follows again from Definition 2.12(ii)
that none of the H ′ is contained in π4.

Next we consider the following rank 3 members Yi of L(A):

AY1 = {H1, H2, H3, H5, H6, H8, H10, H17, H21},
AY2 = {H1, H6, H17, H21, H31, H32, H33, H36, H40},
AY3 = {H1, H7, H9, H12, H13, H14, H15, H19, H30}, and

AY4 = {H1, H13, H19, H23, H28, H29, H30, H34, H39}.

Now using the information above, it follows from Corollary 2.15(iii) that each of the
following four sets is contained in one of the parts of π.

Z1 := {H2, H3, H5, H8, H10}, Z2 := {H31, H32, H33, H36, H40},
Z3 := {H7, H9, H12, H14, H15}, and Z4 := {H23, H28, H29, H34, H39}.

The singleton condition from Definition 2.12 applied to each of {H2, H12}, {H2, H28},
{H3, H31}, {H7, H32}, {H7, H39} and {H23, H36} shows that each of the Yi’s lies in a
different part of π. But this contradicts the fact that π1 = {H1}. It follows that A is not
nice.
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Lemma 3.10. Let W = G31. Then A(W ) is not nice.

Proof. Let A = A(G31) and let u, x, y, and z be the variables in S. We have

Q(G31) = u(u+ ix)(u− x)(u+ x+ y + z)(x− y)(u− ix)(u+ x)(u− x− y − z)x

(u− x− iy − iz)(u+ iy)(u+ x− iy − iz)(u− y)(u− x+ y + z)(u− x+ iy + iz)

(x+ iy)(y + z)(u− ix− y − iz)(u+ x+ iy + iz)(u+ ix− iy + z)(u− iy)(u+ y)

y(u− ix+ y − iz)(u+ x− y + z)(u+ ix− y + iz)(x− iy)(x+ z)(u+ ix+ y + iz)

(u− ix+ iy + z)(u+ x− y − z)(u− ix+ iy − z)(u− x+ y − z)(u+ ix− iy − z)

(u+ ix+ iy − z)(x+ y)(u− x+ iy − z)(u+ ix+ y − iz)(u− iz)(u+ ix− y − iz)

(u+ x+ iy − iz)(u+ ix+ iy + z)(u+ z)(u− ix− iy + z)(u− x− y + z)

(u− ix− y + iz)(u− ix+ y + iz)(u− x− iy + iz)(u− ix− iy − z)(x− iz)(x+ iz)

(y + iz)(u+ iz)(u+ x− iy + iz)(y − iz)(u− z)(u+ x+ y − z)(x− z)z(y − z).

Again, for simplicity, we enumerate the members of A in the order they appear as factors
in Q(G31), i.e., H1 = keru, H2 = ker(u + ix), etc. Suppose that π = (π1, π2, π3, π4)
is a nice partition of A. Since G31 acts transitively on A, we may assume that π1 =
{H1}. Then Corollary 2.15(iii) applied to AH1∩H2 = {H1, H2, H3, H6, H7, H9}, AH1∩H11 =
{H1, H11, H13, H21, H22, H23} and AH1∩H39 = {H1, H39, H43, H53, H56, H59} shows each of
A := {H2, H3, H6, H7, H9}, B := {H11, H13, H21, H22, H23} and C := {H39, H43, H53, H56,
H59} is a subset of one of the parts of π. Moreover, A,B,C have to be in distinct parts
of π, thanks to Remark 2.13(iii) applied to AH2∩H23 = {H2, H23}, AH2∩H59 = {H2, H59}
and AH11∩H59 = {H11, H59}. But now applying the singleton condition from Remark
2.13(iii) to AH3∩H4 = {H3, H4}, AH4∩H13 = {H4, H13} and AH4∩H56 = {H4, H56} shows
that H4 /∈ π1 ∪ π2 ∪ π3 ∪ π4 = A which is absurd. We conclude that A is not nice.

3.2 Proof of Theorem 1.5.

Thanks to Corollary 2.32, the question of the presence of a hereditary (inductive) fac-
torization reduces to the case when A is irreducible. Thus we may assume that W is
irreducible.

The reverse implication of Theorem 1.5 is clear. So suppose that W is irreducible so
that A = A(W ) is nice. We need to show that AX is also nice for every X ∈ L(A). If A
is supersolvable, then so is AX for every X ∈ L(A), by [Sta72, Prop. 3.2]. Consequently,
AX is factored again, thanks to Proposition 2.18. For W of rank 3, the result follows from
Lemma 2.31. Thus, Theorem 1.5 follows from Theorem 1.3.

Finally, we comment on questions of computations underlying this work.

Remark 3.11. In order to establish several of our results we first use the functionality
for complex reflection groups provided by the CHEVIE package in GAP (and some GAP
code by J. Michel [M15]) (see [S+97] and [GHL+96]) in order to obtain explicit linear
functionals α defining the hyperplanes H = kerα of the reflection arrangement A(W ).
We then use the functionality of SAGE ([S+09]) to explicitly determine the intersection
lattice L(A(W )) in the relevant instances, see Lemmas 3.5 - 3.10.
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