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Abstract

A graph of order n is p-factor-critical, where p is an integer of the same parity as
n, if the removal of any set of p vertices results in a graph with a perfect matching.
1-factor-critical graphs and 2-factor-critical graphs are well-known factor-critical
graphs and bicritical graphs, respectively. It is known that if a connected vertex-
transitive graph has odd order, then it is factor-critical, otherwise it is elementary
bipartite or bicritical. In this paper, we show that a connected vertex-transitive
non-bipartite graph of even order at least 6 is 4-factor-critical if and only if its
degree is at least 5. This result implies that each connected non-bipartite Cayley
graph of even order and degree at least 5 is 2-extendable.
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1 Introduction

Only finite and simple graphs are considered in this paper. A matching of a graph is a set
of its mutually nonadjacent edges. A perfect matching of a graph is a matching covering
all its vertices. A graph is called factor-critical if the removal of any one of its vertices
results in a graph with a perfect matching. A graph is called bicritical if the removal of
any pair of its distinct vertices results in a graph with a perfect matching. The concepts
of factor-critical and bicritical graphs were introduced by Gallai [9] and by Lovész [12],
respectively. In matching theory, factor-critical graphs and bicritical graphs are two basic
bricks in matching structures of graphs [17]. Later on, the two concepts were generalized
to the concept of p-factor-critical graphs by Favaron [7] and Yu [21], independently. A
graph of order n is said to be p-factor-critical, where p is an integer of the same parity as
n, if the removal of any p vertices results in a graph with a perfect matching.
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g-extendable graphs was proposed by Plummer [17] in 1980. A connected graph of
even order n is g-extendable, where ¢ is an integer with 0 < ¢ < n/2, if it has a perfect
matching and every matching of size ¢ is contained in one of its perfect matchings. Favaron
[8] showed that for ¢ even, every connected non-bipartite g-extendable graph is g-factor-
critical. In 1993 Yu [21] introduced an analogous concept for graphs of odd order. A
connected graph of odd order is q%—emtendable, if the removal of any one of its vertices
results in a g-extendable graph.

A graph G is said to be vertez-transitive if for any two vertices  and y in G there is an
automorphism ¢ of G such that y = p(z). A graph with a perfect matching is elementary
if the union of its all perfect matchings forms a connected subgraphs. In [13], there is
a following classic result about the factor-criticality and bicriticality of vertex-transitive
graphs.

Theorem 1 ([13]). Let G be a connected vertez-transitive graph of order n. Then
(a) G is factor-critical if n is odd;
(b) G is either elementary bipartite or bicritical if n is even.

A question arises naturally: Does a vertex-transitive non-bipartite graph has larger
p-factor-criticality?

In fact, the g-extendability and q%-extendability of Cayley graphs, an important class
of vertex-transitive graphs, have been investigated in literature. It was proved in papers
[3, 4, 16] that a connected Cayley graph of even order on an abelian group, a dihedral
group or a generalized dihedral group is 2-extendable except for several circulant graphs
of degree at most 4. Miklavi¢ and Sparl [16] also showed that a connected Cayley graph
on an abelian group of odd order n > 3 either is a cycle or is 1%—extendable. Chan et al.
[3] raised the problem of characterizing 2-extendable Cayley graphs.

In [22], we showed that a connected vertex-transitive graph of odd order n > 3 is
3-factor-critical if and only if it is not a cycle. This general result is stronger than 1%—
extendability of Cayley graphs. In this paper, we obtain the following main result which
gives a simple characterization of 4-factor-critical vertex-transitive non-bipartite graphs.

Theorem 2. Let G be a connected vertez-transitive non-bipartite graph of degree k and
of even order at least 6. Then G s 4-factor-critical if and only if k > 5.

By Theorem 2, we know that all connected non-bipartite Cayley graphs of even order
and of degree at least 5 is 2-extendable.

The necessity of Theorem 2 is clear. Our main task is to show the sufficiency of
Theorem 2 by contradiction. Suppose that GG is a connected non-bipartite vertex-transitive
graph G of even order at least 6 and of degree at least 5 but G is not 4-factor-critical.
By the s-restricted edge-connectivity of GG, we find that in most cases a suitable integer s
can be chosen such that every A\s-atom of G is an imprimitive block. Then we can deduce
contradictions. Some preliminary results are presented in Section 2 and some properties
of As-atoms of G which are used to show their imprimitivity are proved in Section 3.
Finally, we complete the proof of Theorem 2 in Section 4.
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2 Preliminaries

In this section, we introduce some notations and results needed in this paper. o
Let G = (V(G), E(G)) be a graph. For X C V(G), let X = V(G)\X. For Y C X,
denote by [X, Y] the set of edges of G with one end in X and the other in Y. In particular,

we denote [X, X| by V(X) and denote |V(X)| by dg(X). Denote by Ng(X) the set of
vertices in X which are ends of some edges in V(X). If X = {v}, then X is usually written
to v. Vertices in Ng(v) are called the neighbors of v. If no confusion exists, the subscript
G are usually omitted. Denote by G[X] the subgraph induced by X and denote by G — X
the subgraph induced by X. The set of edges in G[X] is denoted by E(X). Denote by
¢o(G) the number of the components of G which have odd order. For a subgraph H of G,
we denote dg(V(H;)) and V(V(H;)) by de(H;) and V(H;), respectively.

For a connected graph G, a subset F' C E(G) is said to be an edge-cut of G if G — F' is
disconnected, where G — F' is the graph with vertex-set V' (G) and edge-set E(G)\F. The
edge-connectivity of G is the minimum cardinality over all the edge-cuts of G, denoted
by A(G). A subset X C V(G) is called a vertez-cut of G if G — X is disconnected. The
vertez-connectivity of G of order n, denoted by x(G), is n — 1 if G is the complete graph
K,, and is the minimum cardinality over all the vertex-cuts of G otherwise. It is well
known that x(G) < A(G) < §(G), where §(G) is the minimum vertex-degree of G.

There are two properties of p-factor-critical graphs.

Theorem 3 ([7, 21]). A graph G is p-factor-critical if and only if ¢o(G — X) < | X|—p
for all X C V(G) with | X| > p.

)
Theorem 4 ([7]). If a graph G is p-factor-critical with 1 < p < |V(G)|, then k(G) > p
and \(G) = p+ 1.

Let X be a subset of V(G). Denoted by 6;_x the set of the components of G — X.
X is called to be matchable to 6g_x if the bipartite graph Gx, which arises from G by
contracting the components in é;_x to single vertices and deleting all the edges in E(X),
contains a matching covering X. The following general result will be used.

Theorem 5 ([5]). Every graph G contains a set X of vertices with the following properties:
(a) X is matchable to €o_x;

(b) Every component of G — X is factor-critical.

Given any such set X, the graph G contains a perfect matching if and only if | X | = |6a—x]|-

The girth of a graph G with a cycle is the length of a shortest cycle in G and the odd
girth of a non-bipartite graph G is the length of a shortest odd cycle in G. The girth
and odd girth of G are denoted by ¢(G) and go(G), respectively. I-cycle means a cycle of
length [. We present two useful lemmas as follows.

Lemma 6 ([15]). Let G be a graph with go(G) > 3. Then |E(G)| < ;|V(G)|*.
Lemma 7 ([1]). Let G be a k-regular graph. If go(G) > 3, then |V (G)| = kgo(G)/2.

Now we list some useful properties of vertex-transitive graphs as follows.
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Theorem 8 ([14]). Let G be a connected vertez-transitive k-regular graph. Then \(G) =
k.

Theorem 9 ([19]). Let G be a connected vertex-transitive k-reqular graph. Then k(G) >
2

2k.

3

Lemma 10 ([19]). Let G be a connected vertez-transitive k-regular graph. If k(G) < k,
then k(G) = m7(G) for some integer m > 2, where

7(G) = min{min{|V (P)| : P is a component of G — X}: X is a minimum vertez-cut of
G}.

Lemma 11 ([19]). Let G be a connected vertex-transitive k-reqular graph with k = 4 or
6. Then k(G) = k.

An imprimitive block of G is a proper non-empty subset X of V(G) such that for any
automorphism ¢ of G, either p(X) = X or p(X)NX = 0.

Lemma 12 ([18]). Let G be a vertez-transitive graph and X be an imprimitive block of
G. Then G[X] is also vertex-transitive.

Theorem 13 ([10]). Let G be a connected vertez-transitive k-reqular graph of order n.
Let S be a subset of V(G) chosen such that 5(k + 1) < |S| < 3n, d(S) is as small as
possible, and, subject to these conditions, |S| is as small as possible. If d(S) < 2(k+1)?,
then S 1s an imprimitive block of G.

Corollary 14 ([10]). Let G be a connected vertez-transitive k-regular graph of order n.
Let S be a subset of V(G) chosen such that 1 < |S| < 3n, da(S) is as small as possible,
and, subject to these conditions, |S| is as small as possible. If dg(S) < 2(k — 1), then
da(S) = |S| = k and dgis)(v) =k —1 for allv € S.

Corollary 15. Let G be a connected vertex-transitive k-reqular graph. Suppose g(G) > 3
or |[V(G)| < 2k. Then dg(X) = 2k — 2 for every X C V(G) with 2 < |X| < |V(G)| — 2.

Proof. 1f k = 2, then it is trivial. Now suppose k > 3 and that there is a subset X C V(G)
with 2 < |X| < |[V(G)| — 2 such that dg(X) < 2k — 2. Let S be a subset of V(G)
chosen such that 1 < |S| < 3{V(G)|, da(S) is as small as possible, and, subject to these
conditions, |S| is as small as possible. Then dg(S5) < de(X) < 2k — 2. By Corollary 14,
de(S) = [S| > k and dggj(v) = k—1forallv € S. As 2k —3 < 2(k+1)% S is an
imprimitive block of G by Theorem 13. Then |S| is a divisor of |V (G)|, which implies
V(G)| > 2|S| > 2k. Thus g(G) > 3. Noting that |E(S)] = (k — 1)|S| < 1|S|* by
Lemma 6, we have dg(S) = |S| > 2k — 2, a contradiction. O

A subset X of V(G) is called an independent set of G if any two vertices in X are not
adjacent. The maximum cardinality of independent sets of G is the independent number
of G, denoted by a(G).
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Lemma 16. Let G be a non-bipartite vertex-transitive k-reqular graph. Then a(G) <
LV(G)| = £ if go(@) > 3, and a(G) < V()] if (@) = 3.

Proof. Let X be a maximum independent set of G and set gy := go(G). Noting that G
is regular and non-bipartite, we have |X| < |X|. Set t = |X| — |X|. Since G is vertex-
transitive, the number of gg-cycles of G containing any given vertex in G is constant. Let g
be this constant number and let m be the number of all the gy-cycles of G. Note that each
go-cycle of G contains at most (go—1)/2 vertices in X and at least (go+1)/2 vertices in X.
We have ¢|X| < 3m(go—1) and ¢|X| > $m(go+1), which implies gt = ¢(|X|—|X]) > m.

We know ¢|V(G)| = mgo by the vertex-transitivity of G. Then ¢t > m = L|V(G)],

implying ¢ > XL If gy = 3, then o(G) = 3(IV(G)| — t) < 3[V(G)|. Tf go > 3, then
IV(G)| > kgo/2 by Lemma 7, which implies o(G) = 3(|[V(G)| — t) < V(G)| -2 O

4

A graph G is called trivial if |V (G)| = 1.

Lemma 17. Let G be a connected vertex-transitive non-bipartite graph. Let X be an
independent set of G. Suppose that G — X has | X| — t trivial components, where t is a
positive integer. Then go(G) > @ +1.

Proof. Let Y be the set of vertices in the trivial components of G — X and set gy := go(G).
Let n; j be the number of go-cycles of G which contain exactly ¢ vertices in X and j vertices
inY. Set s = £(go — 1). Since X and Y are independent sets of G, each gy-cycle of G
contains at most s vertices in X and contains less vertices in Y than in X. Let ¢ be the
number of go-cycles of G containing any given vertex in G. We have > ,_. <j<ics Mij = = q|X|

and ZO<J<Z<S JNij = (]’Y’ = q(|X| —t). Then ¢|X| = ZO<J<1<8 Nij < ZO<]<1<5 s(i —
Jnij = (Zo<3<z<s Zog;ggﬂ”m) = sqt = (go — 1)gt, which implies gy >
41 O

Lemma 18. Let G be a vertex-transitive graph with a triangle. Then the number of trivial
components of G — X is not larger than |E(X)| for each subset X C V(G).

Proof. Let Y be the set of vertices in the trivial components of G — X. Suppose Y| >
|E(X)|. Let ¢ be the number of triangles of G’ containing any given vertex in G. Note
that there are ¢|Y| triangles of G containing vertices in Y. As |Y| > |E(X)]|, it implies
that G[X]| has an edge e which is contained in more than ¢ triangles. This means that
more than ¢ triangles containing both ends of e, a contradiction. O]

Lemma 19. Let G be a connected triangle-free vertex-transitive 6-reqular graph of even
order. Suppose that there are 3 distinct vertices with the same neighbors. Then G 1is
bipartite.

Proof. Suppose, to the contrary, that G is non-bipartite. Then gy := ¢o(G) > 5. Let
C' = upuy ... ug_1uy be a go-cycle of G. For any pair of vertices u and v in V(C),
we know N(u) # N(v). So for each w; € V(C) there are two distinct vertices u; and
u! in V(C) such that N(u;) = N(u)) = N(u}) by the vertex-transitivity of G. Set

)
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U; = {u;, v}, u!}. Then U; is an independent set of G and U; NU; = ) for j # i. Noting
that u; and u;,1 are adjacent, we have that every vertex in U; is adjacent to every vertex
in U;y1, where ¢ + 1 is an arithmetic on modular gq. Since G is 6-regular and connected,
V(G| = |U%," Uil = 39, which implies that |V(G)| is odd, a contradiction. O

3 As-atoms of vertex-transitive graphs

In this section, we will introduce some properties of the As-atoms of vertex-transitive
graphs. The concept of As-atoms [11, 20] of graphs is used in investigating the s-restricted
edge-connectivity of graphs. The s-restricted edge-connectivity of graphs was proposed
by Fabrega and Fiol [6].

For a connected graph GG and some positive integer s, an edge-cut F' of GG is said to be an
s-restricted edge-cut of G if every component of G— F' has at least s vertices. The minimum
cardinality of s-restricted edge-cuts of GG is the s-restricted edge-connectivity of G, denoted
by As(G). By the definition of A;(G), we can see that A\(G) = A\ (G) < M (G) < A3(G) - -
as long as these parameters exists.

A proper subset X of V(G) is called a A\s-fragment of G if V(X) is an s-restricted
edge-cut of G with minimum cardinality. We can see that for every A;-fragment X of
G, G[X] and G[X] are connected graphs of order at least s. A \,-fragment of G with
minimum cardinality is called a \;-atom of G.

Lemma 20. Let G be a connected triangle-free vertex-transitive graph of degree k > 5.
For an integer s with 4 < s < 8, suppose A\s(G) < 3k. Let S be a As-atom of G.

(a) For X C V(G) with |X| > s and |X| > s, we have dg(X) > M\(G). Furthermore,
da(X) > M\(Q) if GIX] or G[X] is disconnected.

(b) For A C S with 1 < |A| < |S| — s, we have dgs)(A) > 3da(A).

(¢c) For each As-atom T of G with S # T and SNT # (), we have dg(SNT)+dg(SUT) <
206(G), da(S\T) + da(T\S) < 2X:(G), |SNT| < s—1 and |S\T| < s — 1.

Proof. (a) If G[X] and G[X] are connected, then V(X) is an s-restricted edge-cut of G
and hence dg(X) > A\,(G). Thus it only needs to show dg(X) > \(G) if G[X] or G[X]
is disconnected.

Suppose that G[X] is disconnected. If each component of G[X] has less than 4 vertices,
then dg(X) = k| X| — 2|E(X)| = k| X| — 2(|X| —2) = (k — 2)s +4 > 3k > X\s(G). Then
we assume that G[X] has a component H; with at least 4 vertices. If each component of
G[V (H;)| has less than 4 vertices, then dg(X) > dg(Hy) = dg(V(Hy)) > As(G). Then
we assume further that G[V(H;)] has a component H, with at least 4 vertices. Noting
that both G and H; are connected, we have that G[V(H)] is connected, which implies
that V(H>) is a 4-restricted edge-cut of G. Noting that A(G) = k by Theorem 8, we have
da(X) 2 MG) +da(Hy) = k+d(V(Hy)) = k4 M\(G).

So d(X) > A\(G). Next we consider the case that 5 < s < 8. Set 745(G) = min{d(A) :
A C V(G),4 < |A < s—1}. Then M(G) = min{)s(G), 75(G)}. For each subset
A C V(G) with 4 < |A] < 7, noting that |E(A)| < 1|A[* by Lemma 6, we have d(A) =
k|A| — 2|E(A)| > k|A| — 1|A]* > 2k. Hence 7,(G) > 2k. If A\,(G) > 2k, then d(X) >

(=)
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k+ M(G) > k4 2k > M\(G). If \(G) < 2k, then, noting min{\,(G), 7,(G)} < M(G) <
As(G), we have d(X) = k 4+ M(G) =k + X(G) > A(G).

(b) To the contrary, suppose dgisj(A) < 3dc(A). Then dg(S\A) = d(S) — (da(A) —
2dgis)(4)) < da(S) = A(G). By (a), G[S\A] and G[S U A] are connected. Hence
V(S\A) is an s-restricted edge-cut of G. By the minimality of As-atoms of G, we have
da(S\A) > A\(G), a contradiction.

(c) By the well-known submodular inequality (see [2] for example), we have that
da(SNT) +dg(SUT) < dg(S)+da(T) = 2X(G) and dg(S\T) +dg(T\S) = da(SNT) +
da(SUT) < dg(S) +da(T) = 2X,(G). Next we show |SNT| < s—1and [S\T| <s— 1.
Clearly, they hold if |S| = s. So we may assume |S]| > s.

Suppose |[SNT| > s. Then dg(SNT) = da(S) + 2dgs)(S\T) — dg(S\T') > da(S) =
As(G) by (b). Noting |SUT| > |V(G)|—|S|—=|T|+|SNT| = s, we have dg(SUT) > As(G)
by (a). Hence dg(SNT) 4+ da(SUT) > 2X(G), a contradiction. Thus [SNT| < s — 1.

If |[S\T| = |T\S| > s, then we can similarly obtain dg(S\T) > A\(G) and dg(T\S) >
As(G) by (b), which implies dg(S\T') +da(T\S) > 2Xs(G), a contradiction. Thus |S\T'| <
s—1. [l

Lemma 21. Let G be a connected triangle-free vertex-transitive b-reqular graph of even
order. For s =5 or 6, suppose \s(G) =s+9. Then |S| > s+ 5 for a A\s-atom S of G.

Proof. Suppose, to the contrary, that |S| < s+ 5. As s+ 9 = dg(S) = 5|S| — 2|E(9)],
|S| and s have different parities. Hence |S| > s + 1. By Lemma 20(b), 6(G[S]) > 3. If
|S| = s+ 1, then 2|E(S)| = 0(G[S])|S| = 3|S|, which implies dg(S) = 5|S| — 2|E(S)] <
2|S| =2s+2 < s+ 9, a contradiction. Thus |S| = s+ 3. Let R be the set of vertices u
in S with dgg)(u) = 3. By Lemma 20(b), E(R) = 0. Noting 354+ 9 < ), ¢ das)(u) =
2|E(S)| = 5|S| — As(G) = 4s + 6, we have |R| > |S| — (4s+ 6 —3s —9) = 6. Since s =5
or 6, dgis)(R) = 3|R| > 18 > 5(s — 3) > dgs1(S\R), a contradiction. O

Lemma 22. Let G be a bicritical graph. If G is not 4-factor-critical, then there is a
subset X C V(G) with | X| > 4 such that co(G — X) = | X| — 2 and every component of
G — X 1s factor-critical.

Proof. Since G is not 4-factor-critical, there is a set X; of four vertices of GG such that
G — X has no perfect matchings. By Theorem 5, G — X; has a vertex set X, such that
X is matchable to 6_x, - x, and every component of G — X; — X, is factor-critical. Set
X = X7 UXy. Then ¢y(G—X) = |6e-x| > | Xa2| = |X|—4. Since G is bicritical, we have
co(G — X) < |X| —2 by Theorem 3. Hence | X| —4 < ¢o(G — X) < |X| — 2. Noting that
co(G — X) and | X| have the same parity, we have ¢o(G — X) = | X| — 2. O

In the rest of this section, we always suppose that GG is a connected non-bipartite
vertex-transitive graph of degree k£ > 5 and even order, but G is not 4-factor-critical.
Also we always use the following notation. Let X be a subset of V(G) with | X| > 4 such
that ¢o(G — X) = | X| — 2 and every component of G — X is factor-critical. By Theorem
1 and Lemma 22, such subset X exists. Let H = H;, Hy, ..., H, be the nontrivial
components of G — X. For a positive integer m, let [m] denote the set {1,2,... ,m}.
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Lemma 23. We have p > 1. Furthermore, if g(G) > 3, then
(b) | X| =7 and ]V(H)] >9if A\5(G) >4k —8 and 5 < k < 6, and
(c) |X| =210 and |V(H)| 2 15 if \e(G) = 14 and k = 5.

Proof. It p =0, then |V(G)| =2|X| -2 > 2k —2 > 8 and a(G) > | | =iV(G)]-1>
max{1|V(G)|, 3|V(G)| — %}, which contradicts Lemma 16. Thus p > 1.

Next we suppose g(G) > 3. For each i € [p], we have |V (H;)| > 5 as H; is triangle-free
and factor-critical.

Suppose A5(G) > 2k. By Lemma 20(a), d(H;) > As(G) for each i € [p]. We have
2pk < pXs(G) < 7P d(H;) = d(X) — k(co(G — X) —p) < k(p+ 2), which implies p < 2.
Thus p = 1. (a) is proved.

Suppose A\5(G) > 4k —8 and 5 < k < 6. We know p = 1 by (a). Assume k = 6. Notice
that G is non-bipartite. It follows from Lemma 19 that |X| > 7. As d(H) < 3k and H
is triangle-free and factor-critical, we have |V (H)| > 9. Assume next k = 5. Notice that
V(G| = |V(H)|+2|X| -3 > 12. By Lemma 20(a), d(A) > A5(G) > 12 for every subset
A C V(@) with |A] = 6, which implies that G has no subgraphs which are isomorphic to
the complete bipartite graph K33. By the vertex-transitivity of G, it follows that G' has
also no subgraphs which are isomorphic to Ky 5. So |X| > 7. If E(X) =0, then go(G) > 7
by Lemma 17, which implies |V(H)| > 13. If E(X) # 0, then d(H) = 13, which implies
|V(H)| > 9. Hence the statement (b) holds.

Now we suppose A\¢(G) > 14 and k = 5. Then A\;(G) >min{\¢(G), 5k — 12} = 13. We
know p = 1 by (a). By the above argument, we know | X| > 7, |V(H)| > 9 and that G
has no subgraphs which are isomorphic to Ky 5 or K33. By Lemma 20(a), d(V(H)UA) >
Xe(G) and d(V(H)\A) = X¢(G) for every subset A C V(G) with |A| < 2. It implies that
E(X)=10,|V(u)NnV(H)| < 3 for each u € V(G) and each of X and V(H) has at most
one vertex v with |[V(v) N V(H)|=3. Set Y = V(H)U X.

Suppose |X| = 7. Then X has one vertex u; with 3 neighbors in V(H) and other
vertices in X has exactly two neighbors in V(H). Choose a vertex us € X\{u;} and a
vertex uz € Y\N(uy). Since G is vertex-transitive, there is an automorphism ¢, of G such
that ¢1(u3) = us. Noting that |N(v) N N(us)| > 3 for each v € Y, we have ¢, (Y) C X,
which implies |V(v) N V(H)| = 3 for each v € N(uy) NV(H), a contradiction.

Suppose 8 < |X| < 9. Then there are two vertices uy and wus in X with |N(ug) N
V(H)| =2and |N(us)NV(H)| < 1. Since G is vertex-transitive, there is an automorphism
@y of G such that po(us) = us. Then o(Y)NV(H) # 0 and |po(Y)NY] > 2. As G
has no subgraphs which are isomorphic to K5 or K33, it follows that |¢2(X) N X| > 6.
Hence po(Y) C V(H)UY and po(X) C V(H) U X. Noting that |V(u) N V(H)| < 3
and N(u) C ¢o(X) for each u € po(Y) NV (H), we have |p2(X) NV (H)| > 2. Notice
that each of X and V(H) has at most one vertex v with |V(v) N V(H)| = 3. We know
daies(xuv (92(X) N V(H)) > 3, which implies |¢2(Y) N V(H)| = 3. It follows that
Ny(eo(Y)NV(H)) = 3. Now we have |po(X) N X| = 6 and |p2(X) NV (H)| = 3 as
loa(X)| = | X| < 9. It follows that Glps(X UY) NV (H)] contains a subgraph isomorphic
to Ks3if |pa(Y)NV(H)| > 4 and G[p2(X UY)\V(H)] contains a subgraph isomorphic
to K33 otherwise, a contradiction.
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Thus |X| > 10. Then go(G) > 9 by Lemma 17. Let C be a go(H)-cycle of H.
Then go(H) > go(G) = 9 and |Ny(v) NV (C)| < 2 for each v € V(H)\V(C). Noting
15=d(V(H)) =5|V(H)| —2|E(H)|, we can easily verify |V (H)| > 15. (c) is proved. O

Lemma 24. Suppose k =5, \¢(G) = M\ (G) = 12 and g(G) > 3. For a A;-atom S of G,
we have that S is an imprimitive block of G.

Proof. Suppose, to the contrary, that S is not an imprimitive block of G. Then there
is an automorphism ¢ of G such that ¢;(S) # S and ¢1(S) NS # 0. Set T = ¢1(9).
By Lemma 20(c), we have |SNT| < 6 and |[S\T| < 6, which implies |S| < 12. As
12 = d(S) = 5|S| — 2|E(5)|, |9] is an even integer. By Lemma 20(b), 6(G[S]) > 3. For
each u € S, we have dg(SU{u}) > A\¢(G) by Lemma 20(a), which implies |Ng(u)NS]| < 2.
Noting that A\s(G) = A5(G) = M (G) = min{4k—8,5k—12, \s(G)} = 12, we have \5(G) =
A(G) = 12, By Lemma 23, p = 1. By Lemma 20(a), we have dg(H) > A\;(G) = 12.
Then either dg(H) =13 and |E(X)| =1, or dg(H) = 15 and E(X) = 0.

Figure 1. Some possible cases of G[S]. In each G;, 2 < i < 5, the two graphs in the virtual
boxes correspond to G[S N T| and G[S\T].

Case 1. |S| =8.

We have |E(S)| = £(5|S| — X6(G)) = 14. Tt is easy to verify that G[S] is isomorphic
to G in Figure 1. Label G[S] as in G and set W = {wy, we, w3, ws}. As [Ng(u)N S| < 2
for each u € S, G has no vertex v different from w; such that Ng(v) = Ng(w;). Hence G
has no subgraphs isomorphic to Kj 5 by the vertex-transitivity of G.

Claim 1. Fach edge in G is contained in a 4-cycle of G.

Suppose that G has an edge contained in no 4-cycles of GG. Since G is vertex-transitive,
each vertex in G is incident with an edge contained in no 4-cycles of G and there is an
automorphism @ of G such that ¢o(w;) = wy. As each edge in G[S] is contained in a
4-cycle, we have o (Ngs)(w1)) € Negpsj(w2) and Nejs)(@2(2:)) € 2(S) for each i € {2,3}.
It implies |S N2(S)| = 7. On the other hand, noting ¢2(S) # S, we have |[SNpo(S)| < 6
by Lemma 20(c), a contradiction. Thus Claim 1 holds.

Claim 2. For any vertex x € V(G) with 2 < |V(x)NV(H)| < 3 such that dgixi(u) = 0
for each u € ({x}UNg(z))NX, there is a subset A C Ng(z) with |A| > |V(z)NV(H)|—1
and a vertex y € V(G)\{z} such that {zu,yu} C V(H) and |V(u) NV (H)| = 3 for each
ue A

Since G is vertex-transitive, there is an automorphism 3 of G such that ¢3(wy) = .
Let 77 be one of X and V(H) such that x € T, and let T, be the other of X and V(H).
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Then ¢3(ws) € Ty and |p3(Ngs)(w2))NTa| = |V (2)NV(H)|—1. If |p3(Nes) (we) ) NTo| < 2
or p3(W) C T, then we choose A to be p3(Ngis)(w2)) NTo. If |p3(Negis(w2)) NTo| = 3
and p3(W)\T1 # 0, then |ps(W)NTy| = 3 and {p3(22), ¢3(23)} C To. In the second case,
we choose A to be {p3(22), p3(23)}. Then A and ¢3(ws) are a subset and a vertex which
satisfy the condition. Thus Claim 2 holds.

Subcase 1.1. dg(H) = 13.

Let zyzo be the edge in F(X). We know |X| > 6 and |[V(H)| > 7. By Lemma
20(a), dg(V(H)UA) = M\(GQ) and dg(V(H)\A) = M\(G) for each subset A C V(G) with
|A| < 2, which implies that |V(u) N V(H)| < 3 for each v € V(G) and each of X and
V(H) has at most one vertex v with |V(v) N V(H)| = 3. Hence it follows from Claim
2 that |V(u) N V(H)| < 2 for each u € X\{x1,22}. This together with Claim 2 implies
that |V (u) N V(H)| <1 for each u € V(H)\Ng({z1, z2}).

We claim |V(u) N V(H)| < 2 for each uw € Ng({z1,22}) NV (H). Otherwise, suppose
that there is a vertex uy € Ng({z1,22}) NV (H) with |V(upg) N V(H)| = 3. Since G is
vertex-transitive, there is an automorphism ¢4 of G such that ¢4(ws) = ug. It implies
that there is a vertex u; € p4(Neg)(wz) N (X \{z1,22}) such that |V(u;) " V(H)| =3, a
contradiction.

Thus it follows from Claim 2 that |V(u) NV (H)| < 1 for each v € X\{x1,x2}. Noting
|Ne({z1,22})NV (H)| < 5, we have |V (Ng({x1,22:})NV(H))NV(H)| < 10 by the claim in
the previous paragraph. Hence there is an edge z3x4 € V(H) such that 23 € X\{z1, 22}
and |V(z3) NV(H)| = |V(xy) NV(H)| = 1. Then 324 is contained in no 4-cycles of G,
contradicting Claim 1. Hence Subcase 1.1 cannot occur.

Subcase 1.2. dg(H) = 15.

Notice that G has no subgraphs which are isomorphic to Ky5. We know |X| > 6.
Next we show |V(H)| > 9. Let O; be the set of vertices u in G with |V(u) N V(H)| =i
for 1 <4 < 5. If | X| > 7, then go(G) > 7 by Lemma 17, which implies |V (H)| > 13.
Then we assume | X| = 6. As G has no subgraphs which are isomorphic to K» 5, we have
|03 N X| =3 and |O, N X| = 3. Noting g(G) > 3, we can obtain |V (H)| # 5. By Claim
2, |03 NV (H)| = 2, which implies |V (H)| # 7. Hence |V(H)| > 9.

By Lemma 20(a), da(V(H) U A) > M\(G) and dg(V(H)\A) > M\(G) for each subset
A C V(G) with |A] < 4. Tt implies O5 = 0, |0, N X| < 1, [OsN X| < 3, [0OsNV(H)| <3
and |04 N X|-|03N X| =0.

We claim O, = (). Otherwise, suppose O4 # (). Noting that 6(H) > 2 as H is factor-
critical, we have Oy C X. Now we know |O4] = 1 and O3 N X = (). Tt follows from
Claim 2 that O3 NV (H) = 0 and Oy C Ng(Oy4). As |[V(Ng(O4) NV (H))| < 8, there is
an edge xsrg € V(H) with {x5,26} C O;. Then z5z4 is contained in no 4-cycles of G,
contradicting Claim 1.

Let Fy be the subgraph of G with vertex set | JI_, O; and edge set V(H) and let F,
be the subgraph of F; which is induced by Os. By Claim 2, §(F) > 2. Hence Fy is
connected. Then Fj is connected by Claims 1 and 2. Let ¢ be the number of vertices u in
Fy with dp,(u) = 2. We have 15 = |E(F})| < |E(Fy)| + 2t = 6|O3| — 3| E(F»)| by Claim
2. It follows that |O3] =6 and 6 < |E(Fy)| < 7.

Assume |E(F;)| = 6. Then F; is a 6-cycle. For each u € O3 N X there is a vertex
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Yy € X\Os such that Np,(u) € Ng(y,) by Claim 2. It implies that there is a vertex
y € X\Os3 such that O3 NV (H) C Ng(y), which contradicts |O3 N X| < 3.

Assume |E(Fy)| = 7. As |E(F)\E(F,)| = 8, it follows from Claim 2 that there
is a vertex uy € V(F1)\Os with dg, (uz) = 2 and we know |Npg (ug) N O3] = 1 and
dp, (Np, (u2)\O3) = 1. It is easy to see that there is no vertex v’ in G such that |Ng(u') N
Ng(uz)| = 4. Noting |Ng(we) N Ng(ws)| = 4, we have that there is no automorphism ¢
of G such that ¢(wy) = uy, which contradicts the vertex-transitivity of G.

Case 2. |S| =10 or 12.

Claim 3. For any giwen two distinct A;-atoms S; and Sy of G with S; N Sy # 0,
G[S1 N Ss] and G[S1\ 53] are isomorphic to K33 or Kas.

By Lemma QO(C), we have dg(SlﬁSQ)—}—dg(SlLJSQ) < 2)\7(G), dG(Sl\SQ)‘I’dG(SQ\Sl) <
207(G), |S1 NSy < 6 and |S7\S2| < 6. Then |S; NSy| > 4 and |S;\S2| > 4. By Lemma
20(a), each of dg(S1 N Sy), da(S1 U Sy), da(S1\S2) and dg(S2\S1) is not less than Ay (G).
Noting )\4(G) = /\7(G) = 12, we have dg(Sl N SQ) = dg(Sl\Sg) = 12. Then G[Sl N SQ]
and G[S7\S2] are isomorphic to K33 or Ks5. So Claim 3 holds.

Let R; be the set of vertices v in S with dgg)(u) =i for 3 < < 5. By Lemma 20(b),
E(G[Rs]) = 0.

Claim 4. R; = (), or G[R5] is a 6-cycle and |S| = 12.

Suppose Rs # ). Tt only needs to show that |S| = 12 and G[Rs] is a 6-cycle. Assume
R, # (. Choose a vertex u € R4 and a vertex v € R5. Let 5 be an automorphism of G
such that os(u) = v. Then ¢5(Ngs)(u)) € Negs)(v), which contradicts that Glps(S) N S]
is isomorphic to Kj3 or Kyo by Claim 3. Thus R, = (). Noting |Rs| + |Rs| = |S| and
3|Rs| + 5| Rs| = 2|E(S)| = 5|S| — 12, we have |R3| = 6. For any two vertices v/, u” € Rj,
it follows from Claim 3 that ¢(S) = S for every automorphism ¢ of G with ¢(u') = u”.
Hence G[R;) is r-regular, for some integer 7. Then 18 = 3|R3| = dgs)(R3) = dgs)(R5) =
(5 —=7)(]S| — 6), which implies |S| = 12 and r = 2. Hence G[R5] is a 6-cycle and Claim 4
is proved.

By Claim 3, G[SNT] and G[S\T] are isomorphic to K33 or K. Noting F(G[R3]) = 0,
we have by Claim 4 that G[S] is isomorphic to Gy, G3, G4 or G5 in Figure 1.

Claim 5. FEach vertex in G is contained in exactly two distinct A7-atoms of G.

By the vertex-transitivity of G, it only needs to show that S" = S or S’ = T for
a A-atom S’ of G with S NS NT # (. Suppose S’ # S and S’ # T. From Figure
1, we can see that S has no subset A different from S N7 and S\T such that G[A] is
isomorphic to K33. Hence it follows from Claim 3 that SN S =5SNT =S5 NT. Then
12=da(SNT) = dgg(SNT) + demr(SNT) + des(SNT) = 18, a contradiction. So
Claim 5 holds.

Suppose |S| = 10. Then G[S] is isomorphic to G3. By Claims 3 and 5, there is a
Ar-atom S” of G such that S” NS = S\T. Choose a vertex uz € S\T and a vertex
uy € SNT. Noting that G[S\T] is not isomorphic to G[S N T, we know by Claim 5 that
there is no automorphism ¢ of G such that p(us) = u4, a contradiction.
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Suppose next |S| = 12. Then G[S] is isomorphic to G3, G4 or G5. Let Vi, V5, ...,
Vi be all subsets of V(G) which induce subgraphs of G isomorphic to K3 5. Noting that
G[S NT] and G[S\T] are isomorphic to K33, we can obtain by Claims 3 and 5 that
Vi, Va, ..., V,, form a partition of V(G) and for each V; there are exactly two elements
J1,J2 € {1,2,...,m}\{i} such that G[V; UV} ] and G[V;UV},] are isomorphic to G[S]. We
denote V; ~ V; if G[V; U V}] is isomorphic to G[S], and assume Vj ~ Vo ~ - ~ V,, ~ V3.
If G[S] is isomorphic to Gs, then it is easy to verify that G is bipartite, a contradiction.
Thus G[S] is isomorphic to G4 or Gs.

Assume that there is some V, C V(H). If G[5] is isomorphic to Gy, then |V,NX| =3
and Ng(V,\X)NV,_; C X, which implies |E(X)| > |E(V,—1)NE(X)| > 2, a contradiction.
Thus G[S] is isomorphic to G5. Let V; be chosen such that V; N V(H) # 0 and |j — ¢
is as small as possible. Then |V; N X| =3 and |N(u) N X| > 4 for each u € V; NV (H),
which contradicts that §(H) > 2.

We now assume that V; NV (H) # () for 1 < i < m. Then |V;NX| > |V;\(V(H)UX)|
if V; N X # (). Choose some V,; which contains vertices in V(G)\(V(H) U X). Then
V-1 NX # 0 and Vo N X # 0. Noting ¢o(G — X) = | X| — 2, we can obtain that for
eachi e [m], [VinX|=|V\(VH)UX)|+1ifie{d—1,¢,¢d +1}and |[V;NX| =10
otherwise. Then |V, \(V(H) U X)| = 2. Hence |Vy_; N X)| = |Vys1 N X)| = 3. Now we
have Vy_y ~ Vi ~ Vyq ~ Vy_q, which implies V/(G) = V,_1UV,UV, 4y and |V (H)| = 3.
It follows that g(G) = 3, a contradiction. O

Lemma 25. Suppose k =5, A\s(G) = X\s(G) = 13 and g(G) > 3. For a X\g-atom S of G,
we have |S| > 11.

Proof. To the contrary, suppose |S| < 11. As 13 = d(S) = 5|S| — 2|E(S)|, |S]| is odd.
Then |S| > 7. By Lemma 20(b), 6(G[S]) > 3. By Lemma 23, we have p =1, | X| > 7 and
[V(H)| =2 9. Hence |V(G)| > 20.

Assume |S| = 7. Then |E(S)| = 3(5|S| — 13) = 11. If G[S] is bipartite, then
|E(S)| = 3(IS] + 1)6(G[S]) > 12, a contradiction. Thus G[S] is non-bipartite. Let
C be a shortest cycle of odd length in G[S]. Then 5 < |V(C)| < 7. Noting that
|Nes)(u) NV(C)| < 2 for each uw € S\V(C), we have |E(S)| < 10, a contradiction.

So |S| = 9. Let R; be the set of vertices u in S with dgjs)(u) =4 for 3 <4 < 5.

Claim 1. For any automorphism ¢ of G with ¢(Rs U Rs) N (Ry U R5) # 0, either
©(S) =5 or G[SN(S)] is isomorphic to Ky 3.

Suppose ¢(S) # S. By Lemma 20(c), |SNe(S)] < 5, [S\¢(S)| <5 and d(SNp(S))+
d(SU@(S)) < 2X(G). Then 4 < |SNe(S) <5 and |[SU@(S)| = |S| + (S| — SN
e(9)| < 14. As |V(G)| = 20, we have d(S U ¢(S)) = A¢(G) by Lemma 20(a). Hence
d(S Ne(S)) < X6(G) = 13. This, together with the fact that |Nep,s)(uw) N Ngjs(u)| = 3
for each u € (R4 U R5) N (R4 U R5), implies that G[S N ¢(.5)] is isomorphic to Ky 3. So
Claim 1 holds.

By Claim 1, it follows that G has no automorphism ¢ such that ¢(R,) N Ry # (). It
implies Ry = () or Rs = 0. Noting 3.7 ,i|R;| = 2|E(S)| = 32 and 3._, |R;| = |S| = 9, we
have |R3| = 4, |R4] = 5 and R5 = (). By Lemma 20(b), E(R3) = (). Hence |E(R,)| = 4.
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As g(G[S]) = g(G) > 3, it is easy to verify that either G[R,] has a 4-cycle or G[R4] is
isomorphic to K 4. Let u; and uy be two vertices in Ry with dgr,j(u1) < dgr, (u2). Since
G is vertex-transitive, there is an automorphism v of G such that ¢(us) = uy. By Claim
L, G[¢(S) N S] is isomorphic to Ky 3. As ui,us € Ry, we know dgpy(s)ns)(u1) = 3. Notice
that |Ngisj(w) N Ngisp(ur)| < 2 for each u € S\{w} if G[R4] has a 4-cycle. It follows
that G[R4] is isomorphic to K 4. Since dgpys)ns)(v) = 2 for each v € Negpys)ns)(u1), it
follows that Negpy(s)nsj(u1) € Rs. It implies that the vertex in R3\Ngis)(u1) has only two
neighbors in S, which contradicts §(G[S]) > 3. O

Lemma 26. Suppose k =5, \¢(G) = \(G) = 14 and g(G) > 3. For a A;-atom S of G,
we have |S| > 14.

Proof. By Lemma 23, we have p = 1, |X| > 10 and |V(H)| > 15. Hence |V(G)| > 32.
For 1 < i < 5, let O; be the set of vertices v in G with |V (u) N (V(H))| = 4, and set
m; = |0; N X| and n; = |O; NV (H)|. By Lemma 20(a), dg(V(H) U A) > X\(G) and
da(V(H)\A) > X¢(G) for each subset A of V(G) with |A| < 2. This, together with the
fact that dg(H) is odd, implies that dg(H) = 15, O,UO5 = 0, m3 < 1 and nz < 1. Hence
E(X)=1(. Then go(G) > 9 by Lemma 17.

Suppose |S| < 14. As 5|S|—2|E(G[S])| = 14, |S| is an even integer with 8 < |S| < 12.
By Lemma 20(b), §(G[S]) = 3. As go(G) =9, it follows that G[S] is bipartite. By Lemma
20(a), dg(SU{u}) = X¢(G) for each u € S and dg(A) = \¢(G) for each subset A C V(G)
with |A| = 6. Hence |Ng(u) N S| < 2 for each u € S and G has no subgraphs which are
isomorphic to Kj 3.

Claim 1. For any two distinct Az-atoms S and Sy of G with Sy N Sy # 0, we have
da(S1 N Sy) < 14 and furthermore, G[S1 N Sz and G[S1\Ss] are isomorphic to Ky 4 or
K33 —e if |S| = 12, where K33 — e is a subgraph of K33 obtained by deleting an edge e
from Ks3.

By Lemma 20(c), we have |S1NSy| < 6, |S1\S2| < 6, dg(S1NSs)+da(S1USs) < 2M7(G)
and dg(51\S2) +dg(52\S1) < 2X7(G). Noting |V (G)| = 32, we have dg(S1US2) = A7 (G)
by Lemma 20(a). Hence dg(S; N S2) < M(G) = 14. Next assume |S| = 12. Then
|Sl N 52’ = |Sl\52‘ = 0. By Lemma 20(&), each of dg(Sl N SQ), dg(Sl\Sz) and dg(SQ\Sl)
is not less than A\g(G). Hence dg(S1 N S2) = dg(S1\S2) = 14. It implies that G[S; N Sy
and G[S7\S2] are isomorphic to Ks4 or K33 —e. So Claim 1 holds.

e, : Y YV Vs Vo Vs Vi Ve Vs Ya Vo Vs

DOy N‘«‘I‘WM’ %

{

M 0 \
sl
G G, s X7 Xg x]G):z X, X, X

Figure 2. The illustration in the proof of Lemma 26.

Case 1. |S| =8.
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As G[S] is a bipartite graph with |E(S)| = 13 and 6(G[S]) > 3, G[S] is isomorphic
to G in Figure 2. Let vy, v, be the two vertices in S with dgs)(v1) = dgs)(v2) = 4 and
choose a vertex vs € Ngig(vi)\{v2}.

We claim that each edge in G is contained in a 4-cycle of G. Otherwise, suppose that
G has an edge contained in no 4-cycles of G. Since G is vertex-transitive, each vertex in
(G is incident with an edge contained in no 4-cycles of G and there is an automorphism
1 of G such that ¢1(v3) = vy. Clearly, ¢1(S) # S. Noting that each edge in G[S5] is
contained in a 4-cycle of G[S], we have dgje, (syus)(u) < 4 for each v € ¢1(S) U S. Then
©1(Neis) (vs) S Negsy(v2) and Negsj(1(v1)) € p1(Negsi(v1)). Noting that [ (5) NS| <6
by Lemma 20(c) and dg(p1(S)NS) < 14 by Claim 1, G[SNg:(.S)] is isomorphic to K3 3—e.
As dg(SUp1(S)) = A¢(G) = 14 by Lemma 20(a), it follows that G[SUp;(9)] is isomorphic
to G in Figure 2, where the graph in the virtual box corresponds to G[SN¢1(S)]. Choose
avertex vy € SNy () with dgrsng, (s))(va) = 2. Let 2 be an automorphism of G such that
p2(v1) = v4. Then pa(Ngs)(v1)) = Nepsug:(s))(va) and @2(Neps)(v2))\(S U ¢1(5)) # 0.
Then dg(S U pa(S) U pa(Ngsi(v2))) < 14 = X¢(G), contradicting Lemma 20(a). So this
claim holds.

For each uv € V(H), noting that uv is contained in a 4-cycle of G by the previous
claim, we have |V(u) N V(H)| 4+ |V(v) N V(H)| > 3. For each u € Oy U O3, there is
an automorphism ¢3 of G such that ¢3(v1) = u, which implies that there is a vertex
v € @3(Ngrs)(v1)) such that wv € V(H) and [V (v) N V(H)| = 3. Hence m; < ng + 2na,
me < 3ng and ny < 3Img. Noting m3 < 1 and n3 < 1, we have 15 = Z?:l im; <
ng + 2n3 + 6n3 + 3ms < 6msz 4+ 8ng < 14, a contradiction.

Case 2. |S| =10 or 12.

Let R; be the set of vertices u in S with dgjg(u) =i for 3 < ¢ < 5. Then E(R;3) =
by Lemma 20(b). Let Z and W be the bipartition of G[S] such that |Z| < |W|. Noting
$(5|S| — 14) = |E(S)| = 6(G[S])|W| = 3|W|, we have [W| < 3|S]| + 2.

Claim 2. If Rs # 0, then, for each v € Ry, there is exactly one vertex w in S\{v}
with NG[S}(’U) - NG[S](U)).

Suppose Rs # (0. Choose a vertex u € Rs and a vertex v € Ry. Let 4 be an
automorphism of G such that ¢p4(u) = v. Then Ngig(v) € @a(Ngig(u)). Noting that
|S N ps(S)| < 6 by Lemma 20(c) and dg(S N w4(S)) < 14 by Claim 1, we have that
G[S Npy(S)] is isomorphic to Ko 4. It implies that S has a vertex w different from v with
Ngis)(v) € Nesj(w). As G has no subgraphs isomorphic to K33, such vertex w is unique.
So Claim 2 holds.

Claim 3. |W| =|Z| and Rs = 0.

Suppose, to the contrary, that |W| > |Z|, or |W|=|Z| and Rs # 0. As E(R3) =0, it
follows that |W| = 6 if |.S| = 10.

Assume |W| = |Z| 4+ 2 = 7. Noting |E(S)| = 23, there is a vertex v5 € (R4 U Rs) N W
and a vertex vg € Rs N Z. Let 5 be an automorphism of G such that ¢5(vs) = vg. Then
©5(S) # S and ¢5(Ngis)(vs)) € Ngsi(vs). Hence G[S M p5(S)] is isomorphic to Ky 4 by
Claim 1. It implies |p5(W)\S| = 5, contradicting that G[ps(S)\S] is isomorphic to K4

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.1 14



or K33 — e by Claim 1.

Assume |W| = 6. If |S| = 10, we know |Ry N Z| = |Rs N Z| = 2 as E(R3) = () and
|E(S)| = 18. If |S| = 12, we know either |[Rs NZ|=2=|RyNZ|+1lor |RsNZ|=1=
|R,NZ|—2as |E(S)| = 23. It follows from Claim 2 that there is a vertex v; € R4NZ and
a vertex vg € (R4 U Rs)\{v7} such that Ngis)(v7) € Negs)(vs) and (Rs N Z)\{vs} # 0. Tt
implies that G[S] has a subgraph which is isomorphic to K33, a contradiction. So Claim
3 holds.

Subcase 2.1. |S| = 10.
Noting F(R3) = (), we have by Claim 3 that G[S] is isomorphic to Gy in Figure 2. We
label G[S] as in Gg and assume x; € Z and y; € W.

Claim 4. |Ng(u) N Ng(v)| < 3 for any two distinct vertices u and v in G.

Suppose that there are two distinct vertices u and v in G with |Ng(u) N Ng(v)| > 4.
Notice that |[Ng(u) NS| < 2 for each u € S. By the vertex-transitivity of G, for each
Yi € {y1, Y2, ys} there is a vertex y; € {y1,y2, ys}\{vi} such that [Ng(v:) " Na(y;)| = 4. It
follows that there is a vertex w € S such that {y1, 2,93} € Ng(w), a contradiction. So
Claim 4 holds.

Let ¢g be an automorphism of G such that ¢g(ys) = 31. Then @g(S) # S and
l06(Negs)(y5)) N Nesi(1)] = 2. Then |@6(S) N S| < 6 by Lemma 20(c) and de(ps(S) N
S) < 14 by Claim 1. By Claim 4, G[S] has no subgraphs isomorphic to Ks4. It follows
that |¢o(S) N W] < 3 and |ps(S) N Z] < 3.

Assume that og(Ngs(ys)) N {z1, 22} # 0 and @s(Ngis)(y5)) N {za, 25} # 0. Then
| Neipss) (1) N Negis)(u)| = 3 for each v € ¢(Ngis(y5)) N {z1, 22} and |Ngjpgsy(v) N
Ngis)(v)| = 2 for each v € p6(Ngs)(ys5)) N {4, 5} It follows that [ps(S) N W| = 3 and
lo6(S) N {ys, ys}| = 1. Noting 2 < |ps(S) N Z] < 3, we can see dg(ps(S) NS) > 14, a
contradiction.

Assume ¢g(Ngis1(y5))NNeais)(y1) = {4, 25} Then ¢g(ya) € {y2, y3}US, which implies
that [Ng(y1) N Na(ws(ya))| = 4 or [Ng(x4) N Ne(z5)| > 4. It contradicts Claim 4.

Thus ¢6(Nais)(ys)) N Negs)(y1) = {z1,22}. By Claim 4, we have ©6(ya) € {ya, s}
and @6({y1,y2,y3}) "W = {y1, ys \@6(ya). Then {pg(24), ps(x5)} C 5. Assume pg(ys) =
Ya. Set {ys, yr} = @6({y1, v, ys})\W, {26} = @6(Nois)(y5))\Nas)(y1) and {x7, 25} =
{@6(x4), pe(x5)}. Then the graph Gy showed in Figure 2 is a subgraph of G.

We can see that each edge incident with x; is contained in a 4-cycle of G. Then, by
the vertex-transitivity of G, each edge uwv € V(H) is contained in a 4-cycle of G, which
implies |V(u) N V(H)| = 2 or [V(v) N V(H)| > 2. Hence there is a vertex v’ € G with
2 < |V(W)NV(H)| < 3. Let 7 be an automorphism of G such that p7(ys) = u'. It is easy
to verify that either ¢7(Ngpe(s)us)(y4)) has a vertex u with |V(u) N V(H)| > 4 or it has
two vertices v" and v” with {u/v/, u/v"} C V(H) and |V(v")NV(H)| = |[V(")NV(H)| = 3,
contradicting the fact that Oy U O5 = (), ms < 1 and n3 < 1.

Subcase 2.2. |S| = 12.

As |E(G[S])] = 23, G[9] is not regular. Let ¢g be an automorphism of G such that
ws(S) # S and ¢g(S) NS # 0. Set T = ¢g(S). It follows from Claims 1 and 3 that
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daisur)(u) =5 for each u € SNT, each of G[S\T], G[SNT] and G[T\S] is isomorphic to
Kj3 — e and dgjs)(v) = dgpr)(v) = 4 for each v € SNT with deisar(v) = 3.

Let vy and vy9 be two vertices in W NT with dgisnry(ve) = 3 = dgisnr(vio) + 1. We
know either dgps)(vio) = 4 or dgr(vig) = 4 and assume, without loss of generality, that
dars)(vio) = 4. Let @y be an automorphism of G such that ¢g(vg) = v19. Let @ be one of
©9(S) and o(T') such that @ # S. Since dgjg)(vio) = 4, we know @ # T. By Claims 1
and 3, each of G[Q N S], GIQ\S], G[QNT] and G[Q\T] is isomorphic to K33 —e. Noting
ders)(v10) = daig(vio) = 4, we have | Ngg)(v10)NS| = 3, which implies 2 < |QNSNT| < 5.

Assume 2 < |QNSNT| < 3. Noting that G[Q NT] is isomorphic to K335 — e, we have
daionm(@NSNT) > |QNSNT| = dgr(QNSNT), a contradiction.

Assume 4 < |QNSNT| < 5. Then |Ngg(vio) NSNT| = 2. If E(QNSNT) = 0, then
deions) (QNSNT) +deio\n(QNSNT) > 4|QNSNT| > |[QNSNT, SUT]|, a contradiction.
Thus |[QNSNT| = 2 and |E(QNSNT)| = 1. Then dgions)(Q@NSNT)+dgio\r (QNSNT) >
34+3>5>|[QNSNT,SUT]|, a contradiction. O

Lemma 27. Suppose k =5, X\¢(G) = 14, X\s(G) = 15 and g(G) > 3. For a Ag-atom S of
G, we have |S| > 15.

Proof. By Lemma 23, we have p = 1, |X| > 10 and |V(H)| > 15. By Lemma 20(a),
da(A) =2 X(G) = 14, dg(V(H) U B) > (@) and dg(V(H)\B) > Xs(G) for any two
subsets A and B of V(G) with |A| = 6 and |B| < 1. It implies that G has no subgraphs
isomorphic to Ks3, dg(H) = 15 and |V(u) N V(H)| < 2 for each v € V(G). Hence
E(X) = 0 and there is an edge ujus € V(H) such that Ng(u1) N X = {uz}. By Lemma

Suppose |S| < 15. As go(G) > 9 and 15 = A\s(G) = da(S) = 5|S| — 2|E(G[S))], it
follows that |S| is odd and G[S] is bipartite. By Lemma 20(b), §(G[S]) > 3. Let W and
Z be the bipartition of G[S] such that [W| > |Z]. We have |W| = $(|S| +1) if |S| < 11,
and 7 < [W| < 8 if [S] = 13.

Case 1. There is a vertex vy in S with dgis)(v1) = 5.

Let R be one of W and Z such that v; € R. As §(G[S]) > 3 and |E(S)| = 3(5|5| —
2|E(G[S))]), it follows that Ngis)(Neisj(v1)) = R. Since G is vertex-transitive, there is
an automorphism ¢ of G such that ¢1(v1) = ug. Then p;(R) C X UV(H). Noting that
|IV(u) N V(H)| < 2 for each u € V(G), we have ¢1(S\R) N X = (). Notice that G has
no subgraphs isomorphic to K33. We have |1 (R) N X| > 4 as |[Ng(u2)\V(H)| > 3 and
0(G[S]) = 3. Then |p1(S)NV(H)| < 6 as |S| < 13. It follows that dgje,(sy(u1) = 3.
Then dgjp, (sy(v) = 4 for each v € Ny, (sy(w1) by Lemma 20(b). Now we know |S| = 13,
[p1(R)NX| =4 =|p1(R)NV(H)|+2 and [e1(S\R) NV (H)| = 4 = |o1(S\R)\V (H)| + 1.
Then R = Z and |Ng(u2) NV (H)| = 2.

Noting that |V(u) N V(H)| < 2 for each u € V(G), we have dg,,(s)(u) < 4 for
each u € ¢1(W). Since 6(G[S]) > 3 and G has no subgraphs isomorphic to K33, two
vertices in ¢ (W)\V(H) has exactly 3 neighbors in ¢1(Z) N X. So dgp,(s)(u) = 4 for
each u € 1 (W)\Ng(uz) as |E(S)| = 25. Then there is a vertex uz € ¢1(Z) N X such
that @1 (W)\Ne(uz) € Ne(us).
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Assume @1 (Z)NV (H) = {uy, us}. Let pg be an automorphism of G such that ¢o(uy
uy. Then uy & ©o(Nejp, (s)(ua)) and po({ug, us, us}) € X, which implies |V(u)NV(H)
3 for the vertex u € (Ng(u2) NV(H))\{ui}, a contradiction.

Case 2. dgs)(u) < 4 for each u € S.

If |S| = 13, then, noting |E(G[S])| = 25 and 5 < |Z]| < 6, we have that there is a
vertex u € Z with dgjs)(u) = 5, a contradiction. Thus |[S| < 11. There is a vertex w € W
with dgis)(w) = |W/| — 2 such that dgs)(u) = 4 for each v € Ngig(w). Choose a vertex
z € NG[S](U}).

We claim that the edge ujus is contained in a 4-cycle of G. Suppose not. Since G is
vertex-transitive, each vertex in G is incident with an edge contained in no 4-cycles of G
and there is an automorphism ¢3 of G such that ¢3(w) = z. We know ¢3(S) # S. Noting
that |Ngisj(uw) N Negis)(v)| > 2 for every subset {u,v} C Z, each edge in G[S] is contained
in a 4-cycle of G[S]. Hence ¢3(Ngisj(w)) € Nepsi(2) and Ngig)(u) € @3(S) for each
u € p3(Ngs)(w)). By Lemma 20(c), [SNes(S)| <7 and da(SNes3(S))+da(SUps(S)) <
2X3(G). If |S| = 11, then [S N s(S)| > |@s(Nags)(w)) U Ngps)(w)| = 8, a contradiction.
Thus |S| = 9. As 6(G[S]) = 3, we have Z = UuE%(NG[S](w)) Ngs)(u) € @3(S). Hence
SN e3(S)| =7 and dg(SNes(S)) = 17. Noting that dg(S U p3(S)) = As(G) by Lemma
20(a), we have dg(S N w3(S)) + da(S U ps(S)) > 2Xs(G), a contradiction.

Thus |Ng(ug) N V(H)| = 2. Let ¢4 be an automorphism of G such that ¢4(z) = us
if [S| = 9, and @s(w) = ug if |[S| = 11. If uy € @4(S), then |Z| > daip,sy(w1) —
L+ |Nepas)(Nepasy(u)\V(H))| =2 2+ 3 = 5if [S| =9, and |W| > 7 if [S] = 11,
a contradlctlon Thus up ¢ @4(5). Then p5(2) C X if |S] =9 and p5(W) C X if
|S| = 11, which implies |V(u) N V(H)| > 3 for the vertex u € (Ng(ua) NV (H))\{u1}, a
contradiction. O

)
|

=

Lemma 28. Suppose k = 6, \5(G) = 16 and g(G) > 3. For a A\s-atom S of G, we have
|S] > 9.

Proof. To the contrary, suppose |S| < 8. As 1(6]S] — A;(G)) = |E(5)] < 1|S[* by Lemma
6, we have |S| > 8. Hence |S| = 8 and G[S] is isomorphic to Ky 4.

By Lemma 23, p = 1. Then |X| > 7 by Lemma 19. Noting that d(H) < 18 and H is
triangle-free and factor-critical, we have |V (H)| > 11. Let O; be the set of vertices v in G
with |V(u)NV(H)| =i for4 < i < 6. By Lemma 20(a), we have d(V(H)UA) > A\;(G) and
d(V(H)\A) = As5(G) for each subset A C V(G) with |A| < 3, which implies d(H) > 16,
OsUO0s=0,|0,NnX|<1and |OsNV(H)| < 1.

Suppose that S is an imprimitive block of G. Then the orbits S = S;, So, ..., S,, of
S under the automorphism group of G form a partition of V(G). If E(S;) N E(X) # () for
some S;, then d(H) = 16 and |S; NV (H)| = 6, which implies d(V(H)US;) < 14 < A5(G),
a contradiction. Thus E(S;) N E(X) = 0 for each Sj. As ¢o(G — X) = |X| — 2, it follows
that |O4] > 3, which contradicts the fact that |O4 = |04 N X|+ |O,NV(H)| < 2.

Suppose next that S is not an imprimitive block of G. Then there is an automorphism
@1 of G such that p1(S) # S and ¢1(S) NS # 0. Set T = ¢1(S). As G is 6-regular, we
have §(G[S N T]) > 2. By Lemma 20(c), |SNT| < 4. Hence G[SNT] is a 4-cycle of G.
Assume S NT = {vy,v9,v3,v4}, where N(vy) = N(vy) and N(v3) = N(vy).
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By the vertex-transitivity of G, for each u € V(G) there is a vertex u' different from
u such that N(v') = N(u). Assume E(X) # (). Then |E(X)| = 1 and let ujus be the
edge in E(X). We know that there is a vertex u} in V(H) with N(u}) = N(u;), which
implies |N(u1) NV (H)| = 5. Then Oj # (), a contradiction. Thus F(X) = (). As for each
u € V(G) there is a vertex v’ different from u such that N(u’) = N(u), it follows that there
is a vertex uz € X with 2 < |N(u3) NV (H)| < 4. Let ¢o be an automorphism of G such
that po(v1) = uz. If po({vs, v })\V(H) # 0, then N(uz) NV (H) = o2(N(v1)) NV (H) C
U, Oy 1 o({u, 04}) © V(H), then ga({us,03}) € UL, Or. So (UL, 0V (H)| > 2,
a contradiction. O

Lemma 29. Suppose k = 6, A\s;(G) = X\s(G) = 18 and g(G) > 3. For a Ag-atom S of G,
we have |S| > 15.

Proof. To the contrary, suppose 8 < |S| < 14. By Lemma 23, we have p = 1, | X| > 7 and
|[V(H)| = 9. By Lemma 20(a), we have dg(V(H)UA) > A\5(G) and dg(V(H)\A) = A5(G)
for each subset A C V(G) with |A| < 1, which implies d¢(H) = 18 and |V(u)NV(H)| < 3
for each u € V(G). Then ¢o(G) > 7 by Lemma 17. It follows that G[A] is bipartite for
each subset A C V(G) with |A| < 13 and dg(A) = 18. Hence |V(H)| > 15, and G[9] is
bipartite if |S| < 13. Then [V/(G)| > 26.

Case 1. |S| =8.

By Lemma 20(a), dg(A) > As5(G) for every subset A C V(G) with 7 < |A| < 8§,
which implies §(G[S]) > 3 and G has no subgraphs isomorphic to K 4. As |E(G[S])| =
$(6]S| — 18) = 15 and GI[S] is bipartite, there is a vertex uy € S with dgs)(ug) = 3 an
G[S\{uo}] is isomorphic to Kj 4.

oL

Gll

Figure 3. The illustration in the proof of Lemma 29.

Claim 1. There are no two distinct vertices u and v in G with Ng(u) = Ng(v).

Suppose that u; and wus are two distinct vertices in G with Ng(u1) = Ng(uz). Let
x, y and z be the three vertices in S which have 4 neighbors in S\{ug}. Noting that G
has no subgraphs isomorphic to K, 4, we have, by the definition of the vertex-transitivity
of G, that for each vertex u € {x,y,z} there is a vertex v’ € {z,y,z}\{u} such that
Ne(u) = Ng(u'). It follows that Ng(z) = Ng(y) = Ng(z). Then G is bipartite by
Lemma 19, a contradiction. So Claim 1 holds.

Claim 2. G has no subgraphs isomorphic to K.

Suppose that ug, us and us are three distinct vertices in G with |Ng(u3) N Ng(ug) N
N¢(us)| = 5. By Claim 1 and the vertex-transitivity of G, it follows that for each u €
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Ng(u3) N Ng(ug) there are two distinet vertices v/, v” € (Ng(uz) N Ng(ug))\{u} such that
|Ne(u) N Ng(u') N Ng(u”)| = 5. It implies that there is a vertex v € V(G)\ ({us, uq, us})
such that |Ng(v) N Ne(us) N Ng(ug)| = 4. So G has a subgraph isomorphic to Ky 4, a
contradiction. Claim 2 is proved.

Claim 3. G has no subgraphs isomorphic to G1g in Figure 3.

Suppose that Gig is a subgraph of G. Let ¢; be an automorphism of G such that
¢v1(az) = a;. Noting that dg(V(Gio) U A) = A5(G) for each subset A C V(G) with
|A] < 1 by Lemma 20(a), we have G19 = G[V(G19)] and |Ng(u) NV (Gyp)| < 3 for each
u € V(Gi). We know ¢1(a3) € {ag,as} if |¢1(Ngy,(a2)) N Ngy,(a1)] = 4. Hence either
each edge in V(ay) or each edge in V(¢1(a3)) is contained in a 4-cycle of G. By the
vertex-transitivity of G, each edge in G is contained in a 4-cycle of G. It follows that
V(u) NV(H)|[+[V(v) " V(H)| = 3 for each edge uv € V(H).

We claim that |V(u) N V(H)| < 2 for each u € V(G). Otherwise, noting that |V (u) N
V(V(H))| < 3 for each u € V(G), we suppose that there is a vertex ug in G with |V (ug) N
V(H)| = 3. Let s be an automorphism of G such that ys(bs) = ug. By considering
the definition of po(V(G1p)), we can obtain that there is a vertex u € pa(Ng,,(b2)) with
|V(u) N V(H)| > 4, a contradiction.

Thus there a vertex u; € V(G) with |V (u7 )NV (H)| = 2. Let 3 be an automorphism of
G such that p3(az) = uz. Then there is a vertex u € ¢3(Ng,,(az2)) with |V(u)NV(H)| > 3,
a contradiction. So Claim 3 holds.

By Claim 2, it follows that G[S] is isomorphic to Gy; in Figure 3 and we label G[5]
as in Gi;. Then |Ng(u) N S| < 2 for each u € S by Claims 2 and 3. Let ¢4 be an
automorphism of G such that p4(21) = 2zs. If p4(Ngis(21)) € Ngisi(24), then there is a
vertex u € @4(5)\S with [Ng(u) 0S| > 3, a contradiction. Thus ¢4(Nes)(21))\S # 0.

Assume @4(Ngis(21)) N Negs)(21) = {wl,wj} As |Ng(u) N'S| < 2 for each u €
©4(Negsy(21)) \S, it follows that [p4({22, 23, 24})\S| = 2. Then Ng(w;) = Ng(w;), con-
tradicting Claim 1.

Assume @4(Nes)(21))NNgs)(z1) = {wy }. Then |@p4({22, 23, 24})\S| = 2, which implies
that each edge in V(wy) is Contalned in a 4-cycle of G. Then each edge in G is contained
in a 4-cycle of G by the vertex-transitivity of G. Thus there is a vertex ug € V(G) With
2 < |V(ug) N V(H)| < 3. Let @5 be an automorphism of G such that ¢s5(z4) = us.
[Ne(wi) N Ne(wz) N Ne(ws)] = 4 and [Ne(pa(wi)) N Ne(pa(wz)) N Ne(ea(ws))| = 4
it follows that there is a vertex u € @5(Ngsupy(s)(2a)) with [V(u) N V(H)| > 4, a
contradiction.

Thus ¢4(Negs)(21)) N Negsy(21) = 0. By Claim 1, it follows that ¢a({20, 23, 24}) =
Ng(wg)\S. Let g be an automorphism of G such that ¢g(z;) = 23. Similarly, we
have @g(Ngs)(21)) N Neps)(z1) = 0 and g({22, 23, 24}) = Ne(ws)\S. It implies that
G[Ng(ws) U 04(Nes)(21)) U ws(Negis)(21)) has a subgraph isomorphic to Kss or G,
contradicting Claim 2 or Claim 3.

Case 2. 9 < |5] < 14.

By Lemma 20(b), 6(G[S]) > 4. If |[S| = 9, then 18 = $(6[S| — Xs(G)) = |E(S)| >
£(1S] 4+ 1)6(G[S]) = 20, a contradiction. Thus |S| > 10. If |S] < 13, then let W and Z
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be the bipartition of G[S] with |Z| < [W| and we have |[W| = |Z|+ (1 — (=1)!*]).

Subcase 2.1. 10 < |5] < 12.

We claim that dgpg(u) < 5 for each u € S. Otherwise, suppose that there is a vertex
vy € S with dgg)(v1) = 6. Choose a vertex ug € X with V(ug) N V(H) # 0. Let
7 be an automorphism of G such that ¢7(vy) = ug. As (G[S]) = 4, it follows that
©7(S\Ng(v1)) € X, which implies that |V (u) N V(V(H))| = 4 for each u € p7(Ng(v1)) N
V(H), a contradiction.

Noting that 4 < dgg(u) < 5 for each u € S, and recalling [E(S)| = 3|S| — 9 and
(W] =|Z|+1(1—(=1)1°l), we know that there is a vertex vy € Z and v € Ngg)(v2) such
that dg[s} (Ug) = dc;[s](Ug) +1=>5.

Now we claim that each edge in G is contained in a 4-cycle of GG. Otherwise, suppose
that GG has an edge contained in no 4-cycles. By the definition of the vertex-transitivity
of G, each vertex in (G is incident with an edge contained in no 4-cycles of G. Let g
be an automorphism of G such that pg(vs) = ve. Then @g(S) # S. Notice that each
edge in G[S] is contained in a 4-cycle of G[S]. We have ps(Ngs)(vs)) € Ngsj(v2) and
Neis)(@s(v2)) € ps(Ngsi(v2)). It implies [@g(S) N S| = 8, contradicting Lemma 20(c).

Thus |V(u) N V(H)| + |V(v) N V(H)| > 3 for each edge uv € V(H). Then there is a
vertex uyg € V(G) with |V(ui9) N V(H)| > 2.

Suppose |S| = 10. Then |W| = |Z| = 5. Let ¢ be an automorphism of G such
that @g(v2) = u1o. Then there is a vertex u € pg(Ngs)(v2)) with |V(u) N V(H)| > 4, a
contradiction.

Thus 11 < [S] < 12. Let R; be the set of vertices w in S with dgpe)(u) = i for i = 4, 5.
Then |Rs| = |[Rs N Z| =4 if |S| =11, and |[Rs N W| = |R; N Z| = 3 if |S| = 12.

Suppose that there is a vertex uy; € V(G) with |V(ui;) N V(H)| = 3. For a vertex
v € S, let ¢ be an automorphism of G such that ¢(v) = uy;. Then ¢¥(S)NV(H) # () and
Y(S)\V(H) # 0. As 6(G[S]) = 4 and |V(u) N V(H)| < 3 for each u € V(G), it follows
that [¢(S) N X| = 4 and G[¢(S) N V(H)] and G[(S)\V (H)] is isomorphic to K; 4 or
Ky 4. It implies |Ngisj(v) N Ry| > U%:"J and that there are two vertices v',v” € R, with
Ng[s] (U/) = NG’[S] (UH). If |S| = 11, then NG’[S] (U)ﬂRz; = Q) for each u € W\Ng[s}(R4ﬂZ>, a
contradiction. Thus |S| = 12. Then |Ngg)(u) N Ry| > 2 for each u € S. So §(G[R4]) > 2.
Noting |R4| = |Rs| = 6, we have 12 > 4|Ry| — §(G[R4])|R4| = 4|R4| — 2|E(Ry)| =
|[R4, Rs]| = 5|Rs| — 2|E(Rs)| > 30 — 18, which implies dgr,)(u) = 2 for each v € Ry.
Then G[Ry] is a 6-cycle of G, which contradicts that R4 has two vertices v' and v” with
Ng[g} (Ul) = Ng[s] (UH).

So |V(u) N V(H)| < 2 for each uw € V(G). Then |V(uip) N V(H)| = 2. We can see
that there is no automorphism ¢ of G such that ¢(vy) = uyg, contradicting that G is
vertex-transitive.

Subcase 2.2. 13 < |S] < 14.

Claim 4. For two distinct A\g-atoms Sy and Sy of G with S1 NSy # 0, G[S1\S2] and
G[S1 N Say] are isomorphic to K3 or K 4.

By Lemma 20((3), we have ‘51\52’ § 7, ]51ﬂ52] § 7, dg(31\52)+dg(52\51) § 2)\8(0)
and dg<51 ﬂSQ) +dg(51 USQ) < 2)\8(G> Then |Sl\52| 2 6 and ’Sl ﬂ52| 2 6. By Lemma
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20(a), each of dg(S1\S2), dg(S2\S1), da(S1 N S2) and dg(S1 U Sy) is not less than A\5(G).
Noting A\5(G) = As(G) = 18, we have dg(S1\S2) = dg(S1 N'S2) = 18. Hence G[S1\52]
and G[S; N S| are isomorphic to K33 or K34. So Claim 4 holds.

Since G[S] is not a regular graph, there is an automorphism ¢y of G such that
©10(S) # S and p10(S) NS # . Then G[S\10(S)] and G[S N 10(S)] are isomorphic to
K373 or K3’4 by Claim 4. Set B=5nN @10(5)

Claim 5. S has no subset A different from S\B and B such that G[A] is isomorphic
to K34 and G[S\A] is isomorphic to K33 or K3 4.

Suppose, to the contrary, that S has a subset A satisfying the above condition. Assume
S| = 13. As |[W| = |Z]|+1 = 7, we know |[ANW| = 4. It follows that there is a
vertex vy € S with dgg(vs) = 6. Choose a vertex vs € S such that dge)(vs) = 5
and [{vg,vs} NW| = 1. Let 13 be an automorphism of G such that ¢1;(vs) = v4. Then
©11(S) # S and ¢11(Ngs)(vs)) € Negs)(vs), contradicting that G[SN¢q1(S)] is isomorphic
to K33 or K34 by Claim 4. Assume next |S| = 14. Then each of G[S\B|, G|B], G|A] and
G[S\A] is isomorphic to K34. As |E(S)| = 33, we know dgig)(B) = 9. If [ANB| =1,
then dgs)(B\A) = 9 = 3dq(B\A), contradicting Lemma 20(b). If |[A N B| = 6, then
des)(S\(AUB)) = 9 = dc(S\(AU B)), contradicting Lemma 20(b). If 2 < [ANB| < 5,
then 9 = dg)(B) > dapa (AN B) + dgis\a)(B\A) = 5+ 5, a contradiction. Thus Claim
5 holds.

Claim 6. Fach vertex in G is contained in exactly two distinct Ag-atoms of G.

By the vertex-transitivity of G, it only needs to show that S" = S or po(S) for a As-
atom S” of G with SN B # (). Suppose S" # S and S’ # p19(S). By Claims 4 and 5, we
have S'NS =B = S/ﬂgplo(S). Then 18 = dg(B) = dG[S](B) +dG[<p10(S)](B) +dG[S’](B) =
3 x 9, a contradiction. Thus Claim 6 holds.

Let D be one of S\ B and B such that G[D] is isomorphic to K3 4. Choose two vertices
ve and vz in D such that dgp(vs) = dgp)(v7) —1 = 3. By Claim 6, there is only one
Ag-atom T of G which is different from S and contains vg. By Claims 4 and 5, we have
SNT = D. By Claim 6, S and T are also the only Ag-atoms of G which contain v;. It
implies that there is no automorphism ¢ of G such that ¢(vs) = vz, a contradiction. [

4 Proof of Theorem 2

In this section we complete the proof of Theorem 2.

Proof of Theorem 2. If GG is 4-factor-critical, then by Theorem 8 and Theorem 4 we have
k = AG) = 5. So we consider the sufficiency. Suppose k£ > 5. We will prove that G is
4-factor-critical.

Suppose, to the contrary, that G is not 4-factor-critical. We know by Theorem 1 that
G is bicritical. By Lemma 22, there is a subset X C V/(G) with |X| > 4 such that
co(G — X) = |X| — 2 and every component of G — X is factor-critical. Let Hy, Ho, ...,
H,, Hy,.1, ..., H; be the components of G — X, where t = |X| — 2 and H,, Hs, ..., H,
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are the nontrivial components of G — X. We know p > 1 by Lemma 23. For each i € [p],
since H; is factor-critical, §(H;) > 2. For every subset J C [t|, we have

S do(Hy) + NG)(t — 1)) < ch X) = k(t +2) — 2| B(X)],

ieJ

which implies

S da(Hy) + 2/ B(X)| < k(] +2). (1)

e

Hence |E(X)| < k. Set Y = |Jf i1 V(H;).

Case 1. g(G) = 3.

By Lemma 18, |[E(X)| >t—p=|X|—-2—p.

Subcase 1.1. dg(A) = 2k — 2 for all A C V(G) with 2 < |A| < |V(G)] — 2.

For each i € [p], we have dg(H;) > 2k — 2. If k is odd, then dg(H;) is odd and hence
de(H;) > 2k — 1. So da(H;) > 2k — (3 + (—1)*) for each i € [p]. Now we have

(2k—%(3+(—1)k))p+2(|X\—2 D) ng )+ 2E(X) < k(p+2),  (2)

which implies (k — 2 — 1(3 4 (=1)*))p + 2(|X| — 2 — k) < 0. Hence | X| < k + 1.

Suppose |X| < k. Then p =t = |X| — 2. By Theorem 9, |X| > x(G) > 2k. Hence
we know from (2) that 2k > (k — 13+ (=1)")p > (k — 5(3 + (=1)*))(3k — 2). That
is, k2 — 7k +3 < 0 if k is odd and k? — 8k + 6 < 0 otherwise. It follows that k < 6.
If £ = 6, then |X| > k(G) = k by Lemma 11, a contradiction. Thus k£ = 5. Then
k(G) = |X| = 4. By Lemma 10, 7(G) = 2. It implies that there is an edge x¢yo € F(G)
such that |Ng(zo) N Ne(vo)| = 4.

Noting k£ = 5, we know from (2) that |[EF(X)| < 1. Choose a vertex u € X with
derx)(u) = 0. Since G is vertex-transitive, there is an automorphism ¢; of G such that
©1(0) = u. Assume, without loss of generality, that p1(yo) € V(H;). Noting |Ng(z) N
Ne(yo)| = 4, we have Ng(u) C V(Hy). Then dg(V(Hy) U{u}) = da(X) —de(Hz) — 5 <
20 — 9 — 5 < 2k — 2, a contradiction.

Thus k < |X| < k+ 1. Noting (k—2— 13+ (=1)%))p+2(]X| — 2 — k) <0, we have
p<2and k<8 Then |Y|=|X|-2—p>k—4>1. For any given vertex v, let ¢ be
the number of triangles containing v in G. By the vertex-transitivity of GG, each vertex in
(G is contained in ¢ triangles of G, which implies that each edge in G is contained in at
most ¢ triangles of G.

Claim 1. E(X) is a matching of G.

Assume p = 2 or | X| = k+1. Then we know from (2) that |E(X)| = | X|-2—p=|Y].
Since there are ¢|Y'| triangles of G' containing one vertex in Y, each edge in E(X) is

contained in ¢ triangles of G. It implies that F(X) is a matching of G. Next we assume
p=1and |X|=k. If two edges in E(X) are adjacent, then |E(X)| =q > 2|Y| =2(k—3)
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and hence dg(Hy) + 2|E(X)| > 2k — 2 + 4(k — 3) > 3k, which contradicts the inequality
(1). So Claim 1 holds.

By Claim 1, it follows that each edge incident with a vertex in Y is contained in at
most one triangle of G. Then, by the vertex-transitivity of G, each edge in F(X) is
contained in at most one triangle of G.

Suppose |X| =k + 1. From (2), we know k£ < 6, p=1and |E(X)| = Y| =k — 2.
Since G has ¢|Y| triangles containing one vertex in Y, each edge in E(X) is contained
in ¢ triangles of G. Noting that each edge in F(X) is contained in at most one triangle
of G, we have ¢ = 1. Then |E(Ng(u))| = 1 for each w € Y, which implies |X| >
2|E(X)| + (k — |F(X)| — 1) =2k — 3 > k + 1, a contradiction.

Thus | X| = k. Then for each e € F(X) and each u € Y, G has a triangle containing
e and u. As each edge in F(X) is contained in at most one triangle of G, it follows that
Y| = 1, which implies p = 2 and k = 5. From (2), we know dg(H;) = dg(Hs2) = 9
and |E(X)| = 1. Assume |V(Hy)| < |V(H3)|. Let u; be the vertex in Y. For a vertex
uy € V(Hy) with Ng(ug) N X # 0, we have |Ng(uz) N X| < 3 as 6(Hy) > 2. As Hy
is a component of G — Ng(u;) with maximum cardinality, we have, by the definition of
the vertex-transitivity of G, that Hy also is a component of G — Ng(u2) with maximum
cardinality. Then Ng(X\Ng(u2)) NV (Hy) = 0. It implies de(V(Hy) U (X\Ng(u2))) <
8 = 2k — 2, a contradiction. Hence Subcase 1.1 cannot occur.

Subcase 1.2. There is a subset A C V(G) with 2 < |A] < |[V(G)| — 2 such that
dg(A) < 2k — 2.

We choose a subset S of V(G) such that 1 < |S| < 3[V(G)], d(S) is as small as possible,
and, subject to these conditions, |S| is as small as possible. Then dg(S) < dg(A) < 2k—3.
By Corollary 14, dg(S) = |S| = k and G[S] is (k — 1)-regular. As 2k —3 < 2(k+1)?, S'is
an imprimitive block of G by Theorem 13. Thus G[S] is vertex-transitive by Lemma 12.
We also know that the orbits S = Sy, Sy, ..., Sy, of S under the automorphism group
of G form a partition of V(G) and each G[S;] is (k — 1)-regular.

Set I; = {j € {1,2,...,mu} : SNV (H;) # 0} for each i € [t] and set .4 = {{J;c;, S :
i € [t]}. If any two sets in . are disjoint, then 2|X| > 2|Uyc , VU)| =2 > pe yda(U) =
|2 |de(S).

Suppose |S| = k. Then each G[S;] is isomorphic to K} and hence G[S;] has common
vertices with at most one component of G — X. Hence | 4| = ¢o(G — X) = |X| — 2
and any two sets in .# are disjoint. Then 2|X| > |#|da(S) = (|X]| — 2)k > 2|X], a
contradiction.

Suppose |S| = k+ 1. As §(H;) > 2 for each j € [p], we have that for each S,
IS\X| = |SinY] =2o0r S;\X C V(Hy) for some i’ € [t]. Hence |.#| > p+ 5(t —
p) = 3t +p > 3(t+1) = 3(|X] — 1) and any two sets in .# are disjoint. Then
2|X| > |4 \|de(S) = 5(]X| — 1)(k + 1) > 2|X], a contradiction.

Thus |S| > k + 2. Noting that (k — 1)[S] is even and k + 2 < |S| < 2k — 3, we have
S| =k+2if 5 <k <6. For each i € [p], if V(H;) N S; # 0, then |[V(H;) N S;| > 2 as
§(H;) = 2.

Claim 2. For each S;, there is an element a; € [p] such that V(H,,) N S; # 0.
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Suppose S; € X UY. By Lemma 16, [S; N Y| < 3[S;|. If k > 6, then |E(X)| >
[E(S; N X)| = 3(k — 1)(|Si N X| = [S; Y] > sk = DISi| > %(k— Dk +2) >k,
+ 2 and [S; NY] < [3]Si]] = 2. Hence

a contradiction. Thus & = 5. Then |S| = k
[E(X)| > [E(S:nX)| 2 5k = 1)(|Si] —4) =
Claim 2 holds.

Claim 3. X\S; # 0 for each S;.

Suppose X C §;. Choose a component H; of G — X such that H; # H,,. Then
\V(H;) N S;| = |Ne(V(H;) N S)H\Si| < |V(H;)\Si|. Hence V(H;)\S; # 0. Then there is
some Sy C V(H;)\S;. Now we know de(V (H;)\S;) = da(S) = |S;|. On the other hand,
we have d(;(V(Hj)\SZ») < |S\V(H,,)| < |Si|, a contradiction. So Claim 3 holds.

Claim 4. For each i € [p|, we have dg(H;) > 2k — 2 if there is some S; such that

Suppose S; N V(H;) # 0 and S;\V(H;) # 0. By Claim 3, X\S; # (. Suppose
\V(H;)US;| =1. Then V(H;) US; = X\S;, which implies |V (H;) U X| = 1. Hence t = 2
and p = 1, implying ¢t = |X| —2 > k — 2 > 2, a contradiction. Thus |V (H;) U S;| >
Then |S;| = da(S) < de(V(H;)US;) < |[V(H;),V(H;) US;||+|S;\V(H;)|, which 1mphes
[V (H;),V(H;) USj]| = [S;NV(H;)|. Hence dg(H;) = dgis,)(S;NV (Hy))+|[V (H;), V(H;)N
Sill = das, (S;NV (Hy))+[S;NV (Hy)|. IE|S\V (Hy)| > 2, then dgis,)(S;NV (Hy)) > 2k—4
by Corollary 15, which implies de(H;) > 2k—4+|S;,NV (H;)| > 2k—2. If |S;\V (H,)| =1,
then dg(H;) > k—1+15; N V(H;)| > 2k. Claim 4 holds.

Claim 5. S; C V(H,,) UX for each S;.

Suppose, to the contrary, that G — X has a component H, with V(H,)N(S;\V (H,,)) #
(). Let 0 be an integer such that § = 1if |V(H,) = 1 and § = 0 otherwise. As X\S; # () by
Claim 2, there is some S; with S;N(X\S;) # 0. Set J = {a;, b}U{a;}. For each ' € [p], we
have dg(Hy) = dg(S) = k42 and furthermore dg(Hy) > 2k—2 by Claim 4 if ¢/ € [p|nJ. If
|J| = 2, then, noting that dg;s,)(V (Ha,)NS;) = 2k—4 by Corollary 15 and A(G[S;]) = k—1
by Theorem 8, we have dg(Ha;) = dais, (V(Ha, )NSi)+days;) (V (Ha, )NS;) 2 2k—4+k—1 =
3k — 5.

Assume 5 < k < 6. We know that |S| = k + 2 and G[S;
to K, for each i € {a;,b} N [p]. Hence S; C V(H,,) UV (H, If & = 1, then
IE(G[S;in X)) =1((k—=1)|SiNnX|— (k—1) — (2k — 4)) T (k? — 5k: + 6) > 3. If 0 — 0,
then k = 6 as G[S;] is vertex-transitive, which implies |E(S; N X)| = 2. Now we have

> da(Hy) +2|E(X))

>(Z3/c —5)(3 = J]) +2(2k — 2)(|J| — 2) 4 0k + (1 — 6)(2k — 2) + 2| E(S; N X))
k(|| +2)+ |J|+ k=9 —0(k —2) + 2|B(S; N X)| > k(]| + 2),

2
k —1)(k —2) > k, a contradiction. So

N ( H;)] is isomorphic
) U

which contradicts the inequality (1).
Assume k> 7. If 0 =1, thent = |X|-22>2k—22>25. If 0 =0, thent = | X| -2 >
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[%] — 2 > 3 by Theorem 9. Now we have
Z da(Hy) + 2| E(X)]
i €|t]
>3k —=5)3—|J|) +22k =2)(|J| —=2)+0(p— |J|+ 1)(k+2)+
(1=0)2k =2+ (p = [JD)(k +2)) + (¢t = p)k +2(t — p)
=k(t+2)+2t+0k+2)+(1—-0)2k—2)—|J| —k—T7> k(t+2),

which contradicts the inequality (1). So Claim 5 holds.

By Claims 2 and 5, it follows that |.#| = p = t and any two sets in .# are disjoint.
Then 2|X| > | |dc(S) = (|X]| — 2)(k +2) > 2|X]|, a contradiction.

Case 2. ¢(G) > 4.

For each j € [p], we know from (1) that dg(H;) < 3k. Let F; be a component of
G|V (H,)] which contains a vertex in V(G)\(V(H;) UX). Then V(Fj) is a 5-restricted
edge-cut of G. Hence A\5(G) < dg(F;) < dg(H;) < 3k. As it follows from Corollary 15
that \y(G) > 2k — 2, we have 2k — 2 < \(G) < A5(G) < 3k.

Claim 6. If \s(G) > 4k —8 and k < 6, then p =1, |V(Hy)| > 7, M(G) < 3k and
furthermore, \s(G) < 3k if A\s(G) > 4k — 8.

Suppose As5(G) > 4k — 8 and k£ < 6. Then p = 1 by Lemma 23. We claim that
G|V (H,y)] is connected. Otherwise, dg(Hy) > MG) + dg(F1) = k + X5(G) > 3k, a
contradiction. Suppose |V(H;)| = 5. As g(G) > 4 and H; is factor-critical, H; is a
5-cycle of G. It follows that k =5, E(X) = () and |X| > 8. Then ¢o(G) > 7 by Lemma
17, a contradiction. Thus |V (H;)| > 7. Then V(H,;) is a T-restricted edge-cut of G and
M(G) < dg(V(Hy)) < 3k. If A5(G) > 4k — 8, then | X| > 7 and |V (H;)| > 9 by Lemma
23, which implies A\g(G) < dg(Hi) < 3k. So Claim 6 holds.

By Claim 6, we can discuss Case 2 in the following two subcases.

Subcase 2.1. k =5, \5(G) = 12 and \7(G) > 13.

We have \y(G) = 12. As \;(G) exists, |V (G)| = 14. Then, by Lemma 20(a), dg(A) >
A7(G) for each subset A C V(G) with |A| = 7, which implies that G has no subgraphs
isomorphic to K3 4. By the definition of the vertex-transitivity of G, we can obtain that G
has no subgraphs isomorphic to Ky 5. By Claim 6, p =1 and |V(H;)| > 7. Hence | X| > 6
and |V(G)| = 16. By Lemma 20(a), dg(V (H1) UA) > A(G) for each subset A C X with
|A] < 1, which implies dg(H;) > 13 and |Ng(u) NV (H;)| < 3 for each u € X. Noting
d(Hy) = 2, we have |V (u) N V(H;)| < 3 for each u € V(G).

Claim 7. There is no subset A C V(G) with |A] < 3 such that ANV (Hy) # 0,
IV(A) NV (Hy)| = 3|A] and da((V (Hy) U A)\(V(H1) N A)) < 12.

Suppose, to the contrary, that such subset A of V(G) exists. Set B = (V(H;) U
AN\(V(Hy) N A). Then |B| > 4 and |B| > 7. By Lemma 20(a), we have dg(B) > \(G)
and furthermore, dg(B) > M\(G) if |B] > 7. As dg(B) < 12, we know |B| < 6 and
de(B) = 12. It implies that E(V(H;) N A) = 0 and G[B] is isomorphic to kgs or Kj 3.
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Hence G[V(H;) U A] is bipartite. Then H; is bipartite, contradicting the fact that H; is
factor-critical. So Claim 7 holds.

As A\5(G) = 12 < M(G) and k = 5, each As-atom of G induces a subgraph which
is isomorphic to Ks3. Let T, Ty, ..., T, be all the subsets of V(G), which induce
subgraphs isomorphic to Ks33. Let R; be the set of vertices in X with ¢ neighbors in
V(H;) for 1 <i < 3 and let @ be the set of vertices in V' (H;) with 3 neighbors in X.

Subcase 2.1.1. There are two distinct T; and T; with T; N'T; # 0.

Noting that G has no subgraphs isomorphic to K34 or Ky 5, we have |T; N T;| = 2 or
4. If |T; NT;| = 4, then dg(T; NT;) < 12 < A7(G), which contradicts Lemma 20(a). Thus
|T; NT;| = 2. Assume T; N T; = {vy, v2}.

Claim 8. For each uw € X with dgx)(u) = 0 and Ng(u) NV (Hy) # 0, we have
Ne(u)NV(Hy) CQ ifue RiURy, and [Na(u)NV(H)NQ| > 1 if u € Rs.

Since G is vertex-transitive, there is an automorphism ¢, of G such that ps(vi) = u.
If w € Ry U Ry, then vo(Ng(v2)) € X, which implies Ng(u) NV (H;) C Q. If u € R3, then
|2(Ng(v2)) N X| > 3, which implies [Ng(u) NV(H;) N Q| > 1. So Claim 8 holds.

Assume E(X) # 0. Then |E(X)| = 1 and 3.0 i|R;| = de(H,) = 13, which implies
S IR = 5. By Claim 8, Q # 0. We have dg(V(H,)\{u}) < 12 for cach u € Q,
contradicting Claim 7.

Thus F(X) = 0. As dg(V(Hy) U A) > \(G) for each subset A C X with |A| =4 by
Lemma 20(a), we have |R3| < 3. By Claim 8, |V(Q) NV (Hy)| > |Rs| + 2|Rs| + |R1| =
15 — 2|R3| > 9, which implies |@Q| > 3. Choose a subset @)’ C @ with |Q’| = 3. Then
da(V(H)\Q') < 12, contradicting Claim 7. Hence Subcase 2.1.1 cannot occur.

Subcase 2.1.2. Any two distinct T; and T} are disjoint.

By the vertex-transitivity of (G, each vertex in GG is contained in a A\;-atom of G. Hence
Ty, Ty, ..., T,,, form a partition of V(G).

Assume E(X) # 0. As ¢o(G — X) = |X| =2 and |E(X)| = 1, it follows that there is
some T; such that T;NX # 0, T;NV (H;) # 0 and E(T;)NE(X) = (. Then there is a vertex
u; € T; N (R3U Q). By Claim 7, it follows that u; € X. We have dg(V(H;) U{u}) =
12 < A\7(G), contradicting Lemma 20(a).

Thus E(X) = 0. Set B, ={T; : |T; N X| =3,j € [mao]} and By = {T} : |T; N X| <
3,7 € Ima]}. Let D = (Upep, ANV(H1)) U (Upem, AN X). Noting (G — X) =
|X| —2 and p = 1, we have |D| = 3. By Claim 7, we have D C X. If |X| > 7, then
dg(Hy + D) = 12 < A;(G), which contradicts Lemma 20(a). Thus |X| = 6. As G has no
subgraphs isomorphic to Ky 5, we know that |Rs| = |R3| = 3 and G[Y U Ry] is isomorphic
to Ks3. Choose a vertex us € Rs and a vertex uy € Y. Let ¢3 be an automorphism
of G such that ¢3(uy) = uz. Noting p3(Y U R2) N (Y U Ry) = 0, we have p3(Y) = Ry
and ¢3(R2) C V(Hy). It implies D C V(H;) by the choice of D, a contradiction. Hence
Subcase 2.1 cannot occur.

Subcase 2.2. k # 5, A\5(G) # 12 or A\5(G) = M(G) = 12.
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Let S’ be a As-atom of GG, where

(

4, if k <6 and \5(G) < 4k — §;

7, if k=5 and A\;(G) = \7(G) = 12;

6, if k =5 and \5(G) = As(G) = 13;

7, if k = 5, \5(G) = 13 and A\s(G) = M (G) = 14;

8, if k =5, \5(G) = 13, A6(G) > 14 and A\s(G) = 15;
"7\ 5, if k=5 and \s(Q) = 14;

6, if £ =5 and A\5(G) = Xs(G) = 15;

5, if k = 6 and As(G) = 4k — 8;

8, if k =6 and \5(G) =

5, if k> 7.

\

Claim 9. S’ is an imprimitive block of G such that |S'| > iX(G) if k < 6 and
S| > 3X:(G) otherwise.

If k=5 and A\s(G) = A\(G) = 12, then, by Lemma 24, Claim 9 holds. So we assume
k > 5 or \s(G) # 12. By Lemma 6, 1|S']> > 2|E(S")| = k|S| — A\(G). If5 < k <6
and \5(G) < 4k — 8, then 3|5'|? = k|S"| — A(G) > k|S’| — 4k + 8, which implies || >
2k—4 > max{2(s—1), 3As(G)}. If 5 < k < 6 and A5(G) > 4k —38, then |S’| > 2(s—1) and
2|5'] > A\y(G) by Lemmas 21 and 25-29. If k > 7, then £|S'|? > k|S'| — Ai(G) > k|S'| -3k
and hence |S'| > k +2 > max{2(s — 1), $A\,(G)}. Suppose S’ is not an imprimitive block
of G. Then there is an automorphism ¢ of G such that p(S’) # 5" and ¢(S) NS’ # .
By Lemma 20(c), |S'| = [S"Ne(S)| 4+ [S"\¢(5")| < 2(s — 1), a contradiction. So Claim 9
holds.

By Claim 9 and Lemma 12, G[S5] is vertex-transitive and hence it is (k — 1)-regular
if £ < 6 and is (k — 1)-regular or (k — 2)-regular otherwise. From Claim 9, we also know
that the orbits S’ = S}, S5, ..., S;,, of S under the automorphism group of G form a
partition of V(G).

Claim 10. G[5'] is (k — 1)-regular.

Suppose that G[S] is (k — 2)-regular. Then k > 7, s = 5 and 2|5'| = A\(G) < 3k,
which implies |S’| < 2k. By Lemma 6, 1[S'|> > |E(S")| = 3(k — 2)|5’|, which implies
S| = 2(k—2). Now 2(k—2) < || < 2k, which implies k < 8 and |S’| = 2(k—2). Hence
G[9’] is isomorphic to Kj_oj_o. For each i € [p], noting 3k > dg(H;) = X\s(G) = 4(k —2)
and that dg(H;) has the same parity with k, we have dg(H;) = 3k. Hence p = 1,
E(X) =0, |V(H,)| >5and |X| > k. As ¢o(G — X) = |X| — 2, there is some S! with
SINX # O and S!NV (Hy) # (. Then there is a vertex u € S} with |V(u)NV (H;y)| > k—2.
Then dg(V(H,) U {u}) < dg(H,) — (k —4) = 2k +4 < 4(k — 2) = A\,(G) if u € X and
de(V(Hi)\{u}) < As(G) otherwise, contradicting Lemma 20(a). So Claim 10 holds.

As 6(H;) > 2 for each ¢ € [p], it follows from Claim 10 that 6(G[V(H;) N S}]) > 1 if
V(H;)N S, # 0.
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Claim 11. For each S., S\(XUY) #0 or |SINX|=1[5/NY].

Suppose [SINX]| > |S/NY] for some S, C X UY. If G[S]] is bipartite, then |S/NY]| <
1S/ N X| — 2. If G[9]] is non-bipartite, then |S! NY| < a(G[9]]) < 1|5/ — &L by Lemma
16, which implies |[S/ NY| < |[S/NX| — 51 < [N X[ — 2. Thus |[E(S; N X])| =
$(k=1)(SINnX|—|SiNY]) > k— 1. Noting de(H1) = As(G) > 2k — 2, we have

do(Hy) +2|E(X)| = 2k — 2+ 2(k — 1) > 3k, a contradiction. So Claim 11 holds.
Subcase 2.2.1. |5'| < 2k — 1.
Claim 12. If S.NV(H;) # 0 for some j € [p], then S; C V(H;) U X.

Suppose S!NV (H;) # 0 for some j € [p] and S;NV (H;) # () for some j' € [t]\{j}. As
IG[SINV(H,)]) > 1, there is an edge z1y; € E(S;NV(H;)). Then |S/N(V(H;)UX)| >
|Naisy(z1) U Najsi(yi)| = 2k — 2. Tt implies [S] NV (Hy)| = 1 and [S]| = 2k — 1. Then
\V(H;)| = 1 and |X| > |Ng(V(H;))| = k. Hence |V(H;)US!| > |[Ne(V(H;))\SI +
(co(G—X)—2)>21+k—4=> 2. By Corollary 15, we have

)= ((k=DISIN X =2[E(SiN X)[ = (k= 1)) +[Si N X[ + 1
H) +2|E(SiNX)| — (k—2)|SiNnX]|+k
k—(k—2)(k—1)+k=—k+Tk -2,

(

o(H;) = daps(S; NV (H;)) + [S\V (H;)]
(
(

which implies £ = 5. It is easy to verify that there is no triangle-free non-bipartite 4-
regular graph of order 9, which implies |S’| # 9 = 2k — 1, a contradiction. So Claim 12
holds.

Set I} = {j € [ma] : S; NV (H;) # 0} for each i € [t] and A" = {U;c,, S : i € [t]}.
Then any two sets in .#" are disjoint by Claim 12. By Lemma 20(a), dg(U) > A\s(G) for
each U € .#'. Then, by Claim 11, we have

20+ 2+ (k= 1)(|.2"] — p))
=2|X| 22| | V)| = D de(U) > |4'\(G) > |.4'|(2k - 2),

Ued’ Ued’

which implies p < ﬁ < 1, a contradiction. Hence Subcase 2.2.1 cannot occur.

Subcase 2.2.2 |5'| > 2k.

We have \;(G) = || = 2k. If s = 4, then A\;(G) > A\(G) > 2k. If s > 5, then
As(G) = 2k by the choice of s. Then 2kp < pAs(G) < Y0, da(H;) +2|E(X)| < k(2+p),
which implies p < 2.

Let

N ={8:SINX #0and S\(XUY) #0,i € [ms]}.

By Claim 11, ", (AN X| ~ [ANY]) = S7(ISi0 X~ |Si0Y]) = [X] — V] = p+ 2.
Noting |[AN X| > |[ANY] for each A € A, we have 1 < |4 < p+ 2. Choose a set
S € . Without loss of generality, we assume S5 NV (H;) # (.
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Suppose p = 2. Then E(X) = () and 2k = A\5(G) = dg(H1) = dg(Hz). Hence \y(G) =
As5(G) = 2k = |9’|. For each u € V(G) and each i € [p], we have dg(V (H;)U{u}) > M\(G)
and dg(V(H;)\{u}) = M(G) by Lemma 20(a), which implies |V(u) N V(H;)| < k— 3
Hence |S; \V(H,)| > 2 and 0(G[S] NV (H,)]) > 2, which implies [S}, N V(H,)| > 4.
Choose an edge way, € E(S] N V(Hy)). Then [} \(V(H) U X)| < ‘5}1\(]\]6'[3;1}(952) U
NG[S§.1](?JQ))| = 2. Tt follows that S5 NV (H,) = (). Noting that dG[S;I](SélﬂV(Hl)) > 2k—4
by Corollary 15, we have |S; N X| > [S} NY]|+ 2. Now

de(V(H,) U S},) < dg(Hy) — dG[s;.l](V(HO N S;,) + 1S, \V (H))|
=2k — (k —1)(|S}, N X| =[S}, NY]) + S}, \V(H))|
<2k —2(k — 1)+ 2k — 4 < 2k = \(G),

contradicting Lemma 20(a).

Thus p = 1. Suppose | 4| = 1. Then |S; N X| = |S; NY|+ 3 and there is some
St C V(Hy) U S . We know by Claim 11 that G[S'] is bipartite. Hence there is some
S% C V(H1)\S} . By Lemma 20(a), we have

191 = As(G) < da(V(H1) U S]) < da(Hi) — des; 1(55,\V (H1)) + [ S5,\V (H1))]
— dg(Hy) + 2|E(S), N X)| = 3(k — 1) + |, \V (H))|
<3k —3(k — 1) + |5, \V(Hy)].
Si) <

Similarly, we can obtain |S’| < dg(H; —
which implies |S'| < 6 < 2k, a contradlctlon

Thus [.47| > 2. For each S! € .4, noting |S! NV (Hy)| > 2, if |S\V(H1)| > 2, then,
by Corollary 15, we have dg(s(S; NV (H)) > 2k — 4, which implies that [S] N X[ =1
if [SINX]|=1[S/NnY]|+1. If |4 =3, then |SN X| =1 for each S, € 4" and hence
da(V(H1) U (Uge s S7)) < da(Hy) — 3(k —2) < 6 < A\(G), which contradicts Lemma
20(a). Thus |¢/V|Z: 2. Assume A" = {5}, 97} and |S}, N X| = 1. We know that there is
some S7 C V(G)\(V(H;)U S} USY). By Lemma 20(a )

3+1Sj, NV (Hy)|. Then 2|5"[ <6+ |5j,],

S| = A\s(G) < da(V(H1) U S, USY)
< de(Hy) - days; | (S5, NV (Hy)) + [S,\V(H))| — (k —2)
— dg(Hy) +2|E(S), N X)| = 2(k — 1) + |S,\V (Hy)| — (k= 2)
< 3k — 3k + 4+ [S),\V(Hy)|.

Similarly, we can obtain [S'| < dg((V(H1) U S} )\S},) <4+ [S), NV (H;)|. Then 2[5'| <
8 + |5}, |, which implies |S’| < 8 < 2k, a contradiction. O

References

[1] B. Andrasfai, P. Erdés, and V. T. Sés, On the connection between chromatic number,
maximal clique and minimal degree of a graph, Discrete Math., 8:205-218, 1974.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.1 29



2]
3]

[4]

N. Biggs, Algebraic Graph Theory, pages 36-38. Cambridge University Press, 1993.

O. Chan, C.C. Chen, and Q. Yu, On 2-extendable obelian Cayley graphs, Discrete
Math., 146:19-32, 1995.

C.C. Chen, J. Liu, and Q. Yu, On the classification of 2-extendable Cayley graphs
on dihedral groups, Australas. J. Combin., 6:209-219, 1992.

R. Diestel, Graph Theory, page 41. Springer, 2006.

J. Fabrega, and M.A. Fiol, Extraconnectivity of graphs with large girth, Discrete
Math., 127:163-170, 1994.

O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory, 16:41-51,
1996.

O. Favaron, Extendability and factor-criticality, Discrete Math., 213:115-122, 2000.

T. Gallai, Neuer Beweis eines Tutte-schen Satzes, Magyar Tud. Akad. Matem. Kut.
Int. Kozl., 8:135-139, 1963.

J. Heuvel, and B. Jacskon, On the edge connectivity, hamiltonicity, and toughness
of vertex transitive graphs, J. Combin. Theory Ser. B, 77:138-149, 1999.

A. Holtkamp, D. Meierling, and L.P. Montejano, k-restricted edge-connectivity in
triangle-free graphs, Discrete Appl. Math., 160:1345-1355, 2012.

L. Lovasz, On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar.,
23:179-195 1972.

L. Lovasz, and M.D. Plummer, Matching Theory, page 207. North-Holland, 1986.

W. Mader, Minimale n-fach kantenzusammenhéngenden Graphen, Math. Ann.,
191:21-28, 1971.

W. Mantel, Problem 28, Wiskundige Opgaven, 10:60-61, 1907.

S. Miklavi¢, and P. Sparl, On extendability of Cayley graphs, Filomat, 23:93-101,
2009.

M.D. Plummer, On n-extendable graphs, Discrete Math., 31:201-210, 1980.

R. Tindell, Connectivity of Cayley graphs, In D.Z. Du, D.F. Hsu (Eds.). Combina-
torial Network Theory, pages 41-64. Kluwer, 1996.

M.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory, 8:23-29, 1970.

M. Yang, Z. Zhang, C. Qin, and X. Guo, On super 2-restricted and 3-restricted
edge-connected vertex transitive graphs, Discrete Math., 311:2683-2689, 2011.

Q. Yu, Characterizations of various matching extensions in graphs, Australas. J.
Combin., 7:55-64, 1993.

H. Zhang, and W. Sun, 3-Factor-criticality of vertex-transitive graphs, J. Graph
Theory, 81:262-271, 2016.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.1 30



	Introduction
	Preliminaries
	s-atoms of vertex-transitive graphs
	Proof of Theorem 2

