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Abstract

A deterministic finite automaton is synchronizing if there exists a word that
sends all states of the automaton to the same state. Černý conjectured in 1964
that a synchronizing automaton with n states has a synchronizing word of length
at most (n− 1)2. We introduce the notion of aperiodically 1-contracting automata
and prove that in these automata all subsets of the state set are reachable, so that
in particular they are synchronizing. Furthermore, we give a sufficient condition
under which the Černý conjecture holds for aperiodically 1-contracting automata.
As a special case, we prove some results for circular automata.
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1 Introduction

Let A = (Q,Σ, δ) be a deterministic finite automaton (DFA), where Q denotes the state
set, Σ the input alphabet, and δ : Q×Σ→ Q the transition function. We denote the set
of finite words over Σ by Σ?. The transition function δ extends uniquely to a function
δ : Q× Σ? → Q.

The automaton A is called synchronizing if there exists a word w ∈ Σ? and q ∈ Q
such that δ(q′, w) = q for all q′ ∈ Q. The word w is then said to be a synchronizing word
for A .

The following longstanding conjecture is due to Černý ([3], 1964):

Conjecture 1. If A is a synchronizing n-state automaton, then there exists a synchro-
nizing word for A of length at most (n− 1)2.

Černý constructed for every n an n-state automaton Cn in which the bound of his
conjecture is attained. We show this automaton in the next example for the case n = 4.
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Example 2. Consider the automaton C4 defined by the transition graph shown in Figure
1. The word w = baaabaaab (having length 9) is synchronizing, since it maps all states
to state 1. Moreover, w is the shortest synchronizing word for C4. �
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Figure 1: Transition graph of C4.

Černý himself provided an upper bound of 2n − n − 1 for the length of the shortest
synchronizing word. A substantial improvement was given by Starke [10], who was the
first to give a polynomial upper bound, namely 1 + 1

2
n(n − 1)(n − 2). The best known

upper bound is still a cubic one, 1
6
(n3 − n), that was established by Pin in 1983 [8]. He

reduced proving this upper bound to a purely combinatorial problem which was then
solved by Frankl [6]. Since then for more than 30 years no progress for the general case
has been made.

The conjecture has been proved for some particular classes of automata, such as circu-
lar automata, aperiodic automata and one-cluster automata with prime length cycle. For
these results and some more partial answers, see [4, 12, 11, 2, 5, 13, 7, 1]. For a survey
on synchronizing automata and the Černý conjecture, we refer to [14].

In this paper we look at n-state automata in which every (n − 1)-subset of the state
set Q is reachable from Q. Such automata will be called 1-contracting. A word with the
property that it maps Q to an (n−1)-subset of Q is called 1-deficient. If w is a 1-deficient
word, the state that is not in the image of w is said to be the excluded state. There also
must be a unique state in the image which is reached twice by w. This state will be called
the contracting state for w.

In a 1-contracting automaton, for every state q there exists a 1-deficient word that
excludes q. A collection W of words is called 1-contracting if for all q it contains exactly
one word wq which excludes q. To such a collection we can associate a function σW on
Q that maps each state q to the unique contracting state for wq. This function will be
called the state map induced by W . If for some 1-contracting collection W the state map
is a cyclic permutation on Q, then the automaton is called aperiodically 1-contracting.
For formal definitions and some more details, we refer to Section 2.

Our main results are presented in Section 3, where we will prove that aperiodically
1-contracting automata are synchronizing and that every nonempty subset of the state set
is reachable. By imposing a (weak) restriction on the length of the 1-deficient words, we
show that each k-subset is reachable by a word of length at most n(n− k) which implies
that the Černý conjecture holds true in this case.
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In Section 4, we give some examples and discuss the scope of our results and their
relation to circular automata. For circular automata it was shown by Dubuc ([4]) that
if they are synchronizing, then the shortest synchronizing word has length at most (n −
1)2. We give sufficient conditions for circular automata to be aperiodically 1-contracting.
This means that for a subclass of circular automata, we prove synchronization. For this
subclass, we also prove that the Černý conjecture is satisfied and moreover that also here
each k-subset is reachable by a word of length at most n(n− k).

The class of aperiodically 1-contracting automata also contains automata satisfying a
weaker notion of circularity: automata with a circle that uses multiple labels and goes
through all states. We give an example that illustrates this and note that there is an
infinite subfamily of such automata in which the Černý conjecture holds. Finally, we
provide an example of an automaton that has no circle through all states, but still satisfies
the Černý conjecture because it falls into the framework of aperiodically 1-contracting
automata, which demonstrates the extensiveness of this class. We finish our paper with
a short discussion and a conjecture.

2 1-contracting automata

The transition function is naturally extended to a function on 2Q by

δ(S,w) = {δ(q, w) | q ∈ S} .

If S ⊆ Q and δ(Q,w) = S, we say that S is reachable by w (from Q). So an automaton
A is synchronizing if and only if there exists a singleton which is reachable.

For S ⊆ Q, we define the inverse of the transition function under some word w by

δ−1(S,w) = {q | δ(q, w) ∈ S} .

For w ∈ Σ? and q ∈ Q, we define the w-indegree of q to be |δ−1(q, w)|. If |δ−1(q, w)| > 2,
we say that q is a contracting state for w.

In this paper, we study automata in which each (n − 1)-subset of the state set is
reachable from Q. Our main results concern aperiodically 1-contracting automata which
are formally defined as follows.

Definition 3. Let A = (Q,Σ, δ) be a DFA with n states. A is called aperiodically 1-
contracting if there exist words w1, . . . , wn ∈ Σ∗ and a cyclic order q1 ≺ q2 ≺ . . . ≺ qn ≺ q1
on Q such that for all i = 1, . . . , n (and interpreting qn+1 as q1)

δ(Q,wi) = Q \ {qi} and |δ−1(qi+1, wi)| = 2.

In the remainder of this section we discuss the ideas behind this definition and we
introduce some related terminology.

Definition 4. Let A = (Q,Σ, δ) be a DFA. If a word wq ∈ Σ? satisfies

δ(Q,wq) = Q \ {q} ,

then wq will be called a 1-deficient word that excludes q.
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Definition 5. Let A = (Q,Σ, δ) be a DFA with n states. A collection W ⊆ Σ? will be
called a 1-contracting collection for A if for all q ∈ Q it contains exactly one 1-deficient
word that excludes q. If such a collection exists, A is called 1-contracting. If |w| 6 n for
all w ∈ W , then W is called an efficient 1-contracting collection.

Lemma 6. Every 1-contracting automaton A = (Q,Σ, δ) admits an efficient 1-contrac-
ting collection.

Proof. Suppose wq is a 1-deficient word that excludes q. For every prefix v of wq,
|δ(Q, v)| > |δ(Q,wq)| = n − 1. If wq has two different prefixes u and v such that
δ(Q, u) = δ(Q, v), then wq can be reduced by replacing the longer prefix by the shorter
one. Since there are n subsets of size n − 1, wq can be reduced to have length at most
n.

The previous lemma states that in a 1-contracting automaton on n states, every (n−1)-
set is reachable by a word of length at most n. In such automata, also many (n− 2)-sets
(in fact at least

(
n
2

)
− n) are reachable by words of length at most 2n. The main goal

is to show inductively that this behavior is inherited by sets of arbitrary size, i.e. that
many (n− k)-sets are reachable by words of length at most kn. It turns out that it is not
sufficient to merely have 1-contractivity, we also need some kind of aperiodicity, as the
following example shows.

Example 7. Let A be the automaton with the transition graph given in Figure 2. The
collection W = {c, ca, cab, cb} is an efficient 1-contracting collection for A since

δ(Q, c) = Q \ {1} , δ(Q, cab) = Q \ {3} ,
δ(Q, ca) = Q \ {2} , δ(Q, cb) = Q \ {4} .

Thus, A is 1-contracting. However, A has no synchronizing word. For instance there
does not exist a word w ∈ Σ? such that δ({1, 2} , w) is a singleton. �
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Figure 2: A 1-contracting automaton that fails to synchronize.

Our notion of aperiodicity will be formulated in terms of indegrees corresponding
to the 1-deficient words. Suppose A is a 1-contracting automaton with n states. Let
q ∈ Q and let wq ∈ Σ? be a 1-deficient word that excludes q. Then |δ−1(q, wq)| = 0 and
|δ−1(q′, wq)| > 1 for all q′ 6= q. Since

∑
q∈Q |δ−1(q, wq)| = n, there is a unique contracting

state qc for wq which has wq−indegree 2.
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So in an automaton A , a 1-deficient word w has a unique excluded state and a unique
contracting state.

Definition 8. Let A be a DFA and let W ⊆ Σ? be a 1-contracting collection for A .
Define the following collection of pairs of states ΠW ⊆ Q×Q:

ΠW :=
{

(q, qc) : ∃w ∈ W s.t. |δ−1(q, w)| = 0, |δ−1(qc, w)| = 2
}
.

Let the map σW from Q to Q be defined by

σW (q) = qc ⇔ (q, qc) ∈ ΠW .

The map σW will be called the state map induced by W .

Since for every q ∈ Q there is exactly one w ∈ W which excludes q, the state map
induced by W is well-defined.

Example 9. Consider the automaton A of Figure 2 with the 1-contracting collection
W = {c, ca, cab, cb}. The contracting states for the words in this collection follow directly
from the equalities

|δ−1(3, c)| = |δ−1(4, ca)| = |δ−1(1, cab)| = |δ−1(2, cb)| = 2.

So in this case ΠW = {(1, 3), (2, 4), (3, 1), (4, 2)}, and therefore the state map σW : Q→ Q
is defined by

σW (1) = 3, σW (2) = 4, σW (3) = 1, σW (4) = 2.

�

A DFA A is aperiodically 1-contracting if and only if there exists a 1-contracting
collection W ⊆ Σ? for which the induced state map σW is a cyclic permutation on Q. As
can be easily checked, the state map σW of Example 9 is not a cyclic permutation.

3 Synchronization of 1-contracting automata

3.1 Main results

In this section we prove that in aperiodically 1-contracting automata all subsets of the
state set are reachable by concatenating 1-deficient words. As a direct consequence, such
automata are synchronizing.

Theorem 10. Let A = (Q,Σ, δ) be an aperiodically 1-contracting DFA with n states.
Let W ⊆ Σ? be a corresponding 1-contracting collection for which the state map σW is a
cyclic permutation on Q. Then every nonempty k-subset S of Q is reachable by a word
wS of the form wS = w1 . . . wn−k, wi ∈ W .
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Corollary 11. Under the conditions of Theorem 10, A is synchronizing and there exist
synchronizing words of the form w = w1 . . . wn−1.

Furthermore, we show that the Černý conjecture holds true if there is an efficient
1-contracting collection W for which the state map is a cyclic permutation. By Lemma 6,
for W to be efficient, it is sufficient if the 1-deficient words can be chosen to have minimal
length.

Theorem 12. Let A = (Q,Σ, δ) be an aperiodically 1-contracting DFA with n states.
If there exists an efficient 1-contracting collection W ⊆ Σ? for which σW is a cyclic
permutation on Q, then

1. The shortest synchronizing word of A has length at most (n− 1)2.

2. For every nonempty set S ⊆ Q of size k, there exists a word wS of length at most
n(n− k) such that δ(Q,wS) = S.

3.2 Proofs of main results

All main results are immediate consequences of the following key lemma.

Lemma 13. Suppose that an n-state automaton A = (Q,Σ, δ) is aperiodically 1-contrac-
ting, i.e. it admits a 1-contracting collection W such that the state map σW is a cyclic
permutation of Q. Then for each proper nonempty subset S ⊂ Q, there exists a word
w ∈ W such that S = δ(T,w) for some subset T ⊆ Q with |T | = |S|+ 1.

Proof. For any fixed q ∈ Q, we have Q =
{
q, σ1

W (q), σ2
W (q), . . . , σn−1

W (q)
}

. Since S is a
proper nonempty subset of Q, there exists k ∈ {0, 1, . . . , n− 1} such that σk

W (q) /∈ S
while σk+1

W (q) ∈ S. Let p = σk
W (q). By definition of the state map, p is the excluded

state for some word w ∈ W and σW (p) is the contracting state for this w. This means
for σW (p) = σk+1

W (q) ∈ S we have |δ−1(σW (p), w)| = 2. Since the excluded state p for w
does not lie in S, for each state r ∈ S \ {σW (p)} we have |δ−1(r, w)| = 1. Consequently,
|δ−1(S,w)| = |S|+ 1 and we can take T = δ−1(S,w).

Proof of Theorem 10. Let S be an arbitrary k-subset of Q, 1 6 k < n. By repeatedly
applying Lemma 13, we get a sequence of words w1, w2, . . . , wn−k ∈ W with the property
that δ(Q,w1w2wn−k) = S.

Proof of Corollary 11. Theorem 10 directly implies that every singleton can be reached
by a word of the form wi1 . . . win−1 . So in fact there exist at least n synchronizing words
of this form.

Proof of Theorem 12. The second statement is a direct consequence of Theorem 10. Since
the automaton is synchronizing, there exists at least one pair {q′, q′′} ⊆ Q which can be
mapped directly to a singleton. That is, for some label a ∈ Σ, we have |δ({q′, q′′} , a)| = 1.
The pair {q′, q′′} is reachable by a word w of length at most n(n− 2), so the word wa is
synchronizing and has length at most n(n− 2) + 1 = (n− 1)2.
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Remark 14. The proof of Lemma 13 provides an algorithm to actually construct the
synchronizing word wa as defined in the proof of Theorem 12.

4 1-contracting automata and circularity

In this section we make some comments on the scope of our results and on the relation
between 1-contractivity and circularity. An automaton is called circular if it has a label
that cyclically permutes the states.

As a special case of 1-contracting automata we now consider circular automata having
a label a ∈ Σ of deficiency 1, that is |δ(Q, a)| = |Q|−1. Such automata are 1-contracting,
since one can first read the 1-deficient label and then cyclically permute the excluded
state. In this case, we have the following result:

Proposition 15. Let A = (Q,Σ, δ) be a circular automaton with n states. Suppose that
A has a 1-deficient label a and is circular with respect to b. Let qa be the state that is
excluded by a and let qca be the unique contracting state for a. Denote the distance on the
circle from qa to qca by d. If gcd(d, n) = 1, then

1. A is synchronizing.

2. The shortest synchronizing word of A has length at most (n− 1)2.

3. For every nonempty set S ⊆ Q of size k, there exists a word wS of length at most
n(n− k) such that δ(Q,wS) = S.

Proof. Let b be a label that cyclically permutes the states. Let q1 = qa and enumerate
the other states according to their position on the circle. Let W = {w1, . . . , wn} be
defined by wi = abi−1, 1 6 i 6 n. Then W forms an efficient 1-contracting collection,
since δ(Q,wi) = Q \ {qi}. Note that the label b rotates the excluded and contracting
state simultaneously, preserving the distance. Therefore, after reading the word wi, the
distance on the circle between the excluded and contracting state is equal to d. This
immediately determines the state map σW :

σW (q) = δ(q, bd), for all q ∈ Q.

Let q ∈ Q and suppose gcd(d, n) = 1. Then σn
W (q) = δ(q, bnd) = q and σk

W (q) = δ(q, bkd) 6=
q if 1 6 k < n. In other words, σW is a cyclic permutation on Q. Consequently the
automaton is aperiodically 1-contracting and Theorem 12 applies.

Pin [9] already proved that if a circular automaton has a prime number of states and
has a letter that is not a permutation, then it is synchronizing and has a synchronizing
word of length at most (n − 1)2. Our proposition is slightly different from Pin’s result:
we need stronger assumptions on the letter that is not a permutation, but we allow a
composite number of states. Dubuc’s result (the maximal length (n− 1)2 holds for every
synchronizing circular automaton, [4]) also has weaker premises on the letters, but does
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assume synchronization. Compared to these two results, we get the additional property
that all k-sets are reachable with words of length at most n(n− k).

In contrast with previous results on automata with some circular structure, the class of
1-contracting automata allows for circles defined by a word consisting of different letters.
To illustrate this, we give an example.

Example 16. Consider the automaton A of Figure 3, where for simplicity we did not
include the selfloops. In this automaton, the labels a and b are both permutations, and
together they make a circle through all states. With only these two labels the automaton
would not be synchronizing. Therefore there is also a label c which is 1-deficient. Let W
be the collection of the words in the tables below. These words are 1-deficient and their
excluded and unique contracting states are indicated.

word excl. contr.
w1 = c 1 2
w2 = ca 2 3
w3 = cab 3 4

word excl. contr.
w4 = cab2 4 5
w5 = cab3 5 6
w6 = cab3a 6 1

W is an efficient 1-contracting collection. Clearly the state map σW is a cyclic permu-
tation, so it follows that A is aperiodically 1-contracting. By Theorem 12, all k-subsets
of the state set are reachable by words of length at most 6(6 − k). In particular, this
automaton satisfies the Černý conjecture.

�

2 3

4

56

1

a,c

a,b

a

a,b

a

b

b

b

Figure 3: An automaton where the labels a and b together make a circle.

Observe that the previous example can be easily extended to an infinite family of
aperiodically 1-contracting automata that have a circle with multiple labels. Theorem 12
applies as long as the excluded state and the contracting state move simultaneously along
the circle on a mutual distance that is relative prime to the number of states, while the
other states are permuting.

As a final illustration, we give an example that shows that our results are not restricted
to automata with a cycle through all states.
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Example 17. The automaton in Figure 4 is aperiodically 1-contracting with the following
collection W of 1-deficient words:

word excl. contr.
w1 = a 1 2
w2 = ab 2 4

word excl. contr.
w3 = abc 3 1
w4 = ac 4 3

Here the state map σW is given by σW (1) = 2, σW (2) = 4, σW (3) = 1, σW (4) = 3, which
defines a cyclic permutation on Q. So also here Theorem 12 applies: all k-subsets of the
state set are reachable with a word of length at most 4(4−k) and the Černý conjecture holds
true. In fact the word acabca is a synchronizing word that is obtained by concatenating
three of the 1-deficient words wi.

1 2

34

a,b

b
b cc

Figure 4: An aperiodically 1-contracting automaton without a full circle.

5 Conclusion and perspectives

We have introduced the notion of 1-contracting automata in terms of the existence of
1-deficient words. We formulated an aperiodicity property and have shown that this
property suffices to prove synchronization. If the 1-deficient words with this property
have length at most n, then the automaton satisfies the Černý conjecture. In particular
this is the case if the state map induced by a collection of minimal 1-deficient words is a
cyclic permutation.

We believe that some elements in our definitions are not really essential for the results,
and that they only help in organizing a clear proof. So a natural question is if the
conditions can be weakened, while still exploiting the ideas we presented in this paper. For
instance, one would expect that under a suitable aperiodicity condition a synchronizing
word of length at most (n−1)2 exists for automata in which every (n−1)-set has a subset
which is reachable by a word of length at most n.

We proved for the class of aperiodically 1-contracting automata that each reachable
subset of size k is reachable by a word of length at most n(n−k) if there exists an efficient
1-contracting collection. In fact we believe that this is a universal property, so we finish
our paper with this conjecture:

Conjecture 18. Let A = (Q,Σ, δ) be an n-state automaton. If S ⊆ Q is a set of size
k and there exists a word w such that δ(Q,w) = S, then there exists a word with this
property of length at most n(n− k).

the electronic journal of combinatorics 23(3) (2016), #P3.12 9



This conjecture would imply the Černý conjecture, since in a synchronizing automaton
there always exists a pair of states that can be mapped to a singleton by some letter a ∈ Σ.
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27, Lecture Notes in Comput. Sci., 5196, Springer, Berlin, 2008.

the electronic journal of combinatorics 23(3) (2016), #P3.12 10


