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Abstract

We prove a variant of the abstract probabilistic version of Szemerédi’s regularity
lemma, due to Tao, which applies to a number of structures (including graphs, hy-
pergraphs, hypercubes, graphons, and many more) and works for random variables
in Lp for any p > 1. Our approach is based on martingale difference sequences.
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1 Introduction

1.1 The aim of the present paper is to prove a variant of the abstract probabilistic
version of Szemerédi’s regularity lemma, due to Tao [22, 23, 24]. This variant applies
to a number of combinatorial structures—including graphs, hypergraphs, hypercubes,
graphons, and many more—and works for random variables in Lp for any p > 1. A
proper exposition of our main result requires some preparatory work and hence, at this
point, we will not discuss it in detail. Instead, we will focus on the following model case
which is representative of the contents of this paper.

1.2 A very basic fact of probability theory is that the set of simple functions is dense
in L1. Actually, this fact is so basic that it is hardly mentioned when applied. But how
do we approximate a given random variable by a simple function? More precisely, given
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an integrable random variable f : [0, 1] → R and a real 0 < ε 6 1 (that we regard as an
error) we are asking for an effective method to locate a simple function s : [0, 1]→ R such
that ‖f − s‖L1 6 ε.

It turns out that there is a natural greedy algorithm for this problem which we are
about to describe. We start by setting F0 =

{
∅, [0, 1]

}
and f0 = E(f | F0). That is, F0

is the trivial σ-algebra on [0, 1] and f0 is the conditional expectation of f with respect to
F0 (see, e.g., [10]). Notice that f0 is constant and equal to the expected value E(f) of f .
Thus, if ‖f − f0‖L1 6 ε, then we are done. Otherwise, by considering the support of the
positive part or the negative part of f −f0, we may select a measurable subset A0 of [0, 1]
such that

ε

2
<
∣∣ ∫

A0

(f − f0) dt
∣∣. (1)

Next we set F1 = σ(F0 ∪{A0}) and f1 = E(f | F1). (That is, F1 is the smallest σ-algebra
on [0, 1] that contains all elements of F0 and A0, and f1 is the conditional expectation of
f with respect to F1.) Observe that, by (1), we have

ε

2
<
∣∣ ∫

A0

(f1 − f0) dt
∣∣ 6 ‖f1 − f0‖L1 . (2)

Also notice that f1 is a simple function since the σ-algebra F1 is finite, and so if ‖f −
f1‖L1 6 ε, then we can stop this process. On the other hand, if ‖f − f1‖L1 > ε, then we
select a measurable subset A1 of [0, 1] such that |

∫
A1

(f − f1) dt| > ε/2 and we continue
similarly.

The next thing that one is led to analyze is whether this algorithm will eventually
terminate and, if yes, at what speed. To this end, notice that if the algorithm runs
forever, then it produces an increasing sequence (Fi) of finite σ-algebras of [0, 1] and a
sequence (fi) of random variables with fi = E(f | Fi) for every i ∈ N and such that
‖fi− fi−1‖L1 > ε/2 if i > 1. In other words, (fi) is a martingale adapted to the filtration
(Fi) whose successive differences are bounded away from zero in the L1 norm. This last
piece of information is the key observation of this analysis since successive differences of
martingales, known as martingale difference sequences, are highly structured sequences
of random variables. In particular, if the given random variable f belongs to Lp for some
1 < p 6 2, then for every integer n > 1 we have( n∑

i=1

‖fi − fi−1‖2
Lp

)1/2

6
( 1

p− 1

)1/2

· ‖f‖Lp . (3)

This functional analytic estimate is sharp, and was recently proved by Ricard and Xu [18]
who deduced it from a uniform convexity inequality for Lp spaces. We briefly comment
on these results in Appendix A.

Of course, with inequality (3) at our disposal, it is very easy to analyze the greedy
algorithm described above. Precisely, by (3) and the monotonicity of the Lp norms, we
see that if f ∈ Lp for some 1 < p 6 2, then this algorithm will terminate after at most
b4 ‖f‖2

Lp
ε−2(p− 1)−1c+ 1 iterations.
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1.3 Our main result (Theorem 9 in Section 3) follows the method outlined above, but
with two important extra features.

First, our approximation scheme is more demanding in the sense that the simple
function we wish to locate is required to be a linear combination of characteristic functions
of sets belonging to a given class. It is useful to view the sets in this class as being
“structured”, though for the purpose of performing the greedy algorithm only some (not
particularly restrictive) stability properties are needed. These properties are presented in
Definition 1 in Section 2, together with several related examples.

Second, the error term of the approximation is controlled not only by the Lp norm but
also by a certain “uniformity norm” which depends on the class of “structured” sets with
which we are dealing (see Definition 2 in Section 2). This particular feature is already
present in Tao’s work and can be traced to [11].

Finally, we note that in Section 4 we discuss some applications, including a regularity
lemma for hypercubes and an extension of the strong regularity lemma to Lp graphons
for any p > 1. More applications will appear in [6].

1.4 By N = {0, 1, 2, . . . } we denote the set of natural numbers. As usual, for every
positive integer n we set [n] := {1, . . . , n}. For every function f : N→ N and every ` ∈ N
by f (`) : N→ N we shall denote the `-th iteration of f defined recursively by f (0)(n) = n
and f (`+1)(n) = f

(
f (`)(n)

)
for every n ∈ N. All other pieces of notation we use are

standard.

2 Semirings and their uniformity norms

We begin by introducing the following slight strengthening of the classical concept of a
semiring of sets (see also [2]).

Definition 1. Let Ω be a nonempty set and k a positive integer. Also let S be a collection
of subsets of Ω. We say that S is a k-semiring on Ω if the following properties are satisfied.

(P1) We have that ∅,Ω ∈ S.

(P2) For every S, T ∈ S we have that S ∩ T ∈ S.

(P3) For every S, T ∈ S there exist ` ∈ [k] and R1, . . . , R` ∈ S which are pairwise disjoint
and such that S \ T = R1 ∪ · · · ∪R`.

As we have already indicated in the introduction, we view every element of a k-semiring
S as a “structured” set and a linear combination of few characteristic functions of elements
of S as a “simple” function. We will use the following norm in order to quantify how far
from being “simple” a given function is.

Definition 2. Let (Ω,F ,P) be a probability space, k a positive integer and S a k-semiring
on Ω with S ⊆ F . For every f ∈ L1(Ω,F ,P) we set

‖f‖S = sup
{∣∣ ∫

S

f dP
∣∣ : S ∈ S

}
. (4)

the electronic journal of combinatorics 23(3) (2016), #P3.11 3



The quantity ‖f‖S will be called the S-uniformity norm of f .

The S-uniformity norm is, in general, a seminorm. Note, however, that if the k-
semiring S is sufficiently rich, then the function ‖ · ‖S is indeed a norm. More precisely,
the function ‖ · ‖S is a norm if and only if the family {1S : S ∈ S} separates points in
L1(Ω,F ,P), that is, for every f, g ∈ L1(Ω,F ,P) with f 6= g there exists S ∈ S with∫
S
f dP 6=

∫
S
g dP.

The simplest example of a k-semiring on a nonempty set Ω, is an algebra of subsets
of Ω. Indeed, observe that a family of subsets of Ω is a 1-semiring if and only if it is an
algebra. Another basic example is the collection of all intervals of a linearly ordered set,
a family which is easily seen to be a 2-semiring. More interesting (and useful) k-semirings
can be constructed with the following lemma.

Lemma 3. Let Ω be a nonempty set. Also let m, k1, . . . , km be positive integers and set
k =

∑m
i=1 ki. If Si is a ki-semiring on Ω for every i ∈ [m], then the family

S =
{ m⋂
i=1

Si : Si ∈ Si for every i ∈ [m]
}

(5)

is a k-semiring on Ω.

Proof. Clearly we may assume that m > 2. Notice, first, that the family S satisfies
properties (P1) and (P2) in Definition 1. To see that property (P3) is also satisfied, fix
S, T ∈ S and write S =

⋂m
i=1 Si and T =

⋂m
i=1 Ti where Si, Ti ∈ Si for every i ∈ [m]. We

set P1 = Ω \ T1 and Pj = T1 ∩ · · · ∩ Tj−1 ∩ (Ω \ Tj) if j ∈ {2, . . . ,m}. Observe that the
sets P1, . . . , Pm are pairwise disjoint. Moreover,

Ω \
( m⋂
i=1

Ti

)
=

m⋃
j=1

Pj (6)

and so

S \ T =
( m⋂
i=1

Si

)
\
( m⋂
i=1

Ti

)
=

m⋃
j=1

( m⋂
i=1

Si ∩ Pj
)
. (7)

Let j ∈ [m] be arbitrary. Since Sj is a kj-semiring, there exist `j ∈ [kj] and pairwise
disjoint sets Rj

1, . . . , R
j
`j
∈ Sj such that Sj \ Tj = Rj

1 ∪ · · · ∪R
j
`j

. Thus, setting

(a) B1 = Ω and Bj =
⋂

16i<j(Si ∩ Ti) if j ∈ {2, . . . ,m},

(b) Cj =
⋂
j<i6m Si if j ∈ {1, . . . ,m− 1} and Cm = Ω,

and invoking the definition of the sets P1, . . . , Pm we obtain that

S \ T =
m⋃
j=1

( `j⋃
n=1

(
Bj ∩Rj

n ∩ Cj
))
. (8)
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Now set I =
⋃m
j=1

(
{j} × [`j]

)
and observe that |I| 6 k. For every (j, n) ∈ I let U j

n =

Bj ∩ Rj
n ∩ Cj and notice that U j

n ∈ S, U j
n ⊆ Rj

n and U j
n ⊆ Pj. It follows that the family

{U j
n : (j, n) ∈ I} is contained in S and consists of pairwise disjoint sets. Moreover, by (8),

we have
S \ T =

⋃
(j,n)∈I

U j
n. (9)

Hence, the family S satisfies property (P3) in Definition 1, as desired.

By Lemma 3, we have the following corollary.

Corollary 4. The following hold.

(a) Let Ω be a nonempty set. Also let k be a positive integer and for every i ∈ [k] let
Ai be an algebra on Ω. Then the family

{A1 ∩ · · · ∩ Ak : Ai ∈ Ai for every i ∈ [k]} (10)

is a k-semiring on Ω.

(b) Let d, k1, . . . , kd be a positive integers and set k =
∑d

i=1 ki. Also let Ω1, . . . ,Ωd be
nonempty sets and for every i ∈ [d] let Si be a ki-semiring on Ωi. Then the family

{S1 × · · · × Sd : Si ∈ Si for every i ∈ [d]} (11)

is k-semiring on Ω1 × · · · × Ωd.

Next we isolate some basic properties of the S-uniformity norm.

Lemma 5. Let (Ω,F ,P) be a probability space, k a positive integer and S a k-semiring
on Ω with S ⊆ F . Also let f ∈ L1(Ω,F ,P). Then the following hold.

(a) We have ‖f‖S 6 ‖f‖L1.

(b) If B is a σ-algebra on Ω with B ⊆ S, then ‖E(f | B)‖S 6 ‖f‖S .

(c) If S is a σ-algebra, then ‖f‖S 6 ‖E(f | S)‖L1 6 2‖f‖S .

Proof. Part (a) is straightforward. For part (b), fix a σ-algebra B on Ω with B ⊆ S and
set P = {ω ∈ Ω : E(f | B)(ω) > 0} and N = Ω \ P . Notice that P,N ∈ B ⊆ S. Hence,
for every S ∈ S we have∣∣ ∫

S

E(f | B) dP
∣∣ 6 max

{∫
P∩S

E(f | B) dP,−
∫
N∩S

E(f | B) dP
}

6 max
{∫

P

E(f | B) dP,−
∫
N

E(f | B) dP
}

= max
{∫

P

f dP,−
∫
N

f dP
}
6 ‖f‖S (12)
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which yields that ‖E(f | B)‖S 6 ‖f‖S .
Finally, assume that S is a σ-algebra and notice that

∫
S
f dP =

∫
S
E(f | S) dP for every

S ∈ S. In particular, we have ‖f‖S 6 ‖E(f | S)‖L1 . Also let, as above, P = {ω ∈ Ω :
E(f | S)(ω) > 0} and N = Ω \ P . Since P,N ∈ S we obtain that

‖E(f | S)‖L1 6 2 ·max
{∫

P

E(f | S) dP,−
∫
N

E(f | S) dP
}
6 2‖f‖S (13)

and the proof is completed.

We close this section by presenting some examples of k-semirings which are relevant
from a combinatorial perspective. In the first example the underlying space is the Carte-
sian product of a finite sequence of nonempty finite sets. The corresponding semirings
are related to the development of Szemerédi’s regularity method for hypergraphs.

Example 6. Let d ∈ N with d > 2 and V1, . . . , Vd nonempty finite sets. We view the
Cartesian product V1×· · ·×Vd as a discrete probability space equipped with the uniform
probability measure. For every nonempty subset F of [d] let πF :

∏
i∈[d] Vi →

∏
i∈F Vi be

the natural projection and set

AF =
{
π−1
F (A) : A ⊆

∏
i∈F

Vi

}
. (14)

The family AF is an algebra of subsets of V1 × · · · × Vd and consists of those sets which
depend only on the coordinates determined by F .

More generally, let F be a family of nonempty subsets of [d]. Set k = |F| and observe
that, by Corollary 4, we may associate with the family F a k-semiring SF on V1×· · ·×Vd
defined by the rule

S ∈ SF ⇔ S =
⋂
F∈F

AF where AF ∈ AF for every F ∈ F . (15)

Notice that if the family F satisfies [d] /∈ F and ∪F = [d], then it gives rise to a non-trivial
semiring whose corresponding uniformity norm is a genuine norm.

It turns out that there is a minimal non-trivial semiring Smin one can obtain in this
way. It corresponds to the family Fmin =

(
[d]
1

)
and is particularly easy to grasp since it

consists of all rectangles of V1 × · · · × Vd. The Smin-uniformity norm is known as the cut
norm and was introduced by Frieze and Kannan [11].

At the other extreme, this construction also yields a maximal non-trivial semiring
Smax on V1 × · · · × Vd. It corresponds to the family Fmax =

(
[d]
d−1

)
and consists of those

subsets of the product which can be written as A1 ∩ · · · ∩ Ad where for every i ∈ [d] the
set Ai does not depend on the i-th coordinate. The Smax-uniformity norm is known as
the Gowers box norm and was introduced by Gowers [12, 13].

In the second example the underlying space is of the form Ω × Ω where Ω is the
sample space of a probability space (Ω,F ,P). The corresponding semirings are related to
the theory of convergence of graphs (see, e.g., [4, 14]).
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Example 7. Let (Ω,F ,P) be a probability space and define

S� =
{
S × T : S, T ∈ F

}
. (16)

That is, S� is the family of all measurable rectangles of Ω × Ω. By Corollary 4, we see
that S� is a 2-semiring on Ω× Ω. The S�-uniformity norm is also referred to as the cut
norm and is usually denoted by ‖ · ‖�. In particular, for every integrable random variable
f : Ω× Ω→ R we have

‖f‖� = sup
{∣∣ ∫

S×T
f dP

∣∣ : S, T ∈ F
}
. (17)

There is another natural semiring in this context which was introduced by Bollobás and
Nikiforov [2] and can be considered as the “symmetric” version of S�. Specifically, let

Σ� =
{
S × T : S, T ∈ F and either S = T or S ∩ T = ∅

}
(18)

and observe that Σ� is a 4-semiring which is contained, of course, in S�. On the other
hand, note that the family S� is not much larger than Σ� since every element of S� can be
written as the disjoint union of at most 4 elements of Σ�. Therefore, for every integrable
random variable f : Ω× Ω→ R we have

‖f‖Σ�
6 ‖f‖� 6 4‖f‖Σ�

. (19)

In the last example the underlying space is the hypercube

An =
{

(a0, . . . , an−1) : a0, . . . , an−1 ∈ A
}

(20)

where n is a positive integer and A is a finite alphabet (i.e., a finite set) with at least
two letters. The building blocks of the corresponding semirings were introduced by She-
lah [20] in his work on the Hales–Jewett numbers, and are essential tools in all known
combinatorial proofs of the density Hales–Jewett theorem (see [7, 17, 24]).

Example 8. Let n be a positive integer and A a finite alphabet with |A| > 2. As in
Example 6, we view the hypercube An as a discrete probability space equipped with the
uniform probability measure.

Now let a, b ∈ A with a 6= b. Also let z, y ∈ An and write z = (z0, . . . , zn−1) and
y = (y0, . . . , yn−1). We say that z and y are (a, b)-equivalent provided that for every
i ∈ {0, . . . , n− 1} and every γ ∈ A \ {a, b} we have

zi = γ if and only if yi = γ. (21)

In other words, z and y are (a, b)-equivalent if they possibly differ only in the coordinates
taking values in {a, b}. Clearly, the notion of (a, b)-equivalence defines an equivalence
relation on An. The sets which are invariant under this equivalence relation are called
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(a, b)-insensitive. That is, a subset X of An is (a, b)-insensitive provided that for every
z ∈ X and every y ∈ An if z and y are (a, b)-equivalent, then y ∈ X. We set

A{a,b} = {X ⊆ An : X is (a, b)-insensitive}. (22)

It follows readily from the above definitions that the family A{a,b} is an algebra of subsets
of An.

The algebras
{
A{a,b} : {a, b} ∈

(
A
2

)}
can then be used to construct various k-semirings

on An. Specifically, let F ⊆
(
A
2

)
and set k = |F|. By Corollary 4, we see that the family

constructed from the algebras {A{a,b} : {a, b} ∈ F} via formula (10) is a k-semiring on

An. The maximal semiring obtained in this way corresponds to the family
(
A
2

)
. We shall

denote it by S(An). In particular, we have that S(An) is a K-semiring on An where
K = |A|(|A| − 1)2−1. Note that K is independent of n. Also observe that if |A| > 3, then
the S(An)-uniformity norm is actually a norm.

3 The main result

First we introduce some terminology and some pieces of notation. We say that a function
F : N→ R is a growth function provided that: (i) F is increasing, and (ii) F (n) > n + 1
for every n ∈ N. Moreover, for every nonempty set Ω and every finite partition P of Ω
by AP we shall denote the σ-algebra on Ω generated by P . Clearly, the σ-algebra AP is
finite and its nonempty atoms are precisely the members of P . Also note if Q and P are
two finite partitions of Ω, then Q is a refinement of P if and only if AQ ⊇ AP .

Now for every pair k, ` of positive integers, every 0 < σ 6 1, every 1 < p 6 2 and
every growth function F : N→ R we define h : N→ N recursively by the rule{

h(0) = 0,

h(i+ 1) = h(i) + dσ2 ` F (h(i)+2)(0)2(p− 1)−1e
(23)

and we set
R = h

(
d` σ−2(p− 1)−1e − 1

)
. (24)

Finally, we define
Reg(k, `, σ, p, F ) = F (R)(0). (25)

Note that if F : N → N is a primitive recursive growth function which belongs to the
class En of Grzegorczyk’s hierarchy for some n ∈ N (see, e.g., [19]), then the numbers
Reg(k, `, σ, p, F ) are controlled by a primitive recursive function belonging to the class
Em where m = max{4, n+ 2}.

We are now ready to state the main result of this paper.

Theorem 9. Let k, ` be positive integers, 0 < σ 6 1, 1 < p 6 2 and F : N → R a
growth function. Also let (Ω,F ,P) be a probability space and (Si) an increasing sequence
of k-semirings on Ω with Si ⊆ F for every i ∈ N. Finally, let C be a family in Lp(Ω,F ,P)
such that ‖f‖Lp 6 1 for every f ∈ C and with |C| = `. Then there exist
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(a) a natural number N with N 6 Reg(k, `, σ, p, F ),

(b) a partition P of Ω with P ⊆ SN and |P| 6 (k + 1)N , and

(c) a finite refinement Q of P with Q ⊆ Si for some i > N

such that for every f ∈ C, writing f = fstr + ferr + funf where

fstr = E(f | AP), ferr = E(f | AQ)− E(f | AP) and funf = f − E(f | AQ), (26)

we have the estimates

‖ferr‖Lp 6 σ and ‖funf‖Si 6
1

F (i)
(27)

for every i ∈ {0, . . . , F (N)}.

The case “p = 2” in Theorem 9 is essentially due to Tao [22, 23, 24]. His approach,
however, is somewhat different since he works with σ-algebras instead of k-semirings.

The increasing sequence (Si) of k-semirings can be thought of as the higher-complexity
analogue of the classical concept of a filtration in the theory of martingales. In fact, this is
more than an analogy since, by applying Theorem 9 to appropriately selected filtrations,
one is able to recover the fact that, for any 1 < p 6 2, every Lp bounded martingale is Lp
convergent. We discuss these issues in Appendix B.

We also note that the idea to obtain “uniformity” estimates with respect to an arbi-
trary growth function has been considered by several authors. This particular feature is
essential when one wishes to iterate this structural decomposition (this is the case, for
instance, in the context of hypergraphs—see, e.g., [22]). On the other hand, the need
to “regularize”, simultaneously, a finite family of random variables appears frequently in
extremal combinatorics and related parts of Ramsey theory (see, e.g., [8]). Nevertheless,
in most applications (including the applications presented in Section 4), one deals with a
single random variable and with a single semiring. Hence, we will isolate this special case
in order to facilitate future references.

To this end, for every positive integer k, every 0 < σ 6 1, every 1 < p 6 2 and every
growth function F : N→ R we set

Reg′(k, σ, p, F ) = (k + 1)Reg(k,1,σ,p,F ′) (28)

where F ′ : N → R is the growth function defined by the rule F ′(n) = F
(
(k + 1)n

)
for

every n ∈ N. We have the following corollary.

Corollary 10. Let k be a positive integer, 0 < σ 6 1, 1 < p 6 2 and F : N→ R a growth
function. Also let (Ω,F ,P) be a probability space and let S be a k-semiring on Ω with
S ⊆ F . Finally, let f ∈ Lp(Ω,F ,P) with ‖f‖Lp 6 1. Then there exist

(a) a positive integer M with M 6 Reg′(k, σ, p, F ),

(b) a partition P of Ω with P ⊆ S and |P| = M , and
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(c) a finite refinement Q of P with Q ⊆ S

such that, writing f = fstr + ferr + funf where

fstr = E(f | AP), ferr = E(f | AQ)− E(f | AP) and funf = f − E(f | AQ), (29)

we have the estimates

‖ferr‖Lp 6 σ and ‖funf‖S 6
1

F (M)
. (30)

Finally, we notice that the assumption that 1 < p 6 2 in the above results is not
restrictive, since the case of random variables in Lp for p > 2 is reduced to the case
p = 2. On the other hand, we remark that Theorem 9 does not hold true for p = 1 (see
Appendix B). Thus, the range of p in Theorem 9 is optimal.

3.1 Proof of Theorem 9

We start with the following lemma.

Lemma 11. Let k be a positive integer, p > 1 and 0 < δ 6 1. Also let (Ω,F ,P) be a
probability space, Σ a k-semiring on Ω with Σ ⊆ F , Q a finite partition of Ω with Q ⊆ Σ
and f ∈ Lp(Ω,F ,P) with ‖f − E(f | AQ)‖Σ > δ. Then there exists a refinement R of Q
with R ⊆ Σ and |R| 6 |Q|(k + 1), and such that ‖E(f | AR)− E(f | AQ)‖Lp > δ.

Proof. By our assumptions, there exists S ∈ Σ such that∣∣ ∫
S

(
f − E(f | AQ)

)
dP
∣∣ > δ. (31)

Since Σ is a k-semiring on Ω, there exists a refinement R of Q such that: (i) R ⊆ Σ,
(ii) |R| 6 |Q|(k + 1), and (iii) S ∈ AR. It follows, in particular, that∫

S

E(f | AR) dP =

∫
S

f dP. (32)

Hence, by (31) and the monotonicity of the Lp norms, we obtain that

δ <
∣∣ ∫

S

(
E(f | AR)− E(f | AQ)

)
dP
∣∣

6 ‖E(f | AR)− E(f | AQ)‖L1 6 ‖E(f | AR)− E(f | AQ)‖Lp (33)

and the proof is completed.

We proceed with the following lemma.
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Lemma 12. Let k, ` be positive integers, 0 < δ, σ 6 1 and 1 < p 6 2, and set

n =
⌈ σ2`

δ2(p− 1)

⌉
. (34)

Also let (Ω,F ,P) be a probability space and (Σi) an increasing sequence of k-semirings
on Ω with Σi ⊆ F for every i ∈ N. Finally, let m ∈ N and P a partition of Ω with
P ⊆ Σm and |P| 6 (k + 1)m. Then for every family C in Lp(Ω,F ,P) with |C| = ` there
exist j ∈ {m, . . . ,m+ n} and a refinement Q of P with Q ⊆ Σj and |Q| 6 (k + 1)j, and
such that either

(a) ‖E(f | AQ)− E(f | AP)‖Lp > σ for some f ∈ C, or

(b) ‖E(f | AQ)− E(f | AP)‖Lp 6 σ and ‖f − E(f | AQ)‖Σj+1
6 δ for every f ∈ C.

The case “p = 2” in Lemma 12 can be proved with an “energy increment strategy”
which ultimately depends upon the fact that martingale difference sequences are orthog-
onal in L2 (see, e.g., [23, Theorem 2.11]). In the non-Hilbertian case (that is, when
1 < p < 2) the geometry is more subtle and we will rely, instead, on Proposition 20.
The argument can therefore be seen as the Lp-version of the “energy increment strategy”.
More applications of this method are given in [6, 9].

Proof of Lemma 12. Assume that the first part of the lemma is not satisfied. Note that
this is equivalent to saying that

(H1) for every j ∈ {m, . . . ,m + n}, every refinement Q of P with Q ⊆ Σj and |Q| 6
(k + 1)j and every f ∈ C we have ‖E(f | AQ)− E(f | AP)‖Lp 6 σ.

We will use hypothesis (H1) to show that part (b) is satisfied.
To this end we will argue by contradiction. Let j ∈ {m, . . . ,m + n} and let Q be

a refinement of P with Q ⊆ Σj and |Q| 6 (k + 1)j. Observe that hypothesis (H1) and
our assumption that part (b) does not hold true, imply that there exists f ∈ C (possibly
depending on the partition Q) such that ‖f − E(f | AQ)‖Σj+1

> δ. Since the sequence
(Σi) is increasing, Lemma 11 can be applied to the k-semiring Σj+1, the partition Q and
the random variable f . Hence, we obtain that

(H2) for every j ∈ {m, . . . ,m + n} and every refinement Q of P with Q ⊆ Σj and
|Q| 6 (k + 1)j there exist f ∈ C and a refinement R of Q with R ⊆ Σj+1 and
|R| 6 (k + 1)j+1, and such that ‖E(f | AR)− E(f | AQ)‖Lp > δ.

Recursively and using hypothesis (H2), we select a finite sequence P0, . . . ,Pn of partitions
of Ω with P0 = P and a finite sequence f1, . . . , fn in C such that for every i ∈ [n] we
have: (P1) Pi is a refinement of Pi−1, (P2) Pi ⊆ Σm+i and |Pi| 6 (k + 1)m+i, and (P3)
‖E(fi | APi

)−E(fi | APi−1
)‖Lp > δ. It follows, in particular, that (APi

)ni=0 is an increasing
sequence of finite sub-σ-algebras of F . Also note that, by the classical pigeonhole principle
and the fact that |C| = `, there exist g ∈ C and I ⊆ [n] with |I| > n/` and such that
g = fi for every i ∈ I.
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Next, set f = g − E(g | AP) and let (di)
n
i=0 be the difference sequence associated with

the finite martingale E(f | AP0), . . . ,E(f | APn). Observe that for every i ∈ I we have
di = E(g | APi

)−E(g | APi−1
) and so, by the choice of I and property (P3), we obtain that

‖di‖Lp > δ for every i ∈ I. Therefore, by Proposition 20, we have

σ
(34)

6
√
p− 1 δ

(n
`

)1/2

6
√
p− 1 δ|I|1/2

<
√
p− 1 ·

( n∑
i=0

‖di‖2
Lp

)1/2

(69)

6
∥∥ n∑
i=0

di
∥∥
Lp

= ‖E(g | APn)− E(g | AP)‖Lp . (35)

On the other hand, by properties (P1) and (P2), we see that Pn is a refinement of P
with Pn ⊆ Σm+n and |Pn| 6 (k + 1)m+n. Therefore, by hypothesis (H1), we must have
‖E(g | APn) − E(g | AP)‖Lp 6 σ which contradicts, of course, the estimate in (35). The
proof of Lemma 12 is thus completed.

The following lemma is the last step of the proof of Theorem 9.

Lemma 13. Let k, ` be positive integers, 0 < σ 6 1, 1 < p 6 2 and H : N→ R a growth
function. Set L = d` σ−2(p− 1)−1e and define (ni) recursively by the rule{

n0 = 0,

ni+1 = ni + dσ2 `H(ni)
2(p− 1)−1e.

(36)

Also let (Ω,F ,P) be a probability space and (Σi) an increasing sequence of k-semirings
on Ω with Σi ⊆ F for every i ∈ N. Finally, let C be a family in Lp(Ω,F ,P) such
that ‖f‖Lp 6 1 for every f ∈ C and with |C| = `. Then there exist j ∈ {0, . . . , L − 1},
J ∈ {nj, . . . , nj+1} and two partitions P ,Q of Ω with the following properties: (i) P ⊆ Σnj

and Q ⊆ ΣJ , (ii) |P| 6 (k + 1)nj and |Q| 6 (k + 1)J , (iii) Q is a refinement of P, and
(iv) ‖E(f | AQ)− E(f | AP)‖Lp 6 σ and ‖f − E(f | AQ)‖ΣJ+1

6 1/H(nj) for every f ∈ C.

Proof. It is similar to the proof of Lemma 12. Indeed, assume, towards a contradiction,
that the lemma is false. Recursively and using Lemma 12, we select a finite sequence
J0, . . . , JL in N with J0 = 0, a finite sequence P0, . . . ,PL of partitions of Ω with P0 = {Ω}
and a finite sequence f1, . . . , fL in C such that for every i ∈ [L] we have that: (P1)
Ji ∈ {ni−1, . . . , ni}, (P2) the partition Pi is a refinement of Pi−1, (P3) Pi ⊆ ΣJi with
|Pi| 6 (k + 1)Ji , and (P4) ‖E(fi | APi

)− E(fi | APi−1
)‖Lp > σ. As in the proof of Lemma

12, we observe that (APi
)Li=0 is an increasing sequence of finite sub-σ-algebras of F , and

we select g ∈ C and I ⊆ [L] with |I| > L/` and such that g = fi for every i ∈ I. Let (di)
L
i=0

be the difference sequence associated with the finite martingale E(g | AP0), . . . ,E(g | APL
).

Notice that, by property (P4), we have ‖di‖Lp > σ for every i ∈ I. Hence, by the choice
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of L, Proposition 20 and the fact that ‖g‖Lp 6 1, we conclude that

1 6
√
p− 1σ|I|1/2 <

√
p− 1 ·

( L∑
i=0

‖di‖2
Lp

)1/2

(69)

6
∥∥ L∑
i=0

di
∥∥
Lp

= ‖E(g | APL
)‖Lp 6 ‖g‖Lp 6 1 (37)

which is clearly a contradiction. The proof of Lemma 13 is completed.

We are ready to complete the proof of Theorem 9.

Proof of Theorem 9. Fix the data k, `, σ, p, the growth function F , the sequence (Si) and
the family C. We define H : N→ R by the rule H(n) = F (n+2)(0) and we observe that H
is a growth function. Moreover, for every i ∈ N let mi = F (i)(0) and set Σi = Smi

. Notice
that (Σi) is an increasing sequence of k-semirings of Ω with Σi ⊆ F for every i ∈ N.

Let j, J,P and Q be as in Lemma 13 when applied to k, `, σ, p,H, the sequence (Σi)
and the family C. We set

N = mnj
= F (nj)(0) (38)

and we claim that the natural number N and the partitions P and Q are as desired.
Indeed, notice first that nj 6 nL−1. Since F is a growth function, by the choice of h

and R in (23) and (24) respectively, we have

N 6 F (nL−1)(0) = F (R)(0)
(25)
= Reg(k, `, σ, p, F ). (39)

On the other hand, note that nj 6 F (nj)(0) = N and so |P| 6 (k + 1)nj 6 (k + 1)N

and P ⊆ Σnj
= SN . Moreover, by Lemma 13, we see that Q is a finite refinement of

P with Q ⊆ Si for some i > N . It follows that N,P and Q satisfy the requirements
of the theorem. Finally, let f ∈ C be arbitrary and write f = fstr + ferr + funf where
fstr = E(f | AP), ferr = E(f | AQ)−E(f | AP) and funf = f −E(f | AQ). Invoking Lemma
13, we obtain that

‖ferr‖Lp = ‖E(f | AQ)− E(f | AP)‖Lp 6 σ. (40)

Also observe that nj + 1 6 J + 1 which is easily seen to imply that SF (N) ⊆ ΣJ+1.
Therefore, using Lemma 13 once again, for every i ∈ {0, . . . , F (N)} we have

‖funf‖Si = ‖f − E(f | AQ)‖Si 6 ‖f − E(f | AQ)‖ΣJ+1

6
1

H(nj)
=

1

F
(
F (N)

) 6 1

F (i)
. (41)

The proof of Theorem 9 is completed.
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4 Applications

4.1 Uniform partitions

In this section we will discuss some applications of our main result (more applications can
be found in [5]). We start with a consequence of Theorem 9 which is closer in spirit to
the original formulation of Szemerédi’s regularity lemma [21].

Recall that if (Ω,F ,P) is a probability space, f ∈ L1(Ω,F ,P) and S ∈ F is an event
of non-zero probability, then E(f |S) stands for the conditional expectation of f with
respect to S, that is, E(f |S) =

( ∫
S
f dP

)
/P(S). If P(S) = 0, then by convention we set

E(f |S) = 0. We have the following definition.

Definition 14. Let (Ω,F ,P) be a probability space, k a positive integer and S a k-
semiring on Ω with S ⊆ F . Also let f ∈ L1(Ω,F ,P), 0 < η 6 1 and S ∈ S. We say that
the set S is (f,S, η)-uniform if for every T ⊆ S with T ∈ S we have∣∣ ∫

T

(
f − E(f |S)

)
dP
∣∣ 6 η · P(S). (42)

Moreover, for every C ⊆ S we set Unf(C, f, η) = {C ∈ C : C is (f,S, η)-uniform}.
Notice that if S ∈ S with P(S) = 0, then the set S is (f,S, η)-uniform for every

0 < η 6 1. The same remark of course applies if the random variable f is constant on S.
Also note that the concept of (f,S, η)-uniformity is closely related to the S-uniformity
norm. Indeed, let S ∈ S with P(S) > 0 and observe that the set S is (f,S, η)-uniform if
and only if the function f −E(f |S), viewed as a random variable in L1(Ω,F ,PS), has S-
uniformity norm less than or equal to η. (Here, PS stands for the conditional probability
measure of P relative to S.) In particular, the set Ω is (f,S, η)-uniform if and only if
‖f − E(f)‖S 6 η.

We have the following proposition (see also [25, Section 11.6]).

Proposition 15. For every positive integer k, every 1 < p 6 2 and every 0 < η 6 1 there
exists a positive integer U(k, p, η) with the following property. If (Ω,F ,P) is a probability
space, S a k-semiring on Ω with S ⊆ F and f ∈ Lp(Ω,F ,P) with ‖f‖Lp 6 1, then there
exist a positive integer M 6 U(k, p, η) and a partition P of Ω with P ⊆ S and |P| = M ,
and such that ∑

S∈Unf(P,f,η)

P(S) > 1− η. (43)

The following lemma will enable us to reduce Proposition 15 to Corollary 10.

Lemma 16. Let (Ω,F ,P) be a probability space, k a positive integer and S a k-semiring
on Ω with S ⊆ F . Also let P be a finite partition of Ω with P ⊆ F , f ∈ L1(Ω,F ,P) and
0 < η 6 1. Assume that the function f admits a decomposition f = fstr + ferr + funf into
integrable random variables such that fstr is constant on each S ∈ P and the functions ferr

and funf obey the estimates ‖ferr‖L1 6 η2/8 and ‖funf‖S 6 (η2/8)|P|−1. Then we have∑
S/∈Unf(P,f,η)

P(S) 6 η. (44)
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Proof. Fix S /∈ Unf(P , f, η). We select T ⊆ S with T ∈ S such that

η · P(S) <
∣∣ ∫

T

(
f − E(f |S)

)
dP
∣∣. (45)

The function fstr is constant on S and so, by (45), we see that

η · P(S) <
∣∣ ∫

T

(
ferr − E(ferr |S)

)
dP
∣∣+
∣∣ ∫

T

(
funf − E(funf |S)

)
dP
∣∣. (46)

Next observe that ∣∣ ∫
T

(
ferr − E(ferr |S)

)
dP
∣∣ 6 2E(|ferr| |S) · P(S) (47)

and ∣∣ ∫
T

(
funf − E(funf |S)

)
dP
∣∣ 6 2‖funf‖S . (48)

Finally, notice that P(S) > 0 since S /∈ Unf(P , f, η). Thus, setting

A = {S ∈ P : E(|ferr| |S) > η/4} and B = {S ∈ P : P(S) 6 4η−1‖funf‖S} (49)

and invoking (46)–(48), we obtain that P \ Unf(P , f, η) ⊆ A ∪ B.
Since the family P is a partition, it consists of pairwise disjoint sets. Hence,∑

S∈A

P(S) 6
4

η

(∑
S∈A

∫
S

|ferr| dP
)
6

4

η
‖ferr‖L1 6

η

2
. (50)

Moreover, ∑
S∈B

P(S) 6
4‖funf‖S

η
· |B| 6 4‖funf‖S

η
· |P| 6 η

2
. (51)

By (50) and (51) and using the inclusion P \Unf(P , f, η) ⊆ A∪B, we conclude that the
estimate in (44) is satisfied and the proof is completed.

We proceed to the proof of Proposition 15.

Proof of Proposition 15. Fix k, p and η. We set σ = η2/8 and we define F : N → R by
the rule F (n) = (n/σ) + 1 = (8n/η2) + 1 for every n ∈ N. Notice that F is a growth
function. We set

U(k, p, η) = Reg′(k, p, σ, F ) (52)

and we claim that U(k, p, η) is as desired. Indeed, let (Ω,F ,P) be a probability space and
S a k-semiring on Ω with S ⊆ F . Also let f ∈ Lp(Ω,F ,P) with ‖f‖Lp 6 1. By Corollary
10, there exist a positive integer M 6 U(k, p, η), a partition P of Ω with P ⊆ S and
|P| = M , and a finite refinement Q of P with Q ⊆ S such that, setting

fstr = E(f | AP), ferr = E(f | AQ)− E(f | AP) and funf = f − E(f | AQ), (53)
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we have the estimates ‖ferr‖Lp 6 σ and ‖funf‖S 6 1/F (M). It follows that f admits
a decomposition f = fstr + ferr + funf into integrable random variables such that fstr

is constant on each S ∈ P , ‖ferr‖Lp 6 σ and ‖funf‖S 6 1/F (M). Notice that, by the
monotonicity of the Lp norms, we have ‖ferr‖L1 6 σ. Hence, by Lemma 16 and the choice
of σ and F , we conclude that the estimate in (43) is satisfied and the proof of Proposition
15 is completed.

We close this subsection by presenting an application of Proposition 15 for subsets
of hypercubes (see also [24, Section 2.1.3]). Specifically, let A be a finite alphabet with
|A| > 2 and set K = |A|(|A| − 1)2−1. Also let n be a positive integer. As in Example
8, we view An as a discrete probability space equipped with the uniform probability
measure which we shall denote by P. More generally, for every nonempty subset S of
An by PS we shall denote the uniform probability measure concentrated on S, that is,
PS(X) = |X ∩ S|/|S| for every X ⊆ An. Recall that S(An) stands for the K-semiring on
An consisting of all subsets X of An which are written as

X =
⋂

{a,b}∈(A
2)

X{a,b} (54)

where X{a,b} is (a, b)-insensitive for every {a, b} ∈
(
A
2

)
.

Now let D be a subset of An, 0 < ε 6 1 and S ∈ S(An) with S 6= ∅. Notice that the
set S is (1D,S(An), ε2)-uniform if and only if for every nonempty T ⊆ S with T ∈ S(An)
we have

|PT (D)− PS(D)| · P(T ) 6 ε2 · P(S). (55)

In particular, if S is nonempty and (1D,S(An), ε2)-uniform, then for every T ⊆ S with
T ∈ S(An) and |T | > ε|S| we have |PT (D) − PS(D)| 6 ε. Thus, by Proposition 15 and
taking into account these remarks, we obtain the following corollary.

Corollary 17. For every integer k > 2 and every 0 < ε 6 1 there exists a positive integer
N(k, ε) with the following property. If n is a positive integer, A is an alphabet with |A| = k
and D is a subset of An, then there exist a positive integer M 6 N(k, ε), a partition P of
An with P ⊆ S(An) and |P| = M , and a subfamily P ′ ⊆ P with P(∪P ′) > 1− ε such that

|PT (D)− PS(D)| 6 ε (56)

for every S ∈ P ′ and every T ⊆ S with T ∈ S(An) and |T | > ε|S|.

4.2 Lp graphons

Our last application is an extension of the, so-called, strong regularity lemma for L2

graphons (see, e.g., [14, 15]). To state this extension we need to introduce some terminol-
ogy and notation related to graphons.

Let (Ω,F ,P) be a probability space and recall that a graphon1 is an integrable random
variable W : Ω×Ω→ R which is symmetric, that is, W (x, y) = W (y, x) for every x, y ∈ Ω.

1In several places in the literature, graphons are required to be [0, 1]-valued, and the term kernel is
used for (not necessarily bounded) integrable, symmetric random variables.
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If p > 1 and W is graphon which belongs to Lp, then W is said to be an Lp graphon (see,
e.g., [3]).

Now let R be a finite partition of Ω with R ⊆ F and notice that the family

R2 = {S × T : S, T ∈ R} (57)

is a finite partition of Ω×Ω. As in Section 3, let AR2 be the σ-algebra on Ω×Ω generated
by R2 and observe that AR2 consists of measurable sets. If W : Ω×Ω→ R is a graphon,
then the conditional expectation of W with respect to AR2 is usually denoted by WR.
Note that WR is also a graphon and satisfies (see, e.g., [14])

‖WR‖� 6 ‖W‖� (58)

where ‖ · ‖� is the cut norm defined in (17). On the other hand, by standard properties
of the conditional expectation (see, e.g., [10]), we have ‖WR‖Lp 6 ‖W‖Lp for any p > 1.
It follows, in particular, that WR is an Lp graphon provided, of course, that W ∈ Lp.

We have the following corollary.

Corollary 18 (Strong regularity lemma for Lp graphons). For every 0 < ε 6 1, every
1 < p 6 2 and every positive function h : N → R there exists a positive integer s(ε, p, h)
with the following property. If (Ω,F ,P) is a probability space and W : Ω × Ω → R is
an Lp graphon with ‖W‖Lp 6 1, then there exist a partition R of Ω with R ⊆ F and
|R| 6 s(ε, p, h), and an Lp graphon U : Ω × Ω → R such that ‖W − U‖Lp 6 ε and
‖U − UR‖� 6 h

(
|R|
)
.

Proof. Fix the constants ε, p and the function h, and define F : N→ R by the rule

F (n) = (n+ 1) +
n∑
i=0

8

h(i)
. (59)

Notice that F is a growth function. We set

s(ε, p, h) = Reg′(4, ε, p, F ) (60)

and we claim that with this choice the result follows.
Indeed, let (Ω,F ,P) be a probability space and fix an Lp graphon W : Ω×Ω→ R with

‖W‖Lp 6 1. Also let Σ� be the 4-semiring on Ω × Ω which is defined via formula (18)
for the given probability space (Ω,F ,P). We apply Corollary 10 to Σ� and the random
variable W and we obtain

(a) a partition P of Ω× Ω with P ⊆ Σ� and |P| 6 Reg′(4, ε, p, F ), and

(b) a finite refinement Q of P with Q ⊆ Σ�

such that, writing the graphon W as Wstr +Werr +Wstr where Wstr = E(W | AP), Werr =
E(W | AQ)−E(W | AP) and Wunf = W −E(W | AQ), we have the estimates ‖Werr‖Lp 6 ε
and ‖Wunf‖Σ�

6 1/F
(
|P|
)
. Note that, by (a) and (b) and the definition of the 4-semiring
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Σ� in (18), there exist two finite partitions R,Z of Ω with R,Z ⊆ F and such that
P = R2 and Q = Z2. It follows, in particular, that the random variables Wstr,Werr and
Wunf are all Lp graphons.

We will show that the partition R and the Lp graphon U := Wstr +Wunf are as desired.
To this end notice first that

|R| 6 |R2| = |P| 6 Reg′(4, ε, p, F )
(60)
= s(ε, p, h). (61)

Next observe that
‖W − U‖Lp = ‖Werr‖Lp 6 ε. (62)

Finally note that, by (58), we have ‖(Wunf)R‖� 6 ‖Wunf‖�. Moreover, the fact that
P = R2 and the choice of Wstr yield that (Wstr)R = Wstr. Therefore,

‖U − UR‖� 6 2‖Wunf‖�
(19)

6 8‖Wunf‖Σ�
6

8

F
(
|P|
)

(61)

6
8

F
(
|R|
) (59)

6 h
(
|R|
)

(63)

and the proof of Corollary 18 is completed.

Remark 19. Recently, Borgs, Chayes, Cohn and Zhao [3] extended the weak regularity
lemma to Lp graphons for any p > 1. Their extension follows, of course, from Corollary
18, but this reduction is rather ineffective since the bound obtained by Corollary 18 is
quite poor. However, this estimate can be significantly improved if instead of invoking
Corollary 10, one argues directly as in the proof of Lemma 12. More precisely, note that
for every 0 < ε 6 1, every 1 < p 6 2, every probability space (Ω,F ,P) and every Lp
graphon W : Ω × Ω → R with ‖W‖Lp 6 1 there exists a partition R of Ω with R ⊆ F
and

|R| 6 4(p−1)−1ε−2

(64)

and such that ‖W −WR‖� 6 ε. The estimate in (64) matches the bound for the weak
regularity lemma for the case of L2 graphons (see, e.g., [14]) and is essentially optimal.

Appendix A Martingale difference sequences

A.1 Recall that a finite sequence (fi)
n
i=0 of real-valued random variables on a probability

space (Ω,F ,P) is said to be a martingale if there exists an increasing sequence (Fi)ni=0

of sub-σ-algebras of F such that: (i) fi ∈ L1(Ω,Fi,P) for every i ∈ {0, . . . , n}, and
(ii) fi = E(fi+1 | Fi) if n > 1 and i ∈ {0, . . . , n− 1}.

A martingale difference sequence is the sequence of successive differences of a martin-
gale. Specifically, a finite sequence (di)

n
i=0 of random variables on (Ω,F ,P) is a martingale

difference sequence if there exists a martingale (fi)
n
i=0 such that d0 = f0 and

di = fi − fi−1 (65)
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if n > 1 and i ∈ [n]. Note that this is equivalent to saying that there exists an increasing
sequence (Fi)ni=0 of sub-σ-algebras of F such that: (i) di ∈ L1(Ω,Fi,P) for every i ∈
{0, . . . , n}, and (ii) E(di | Fi−1) = 0 if n > 1 and i ∈ [n].

A.2 It is easy to see that martingale difference sequences are monotone basic sequences
in Lp for any p > 1; that is, if (di)

n
i=0 is a martingale difference sequence in Lp for some

p > 1, then for every 0 6 k 6 n and every a0, . . . , an ∈ R we have

∥∥ k∑
i=0

aidi
∥∥
Lp
6
∥∥ n∑
i=0

aidi
∥∥
Lp
. (66)

It follows, in particular, that

∥∥∑̀
i=k

di
∥∥
Lp
6 2
∥∥ n∑
i=0

di
∥∥
Lp

(67)

for every 0 6 k 6 ` 6 n. Another basic property of martingale difference sequences is
that they are orthogonal in L2. Therefore, for every martingale difference sequence (di)

n
i=0

in L2 we have ( n∑
i=0

‖di‖2
L2

)1/2

=
∥∥ n∑
i=0

di
∥∥
L2
. (68)

We will need the following extension of this fact.

Proposition 20. Let (Ω,F ,P) be a probability space and 1 < p 6 2. Then for every
martingale difference sequence (di)

n
i=0 in Lp(Ω,F ,P) we have( n∑

i=0

‖di‖2
Lp

)1/2

6
( 1

p− 1

)1/2

·
∥∥ n∑
i=0

di
∥∥
Lp
. (69)

Proposition 20 follows by iterating the following martingale convexity inequality which
is due to Ricard and Xu [18].

Proposition 21. Let (Ω,F ,P) be a probability space and 1 < p 6 2. Then for every
sub-σ-algebra B of F and every f ∈ Lp(Ω,F ,P) we have

‖E(f | B)‖2
Lp

+ (p− 1)‖f − E(f | B)‖2
Lp
6 ‖f‖2

Lp
. (70)

A remarkable feature of Proposition 21 is the fact that the constant (p− 1) in (70) is
best possible. A basic ingredient of its proof is the following uniform convexity inequality
for Lp spaces which first appeared in the work of Ball, Carlen and Lieb [1] (see also [16,
Lemma 4.32]).

Proposition 22. Let (Ω,Σ, µ) be an arbitrary measure space and 1 < p 6 2. Then for
every x, y ∈ Lp(Ω,Σ, µ) we have

‖x‖2
Lp

+ (p− 1)‖y‖2
Lp
6
‖x+ y‖2

Lp
+ ‖x− y‖2

Lp

2
. (71)
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The deduction of the martingale inequality (70) from (71) is done via an elegant
pseudo-differentiation argument which we will briefly describe for the convenience of the
reader.

Let I be an open interval of R and let ϕ : I → R be a function. Also let t ∈ I and
recall that the pseudo-derivative of second order of ϕ at t is defined by

D2ϕ(t) := lim inf
h→0+

ϕ(t+ h) + ϕ(t− h)− 2ϕ(t)

h2
.

Observe that if ϕ is twice differentiable at t, then ϕ′′(t) = D2ϕ(t). Also note that if
D2ϕ(t) > 0 for every t ∈ I, then ϕ is convex.

Now let (Ω,F ,P), p, B and f be as in Proposition 21. We set a = E(f | B) and
b = f − E(f | B), and we define ϕ : R→ R by

ϕ(t) = ‖a+ tb‖2
Lp
− (p− 1) t2‖b‖2

Lp
. (72)

Using (71), it is easy to see that D2ϕ(t) > 0 for every t ∈ R and, consequently, the function
ϕ is convex. Next observe that the function ψ : R → R defined by ψ(t) = ‖a + tb‖2

Lp
is

also convex. Moreover, we have

‖a+ tb‖Lp > ‖E(a+ tb | B)‖Lp = ‖a‖Lp

which yields that the right derivative of ψ at 0 is positive. Noticing that the right derivative
of ϕ at 0 coincides with that of ψ, we conclude that ϕ must be increasing on [0, 1] which,
in turn, easily implies (70). For more details, as well as noncommutative extensions, we
refer to [18].

Appendix B

Our goal in this appendix is to use Theorem 9 to show the well-known fact that, for any 1 <
p 6 2, every Lp bounded martingale is Lp convergent (see, e.g., [10]). Besides its intrinsic
interest, this result also implies that Theorem 9 does not hold true for the end-point case
p = 1. In fact, based on the argument below, one can easily construct a counterexample
to Theorem 9 using any L1 bounded martingale which is not L1 convergent.

We will need the following known approximation result (see, e.g., [16]). We recall the
proof for the convenience of the reader.

Lemma 23. Let (Ω,F ,P) be a probability space and p > 1. Also let (gi) be a mar-
tingale in Lp(Ω,F ,P) and δ > 0. Then there exist an increasing sequence (Fi) of fi-
nite sub-σ-algebras of F and a martingale (fi) adapted to the filtration (Fi) such that
‖gi − fi‖Lp 6 δ for every i ∈ N.

Proof. Fix a filtration (Bi) such that (gi) is adapted to (Bi) and let (∆i) be the martingale
difference sequence associated with (gi). Recursively and using the fact that the set of
simple functions is dense in Lp, we select an increasing sequence (Fi) of finite sub-σ-
algebras of F and a sequence (si) of simple functions such that for every i ∈ N we have
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that: (i) Fi is contained in Bi, (ii) ‖∆i − si‖Lp 6 δ/2i+2, and (iii) si ∈ Lp(Ω,Fi,P). For
every i ∈ N let di = E(∆i | Fi) and notice that the sequence (di) is a martingale difference
sequence since, by (i),

E(di+1 | Fi) = E
(
E(∆i+1 | Fi+1) | Fi

)
= E(∆i+1 | Fi) = E

(
E(∆i+1 | Bi) | Fi

)
= 0. (73)

Thus, setting fi = d0 + · · ·+ di, we see that (fi) is a martingale adapted to the filtration
(Fi). Moreover, by (ii) and (iii), for every i ∈ N we have

‖gi − fi‖Lp 6
i∑

k=0

‖∆k − dk‖Lp 6
δ

2
+

i∑
k=0

‖sk − dk‖Lp

=
δ

2
+

i∑
k=0

‖E(sk −∆k | Fk)‖Lp 6
δ

2
+

i∑
k=0

‖sk −∆k‖Lp 6 δ (74)

and the proof is completed.

Now fix 1 < p 6 2 and a probability space (Ω,F ,P), and assume, towards a con-
tradiction, that there exists a bounded martingale (gi) in Lp(Ω,F ,P) which is not norm
convergent. By (67), we see that (gi) has no convergent subsequence whatsoever. There-
fore, by passing to a subsequence of (gi) and rescaling, we may assume that there exists
0 < ε 6 1/3 such that: (i) ‖gi‖Lp 6 1/2 for every i ∈ N, and (ii) ‖gi − gj‖Lp > 3ε for
every i, j ∈ N with i 6= j. By Lemma 23 applied to the martingale (gi) and the constant
“δ = ε”, there exist

(P1) an increasing sequence (Fi) of finite sub-σ-algebras of F , and

(P2) a martingale (fi) adapted to the filtration (Fi)

such that ‖gi − fi‖Lp 6 ε for every i ∈ N. Hence,

(P3) ‖fi‖Lp 6 1 for every i ∈ N, and

(P4) ‖fi − fj‖Lp > ε for every i, j ∈ N with i 6= j.

Notice that, by (P1), for every i ∈ N the space Lp(Ω,Fi,P) is finite-dimensional. Since
‖ · ‖Fi

is a norm on Lp(Ω,Fi,P), there exists a constant Ci > 1 such that

‖f‖Fi
6 ‖f‖Lp 6 Ci‖f‖Fi

(75)

for every f ∈ Lp(Ω,Fi,P).
Define F : N→ R by the rule

F (i) = (i+ 1) + (8/ε)
i∑

j=0

Ci (76)
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and observe that F is a growth function. Next, set

n = F
(
Reg(1, 1, ε/8, p, F )

)
+ 1 (77)

and let (Si) be defined by Si = Fi if i 6 n and Si = Fn if i > n. Clearly, (Si) is an
increasing sequence of 1-semirings on Ω. We apply Theorem 9 to the probability space
(Ω,Fn,P), the sequence (Si) and the random variable fn, and we obtain a natural number
N 6 Reg(1, 1, ε/8, p, F ), a finite partition P of Ω with P ⊆ SN and a finite refinement Q
of P such that, writing fn = fstr + ferr + funf where

fstr = E(fn | AP), ferr = E(fn | AQ)− E(fn | AP) and funf = fn − E(fn | AQ),

we have that ‖ferr‖Lp 6 ε/8 and ‖funf‖Si 6 1/F (i) for every i ∈ {0, . . . , F (N)}. In
particular, by the choice of n and (Si), we see that

‖ferr‖Lp 6
ε

8
and ‖funf‖FN+1

6
1

F (N + 1)
. (78)

Now observe that, by property (P2),

fN = E(fn | FN) = E(fstr | FN) + E(ferr | FN) + E(funf | FN) (79)

and, similarly,

fN+1 = E(fn | FN+1) = E(fstr | FN+1) + E(ferr | FN+1) + E(funf | FN+1). (80)

The fact that P ⊆ SN yields that AP ⊆ FN ⊆ FN+1 and so

fstr = E(fstr | FN) = E(fstr | FN+1). (81)

On the other hand, by (78), we have

‖E(ferr | FN)‖Lp 6
ε

8
and ‖E(ferr | FN+1)‖Lp 6

ε

8
. (82)

Finally, notice that E(funf | FN) ∈ Lp(Ω,FN ,P). Thus, by (75) and Lemma 5, we obtain
that

‖E(funf | FN)‖Lp 6 CN‖E(funf | FN)‖FN
6 CN‖funf‖FN

6 CN‖funf‖FN+1

(78)

6
CN

F (N + 1)

(76)

6
ε

8
. (83)

With identical arguments we see that

‖E(funf | FN+1)‖Lp 6
ε

8
. (84)

Combining (79)–(84), we conclude that ‖fN−fN+1‖Lp 6 ε/2 which contradicts, of course,
property (P4). Hence, every bounded martingale in Lp(Ω,F ,P) is norm convergent, as
desired.
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