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Abstract

The dual stable Grothendieck polynomials are a deformation of the Schur func-
tions, originating in the study of the K-theory of the Grassmannian. We generalize
these polynomials by introducing a countable family of additional parameters, and
we prove that this generalization still defines symmetric functions. For this fact,
we give two self-contained proofs, one of which constructs a family of involutions
on the set of reverse plane partitions generalizing the Bender-Knuth involutions on
semistandard tableaux, whereas the other classifies the structure of reverse plane
partitions with entries 1 and 2.

Keywords: Bender-Knuth involutions, reverse plane partitions, dual stable Grothendieck
polynomials, symmetric functions.

1 Introduction

Grothendieck polynomials were introduced by Lascoux and Schützenberger [LasSch82] to
model classes of structure sheaves of Schubert varieties in the K-theory of flag manifolds.
Stable Grothendieck polynomials were introduced by Fomin and Kirillov [FomKir96] as
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stable limits of certain sequences of Grothendieck polynomials. In particular, the stable
Grothendieck polynomials Gλ represent classes of structure sheaves of Schubert varieties
in the K-theory of the Grassmannian, and can be seen as K-theory analogues of Schur
functions. Buch [Buch02] gave a combinatorial formula for Gλ in terms of set-valued
tableaux and described a Littlewood-Richardson rule for their structure coefficients.

Thomas Lam and Pavlo Pylyavskyy, in [LamPyl07, §9.1], and earlier Mark Shimozono
and Mike Zabrocki in unpublished work of 2003, studied dual stable Grothendieck poly-
nomials, the dual basis to the stable Grothendieck polynomials with respect to the Hall
inner product. Lam and Pylyavskyy related these functions to the K-homology of the
Grassmannian and gave a combinatorial definition of these functions in terms of reverse
plane partitions. We now briefly recount their definition.

Let λ/µ be a skew partition. The Schur function sλ/µ is a multivariate generating
function for the semistandard tableaux of shape λ/µ. In the same vein, the dual stable
Grothendieck polynomial gλ/µ is a generating function for the reverse plane partitions of
shape λ/µ; these, unlike semistandard tableaux, are only required to have their entries
increase weakly down columns (and along rows). More precisely, gλ/µ is a formal power
series in countably many commuting indeterminates x1, x2, x3, . . . defined by

gλ/µ =
∑

T is a reverse plane
partition of shape λ/µ

xircont(T ),

where xircont(T ) is the monomial xa11 x
a2
2 x

a3
3 · · · whose i-th exponent ai is the number of

columns of T containing the entry i. Note that we are counting columns rather than cells
here; thus, gλ/µ is not homogeneous in general. As proven in [LamPyl07, §9.1], this power
series gλ/µ is a symmetric function.

We devise a common generalization of the dual stable Grothendieck polynomial gλ/µ
and the classical skew Schur function sλ/µ. Namely, if t1, t2, t3, . . . are countably many
indeterminates, then we set

g̃λ/µ =
∑

T is a reverse plane
partition of shape λ/µ

tceq(T )xircont(T ),

where tceq(T ) is the product tb11 t
b2
2 t

b3
3 · · · whose i-th exponent bi is the number of cells in

the i-th row of T whose entry equals the entry of their neighbor cell directly below them.
This g̃λ/µ becomes gλ/µ when all the ti are set to 1, and becomes sλ/µ when all the ti are
set to 0.

Our main result, Theorem 5, states that g̃λ/µ is a symmetric function (in the variables
x1, x2, x3, . . .). This generalizes [LamPyl07, Theorem 9.1].

We prove this result first using an elaborate generalization of the classical Bender-
Knuth involutions to reverse plane partitions, and then for a second time by analyzing
the structure of reverse plane partitions whose entries lie in {1, 2}. The second proof re-
flects back on the first, in particular providing an alternative definition of the generalized
Bender-Knuth involutions constructed in the first proof, and showing that these involu-
tions are “the only reasonable choice” in a sense that we clarify. We notice that both our
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proofs are explicitly bijective, unlike the proof of [LamPyl07, Theorem 9.1] which relies
on computations in an algebra of operators.

The present paper is organized as follows: In Section 2, we recall classical definitions
and introduce notations pertaining to combinatorics and symmetric functions. In Section
3, we define the refined dual stable Grothendieck polynomials g̃λ/µ; we state our main
result that they are symmetric functions, and do the first steps of its proof, by reducing
it to a purely combinatorial statement about the existence of an involution with certain
properties. In Section 4, we describe the idea of constructing this involution in an ele-
mentary way without proofs. In Section 5, we prove various properties of this involution
advertised in Section 4, thus finishing the proof of our main result. In Section 6, we
recapitulate the definition of the classical Bender-Knuth involution, and show that our
involution is a generalization of the latter. Finally, in Section 7 we study the structure
of reverse plane partitions with entries belonging to {1, 2}, which gives us an explicit
formula for the t-coefficients of g̃λ/µ(x1, x2, 0, 0, . . . ; t). As a consequence, we observe that
the involution constructed in Sections 4 and 5 is the unique involution that shares certain
natural properties with the classical Bender-Knuth involutions.

An extended abstract of this paper, omitting the proofs, is to appear as [GaGrLi16].

1.1 Acknowledgments

We owe our familiarity with dual stable Grothendieck polynomials to Richard Stanley.
We thank Alexander Postnikov for providing context and motivation, and Thomas Lam
and Pavlo Pylyavskyy for interesting conversations.

2 Notations and definitions

Let us begin by defining our notations.

2.1 Partitions and tableaux

We set N = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .}.
A sequence α = (α1, α2, α3, . . .) of nonnegative integers is called a weak composition if

the sum of its entries is finite. This sum is denoted by |α|. We shall always write αi for
the i-th entry of a weak composition α.

A partition is a weak composition (α1, α2, α3, . . .) satisfying α1 > α2 > α3 > · · · . As
usual, we often omit trailing zeroes when writing a weak composition. For instance, the
partition (5, 2, 1, 0, 0, 0, . . .) can be also written as (5, 2, 1, 0) or (5, 2, 1).

We identify each partition λ with the subset
{

(i, j) ∈ N2
+ | j 6 λi

}
of N2

+, called the
Young diagram of λ. We draw this subset as a left-aligned table of empty boxes, where
the box (1, 1) is in the top-left corner while the box (2, 1) is directly below it; this is
the English notation, also known as the matrix notation. See [Fulton97] for the detailed
definition.
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Figure 1: Fillings of (3, 2, 2)/(1): (a) is not an rpp as it has a 4 below a 6, (b) is an
rpp but not a semistandard tableau as it has a 3 below a 3, (c) is a semistandard tableau
(and hence also an rpp).

A skew partition λ/µ is a pair (λ, µ) of partitions satisfying µ ⊆ λ (as subsets of
the plane). In this case, we shall also often use the notation λ/µ for the set-theoretic
difference of λ and µ; this difference is called the Young diagram of λ/µ.

If λ/µ is a skew partition, then a filling of λ/µ means a map T : λ/µ → N+. It is
visually represented by drawing λ/µ and filling each box c with the entry T (c). Three
examples of a filling can be found on Figure 1.

A filling T : λ/µ → N+ of λ/µ is called a reverse plane partition of shape λ/µ if its
values increase weakly in each row of λ/µ from left to right and in each column of λ/µ from
top to bottom. If, in addition, the values of T increase strictly down each column, then
T is called a semistandard tableau of shape λ/µ. See Fulton’s [Fulton97] for an exposition
of properties and applications of semistandard tableaux. We denote the set of all reverse
plane partitions of shape λ/µ by RPP (λ/µ). We abbreviate reverse plane partitions as
rpps.

Examples of an rpp, of a non-rpp and of a semistandard tableau can be found on
Figure 1.

2.2 Symmetric functions

A symmetric function is defined to be a power series in countably many indeterminates
x1, x2, x3, . . . over Z that is invariant under permutations of x1, x2, x3, . . . with finite
support and that has the degrees of its monomials bounded from above.

The symmetric functions form a ring, which is called the ring of symmetric functions
and denoted by Λ. In [LamPyl07] this ring is denoted by Sym, while the notation Λ is
reserved for the set of all partitions. Much research has been done on symmetric functions
and their relations to Young diagrams and tableaux; see [Stan99, Chapter 7], [Macdon95]
and [GriRei15, Chapter 2] for expositions.

Given a filling T of a skew partition λ/µ, its content is a weak composition cont (T ) =
(r1, r2, r3, . . . ), where ri = |T−1(i)| is the number of entries of T equal to i. For a skew
partition λ/µ, we define the Schur function sλ/µ to be the formal power series

sλ/µ(x1, x2, . . . ) =
∑

T is a semistandard
tableau of shape λ/µ

xcont(T ) ∈ Z [[x1, x2, x3, . . .]] .
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Here, for every weak composition α = (α1, α2, α3, . . .), we define a monomial xα to be
xα1
1 x

α2
2 x

α3
3 · · · . These Schur functions are symmetric:

Proposition 1. We have sλ/µ ∈ Λ for every skew partition λ/µ.

This result appears, e.g., in [Stan99, Theorem 7.10.2] and [GriRei15, Proposition 2.11];
it is commonly proven bijectively using the so-called Bender-Knuth involutions. We shall
recall the definitions of these involutions in Section 6.

Replacing “semistandard tableau” by “rpp” in the definition of a Schur function in
general gives a non-symmetric function. Nevertheless, Lam and Pylyavskyy [LamPyl07,
§9] have been able to define symmetric functions from rpps, albeit using a subtler con-
struction instead of the content cont (T ).

Namely, for a filling T of a skew partition λ/µ, we define its irredundant content
(or, by way of abbreviation, its ircont statistic) as the weak composition ircont (T ) =
(r1, r2, r3, . . . ) where ri is the number of columns of T that contain an entry equal to
i. For instance, if Ta, Tb, and Tc are the fillings from Figure 1, then their irredundant
contents are

ircont(Ta) = (0, 1, 2, 1, 0, 1), ircont(Tb) = (0, 1, 3, 1), ircont(Tc) = (0, 1, 3, 1, 0, 0, 1),

because, for example, Ta has one column with a 4 in it (so (ircont(Ta))4 = 1) and Tb
contains three columns with a 3 (so (ircont(Tb))3 = 3).

Notice that if T is a semistandard tableau, then cont(T ) and ircont(T ) coincide.
For the rest of this section, we fix a skew partition λ/µ. Now, the dual stable

Grothendieck polynomial gλ/µ is defined to be the formal power series∑
T is an rpp
of shape λ/µ

xircont(T ).

Unlike the Schur function sλ/µ, it is (in general) not homogeneous, because whenever a
column of an rpp T contains an entry several times, the corresponding monomial xircont(T )

“counts” this entry only once. It is fairly clear that the highest-degree homogeneous com-
ponent of gλ/µ is sλ/µ. Therefore, gλ/µ can be regarded as an inhomogeneous deformation
of the Schur function sλ/µ.

Lam and Pylyavskyy, in [LamPyl07, §9.1], have shown the following fact:

Proposition 2. We have gλ/µ ∈ Λ for every skew partition λ/µ.

They prove this proposition using generalized plactic algebras [FomGre06, Lemma 3.1],
and also give a second, combinatorial proof for the case µ = ∅ by explicitly expanding
gλ/∅ as a sum of Schur functions.

In the next section, we shall introduce a refinement of these gλ/µ, and later we will
reprove Proposition 2 in a bijective and elementary way.
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3 Refined dual stable Grothendieck polynomials

3.1 Definition

Let t = (t1, t2, t3, . . .) be a sequence of further indeterminates. For any weak composition
α, we define tα to be the monomial tα1

1 t
α2
2 t

α3
3 · · · .

If T is a filling of a skew partition λ/µ, then a redundant cell of T is a cell of λ/µ
whose entry is equal to the entry directly below it. That is, a cell (i, j) of λ/µ is redundant
if (i+ 1, j) is also a cell of λ/µ and T (i, j) = T (i+ 1, j). Notice that a semistandard
tableau is the same thing as an rpp which has no redundant cells.

If T is a filling of λ/µ, then we define the column equalities vector (or, by way of
abbreviation, the ceq statistic) of T to be the weak composition ceq (T ) = (c1, c2, c3, . . . )
where ci is the number of j ∈ N+ such that (i, j) is a redundant cell of T . Visually
speaking, (ceq (T ))i is the number of columns of T whose entry in the i-th row equals
their entry in the (i+ 1)-th row. For instance, for fillings Ta, Tb, Tc from Figure 1 we have
ceq(Ta) = (0, 1), ceq(Tb) = (1), and ceq(Tc) = ().

Notice that |ceq(T )| is the number of redundant cells in T , so we have

|ceq(T )|+ |ircont(T )| = |λ/µ| (1)

for all rpps T of shape λ/µ.
Let now λ/µ be a skew partition. We set

g̃λ/µ(x; t) =
∑

T is an rpp
of shape λ/µ

tceq(T )xircont(T ) ∈ Z [t1, t2, t3, . . .] [[x1, x2, x3, . . .]] .

Let us give some examples of g̃λ/µ.

Example 3.

(a) If λ/µ is a single row with n cells, then for each rpp T of shape λ/µ we have
ceq(T ) = (0, 0, . . . ) and ircont(T ) = cont(T ). In fact, any rpp of shape λ/µ is a
semistandard tableau in this case. Therefore we get

g̃λ/µ(x; t) = hn(x) =
∑

a16a26...6an

xa1xa2 · · ·xan .

Here hn(x) is the n-th complete homogeneous symmetric function.

(b) If λ/µ is a single column with n cells, then, by (1), for all rpps T of shape λ/µ we
have |ceq(T )|+ |ircont(T )| = n, so in this case

g̃λ/µ(x; t) =
n∑
k=0

ek (t1, t2, . . . , tn−1) en−k (x1, x2, . . .) = en(t1, t2, . . . , tn−1, x1, x2, . . . ),

where ei (ξ1, ξ2, ξ3, . . .) denotes the i-th elementary symmetric function in the inde-
terminates ξ1, ξ2, ξ3, . . ..
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The power series g̃λ/µ generalize the power series gλ/µ and sλ/µ studied before. The
following proposition is clear:

Proposition 4. Let λ/µ be a skew partition.

(a) Specifying t = (1, 1, 1, . . .) yields g̃λ/µ(x; t) = gλ/µ(x).

(b) Specifying t = (0, 0, 0, . . .) yields g̃λ/µ(x; t) = sλ/µ(x).

3.2 The symmetry statement

Our main result is now the following:

Theorem 5. Let λ/µ be a skew partition. Then g̃λ/µ(x; t) is symmetric in x.

Here, “symmetric in x” means “invariant under all permutations of the indetermi-
nates x1, x2, x3, . . . with finite support”, while t1, t2, t3, . . . remain unchanged. Clearly,
Theorem 5 implies the symmetry of gλ/µ and sλ/µ due to Proposition 4. We shall prove
Theorem 5 bijectively, and the core of our proof will be the following restatement of
Theorem 5:

Theorem 6. Let λ/µ be a skew partition and let i ∈ N+. Then, there exists an involution
Bi : RPP (λ/µ) → RPP (λ/µ) which preserves the ceq statistics and acts on the ircont
statistic by the transposition of its i-th and i+ 1-th entries.

This involution Bi is a generalization of the i-th Bender-Knuth involution defined for
semistandard tableaux (see, e.g., [GriRei15, proof of Proposition 2.11]), but its definition
is more complicated than that of the latter. Defining it and proving its properties will
take a significant part of this paper. We will compare our involution Bi with the i-th
Bender-Knuth involution in Section 6.

Proof of Theorem 5 using Theorem 6. We need to prove that g̃λ/µ(x; t) is invariant under
all finite permutations of the indeterminates x1, x2, x3, . . .. The group of such permuta-
tions is generated by s1, s2, s3, . . ., where for each i ∈ N+, we define si as the permutation
of N+ which transposes i with i+1 and leaves all other positive integers unchanged. Hence,
it suffices to show that g̃λ/µ(x; t) is invariant under each of the permutations s1, s2, s3, . . ..
In other words, it suffices to show that si · g̃λ/µ(x; t) = g̃λ/µ(x; t) for each i ∈ N+.

So fix i ∈ N+. In order to prove si · g̃λ/µ(x; t) = g̃λ/µ(x; t), it suffices to find a bijection
Bi : RPP (λ/µ) → RPP (λ/µ) with the property that every T ∈ RPP (λ/µ) satisfies
ceq (Bi (T )) = ceq (T ) and ircont (Bi (T )) = si · ircont (T ). Theorem 6 yields precisely
such a bijection, which turns out to be an involution.
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3.3 Reduction to 12-rpps

Fix a skew partition λ/µ. We shall make one further simplification before we step to the
actual proof of Theorem 6. We define a 12-rpp to be an rpp whose entries all belong to
the set {1, 2}. We let RPP12 (λ/µ) be the set of all 12-rpps of shape λ/µ.

Lemma 7. There exists an involution B : RPP12 (λ/µ) → RPP12 (λ/µ) which preserves
the ceq statistic and switches the number of columns containing a 1 with the number of
columns containing a 2. In other words, B switches the first two entries of the ircont
statistic.

This Lemma implies Theorem 6: for any i ∈ N+ and for T an rpp of shape λ/µ, we
construct Bi(T ) as follows:

• Ignore all entries of T not equal to i or i+ 1.

• Replace all entries i by 1 and all entries i + 1 by 2. We get a 12-rpp T ′ of some
smaller shape, which is still a skew partition. (The skew partition itself is not always
uniquely determined, but its Young diagram is, which is all that matters to us here.)

• Replace T ′ by B(T ′).

• In B(T ′), replace back all entries 1 by i and all entries 2 by i+ 1.

• Finally, restore the remaining entries of T that were ignored on the first step.

It is clear that this operation acts on ircont(T ) by a transposition of the i-th and
i+ 1-th entries. The fact that it does not change ceq(T ) is also not hard to show: the set
of redundant cells remains the same.

4 Construction of B

In this section we are going to sketch the definition of B and state some of its properties.
We postpone the proofs until the next section.

For the whole Sections 4 and 5, we shall be working in the situation of Lemma 7. In
particular, we fix a skew partition λ/µ.

A 12-table means a filling T : λ/µ → {1, 2} of λ/µ such that the entries of T are
weakly increasing down columns. We do not require them to be weakly increasing along
rows. Every column of a 12-table is a sequence of the form (1, 1, . . . , 1, 2, 2, . . . , 2). We
say that such a sequence is

• 1-pure if it is nonempty and consists purely of 1’s,

• 2-pure if it is nonempty and consists purely of 2’s,

• mixed if it contains both 1’s and 2’s.
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Definition 8. For a 12-table T , we define flip(T ) to be the 12-table obtained from T by
changing each column of T as follows:

• If this column is 1-pure, we replace all its entries by 2’s, so that it becomes 2-pure.

Otherwise, if this column is 2-pure, we replace all its entries by 1’s, so that it
becomes 1-pure.

Otherwise this column is either mixed or empty, in which case we do not change
it.

If T is a 12-rpp then flip(T ) need not be a 12-rpp, because it can contain a 2 to the
left of a 1 in some row. We say that a positive integer k is a descent of a 12-table P if
there is a 2 in the column k and there is a 1 to the right of it in the column k + 1. We
will encounter three possible kinds of descents depending on the types of columns k and
k + 1:

(M1) The k-th column of P is mixed and the (k + 1)-th column of P is 1-pure.

(2M) The k-th column of P is 2-pure and the (k + 1)-th column of P is mixed.

(21) The k-th column of P is 2-pure and the (k + 1)-th column of P is 1-pure.

For an arbitrary 12-table it can happen also that two mixed columns form a descent,
but such a descent will never arise in our process.

For each of the three types of descents, we will define what it means to resolve this
descent. This is an operation which transforms the 12-table P by changing the entries in
its k-th and (k + 1)-th columns. These changes can be informally explained by Figure 2:

1 1

2

→

1

1
2

1

2
2

→ 1 2

2

1
2

→ 2
1

(M1) (2M) (21)

Figure 2: The three descent-resolution steps

For example, if k is a descent of type (M1) in a 12-table P , then we define the 12-table
reskP as follows: the k-th column of reskP is 1-pure; the (k + 1)-th column of reskP is
mixed and the highest 2 in it is in the same row as the highest 2 in the k-th column of P ;
all other columns of reskP are copied over from P unchanged. The definitions of reskP for
the other two types of descents are similar, and will be elaborated upon in Subsection 5.3.
We say that reskP is obtained from P by resolving the descent k, and we say that passing
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from P to reskP constitutes a descent-resolution step. Of course, a 12-table P can have
several descents and thus offer several ways to proceed by descent-resolution steps.

Now the map B is defined as follows: take any 12-rpp T and apply flip to it to get a
12-table flip(T ). Next, apply descent-resolution steps to flip(T ) in arbitrary order until
we get a 12-table with no descents left. Put B(T ) := P . A rigorous statement of this is
Definition 19.

In the next section we will see that B(T ) is well-defined: the process terminates after
a finite number of descent-resolution steps, and the result does not depend on the order of
steps. We will also see that B is an involution RPP12 (λ/µ)→ RPP12 (λ/µ) that satisfies
the claims of Lemma 7. An alternative proof of all these facts can be found in Section 7.

5 Proof of Lemma 7

We shall now prove Lemma 7 in detail.
Recall that every column of a 12-table is a sequence of the form (1, 1, . . . , 1, 2, 2, . . . , 2).

If s is a sequence of the form (1, 1, . . . , 1, 2, 2, . . . , 2), then we define the signature sig (s)
of s to be

sig (s) =


0, if s is 2-pure or empty;
1, if s is mixed;
2, if s is 1-pure

.

Definition 9. For any 12-table T , we define a nonnegative integer ` (T ) by

` (T ) =
∑
h∈N+

h · sig (the h-th column of T ) .

For instance, if T is the 12-table

1 2 1 2

1 1 2

2 1 1 2

2 2

(2)

then ` (T ) = 1 · 0 + 2 · 1 + 3 · 2 + 4 · 0 + 5 · 2 + 6 · 0 + 7 · 0 + 8 · 0 + · · · = 18.

5.1 Descents, separators, and benign 12-tables

In Subsection 4, we have defined a “descent” of a 12-table. Let us reword this definition in
more formal terms: If T is a 12-table, then we define a descent of T to be a positive integer
i such that there exists an r ∈ N+ satisfying (r, i) ∈ λ/µ, (r, i+ 1) ∈ λ/µ, T (r, i) = 2
and T (r, i+ 1) = 1. For instance, the descents of the 12-table shown in (2) are 1 and 4.
Clearly, a 12-rpp of shape λ/µ is the same as a 12-table which has no descents.

If T is a 12-table, and if k ∈ N+ is such that the k-th column of T is mixed, then we
define sepk T to be the smallest r ∈ N+ such that (r, k) ∈ λ/µ and T (r, k) = 2. Thus,
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every 12-table T , every r ∈ N+ and every k ∈ N+ such that the k-th column of T is mixed
and such that (r, k) ∈ λ/µ satisfy

T (r, k) =

{
1, if r < sepk T ;
2, if r > sepk T.

(3)

If T is a 12-table, then we let seplistT denote the list of all values sepk T , in the order
of increasing k. Here k ranges over all positive integers for which the k-th column of T is
mixed. For instance, if T is

1 1 1

2 1 1 2

1 2 1

2 2 2

then sep1 T = 4, sep3 T = 4, and sep5 T = 2, and there are no other k for which sepk T is
defined; thus, seplistT = (4, 4, 2).

We say that a 12-table T is benign if the list seplistT is weakly decreasing. For
example, the 12-table in (2) is benign, but replacing its third column by (1, 2, 2) and its
fourth column by (1, 1, 2) would yield a 12-table which is not benign.

All 12-rpps are benign 12-tables, but the converse is not true. If T is a benign 12-table,
then

there exists no descent k of T such that both the k-th column of T

and the (k + 1) -th column of T are mixed. (4)

Let BT12 (λ/µ) denote the set of all benign 12-tables; we have RPP12 (λ/µ) ⊆ BT12 (λ/µ).
Recall the map flip defined for 12-tables in Definition 8. If T ∈ BT12 (λ/µ) then

flip(T ) ∈ BT12 (λ/µ) as well because T and flip(T ) have the same mixed columns. Thus,
the map flip restricts to a map BT12 (λ/µ)→ BT12 (λ/µ) which we will also denote flip.

Remark 10. It is clear that flip is an involution on BT12 (λ/µ) that preserves ceq and
seplist but switches the first two entries of ircont. In other words, if some T ∈ BT12 (λ/µ)
has ircont (T ) = (a, b, 0, 0, 0, . . .), then ircont (flip (T )) = (b, a, 0, 0, 0, . . .).

5.2 Plan of the proof

Let us now briefly sketch the ideas behind the rest of the proof before we go into them
in detail. The map flip : BT12 (λ/µ) → BT12 (λ/µ) does not generally send 12-rpps to
12-rpps, i.e. it does not restrict to a map RPP12 (λ/µ)→ RPP12 (λ/µ). However, we shall
amend this by defining a way to transform any benign 12-table into a 12-rpp by what we
call “resolving descents”. The process of “resolving descents” will be a stepwise process,
and will be formalized in terms of a binary relation V on the set BT12 (λ/µ) which we will
soon introduce. The intuition behind saying “P V Q” is that the benign 12-table P has a
descent, resolving which yields the benign 12-table Q. Starting with a benign 12-table P ,
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we can repeatedly resolve descents until this is no longer possible. We have some freedom
in performing this process, because at any step there can be a choice of several descents
to resolve; but we will see that the final result does not depend on the process. Hence,
the final result can be regarded as a function of P . We will denote it by normP , and we
will see that it is a 12-rpp. We will then define a map B : RPP12 (λ/µ) → RPP12 (λ/µ)
by B (T ) = norm (flipT ), and show that it is an involution satisfying the properties that
we want it to satisfy.

5.3 Resolving descents

Now we come to the details.
Let k ∈ N+. Let P ∈ BT12 (λ/µ). Assume for the whole Subsection 5.3 that k is a

descent of P . Thus, the k-th column of P must contain at least one 2. Hence, the k-th
column of P is either mixed or 2-pure. Similarly, the (k + 1)-th column of P is either
mixed or 1-pure. But the k-th and the (k + 1)-th columns of P cannot both be mixed
(by (4), because P is benign). Thus, exactly one of the following three statements holds:

(M1) The k-th column of P is mixed and the (k + 1)-th column of P is 1-pure.

(2M) The k-th column of P is 2-pure and the (k + 1)-th column of P is mixed.

(21) The k-th column of P is 2-pure and the (k + 1)-th column of P is 1-pure.

Now, we define a new 12-table resk P as follows (see Figure 2 for illustration):

• If we have (M1), then resk P is the 12-table defined as follows: The k-th col-
umn of resk P is 1-pure; the (k + 1)-th column of resk P is mixed and satisfies
sepk+1 (resk P ) = sepk P ; all other columns of resk P are copied over from P un-
changed. We encourage the reader to check that this 12-table is well-defined.

• If we have (2M), then resk P is the 12-table defined as follows: The k-th column
of resk P is mixed and satisfies sepk (resk P ) = sepk+1 P ; the (k + 1)-th column of
resk P is 2-pure; all other columns of resk P are copied over from P unchanged.

• If we have (21), then resk P is the 12-table defined as follows: The k-th column
of resk P is 1-pure; the (k + 1)-th column of resk P is 2-pure; all other columns of
resk P are copied over from P unchanged.

In either case, resk P is a well-defined 12-table. It is furthermore clear that

seplist (resk P ) = seplistP.

Thus, resk P is benign, since P is benign; that is, resk P ∈ BT12 (λ/µ). We say that resk P
is the 12-table obtained by resolving the descent k in P .

Example 11. Let P be the 12-table on the left:
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1 2 1

1 1 2

2 1 1

2 2 1

2

1 2 1

2 1 2

1 2 1

2 2 1

2

1 2 1

1 1 2

2 1 1

2 1 2

2

1 1 2

1 1 1

2 1 1

2 2 1

2

P res1 P res2 P res4 P

Then P is a benign 12-table, and its descents are 1, 2 and 4. We have sep2 P = 4.
If we set k = 1 then we have (2M), if we set k = 2 then we have (M1), and if we set

k = 4 then we have (21). We can resolve each of these three descents; the results are the
three 12-tables on the right.

We notice that each of the three 12-tables res1 P , res2 P and res4 P still has descents.
In order to get a 12-rpp from P , we will have to keep resolving these descents until none
remain.

We now observe some further properties of resk P :

Proposition 12. Let P ∈ BT12 (λ/µ) and k ∈ N+ be such that k is a descent of P .

(a) The 12-table resk P differs from P only in columns k and k + 1.

(b) The k-th and the (k + 1)-th columns of resk P depend only on the k-th and the
(k + 1)-th columns of P .

(c) We have
ceq (resk P ) = ceq (P ) .

(d) We have
ircont (resk P ) = ircont (P ) .

(e) The integer k is a descent of flip (resk P ), and we have

resk (flip (resk P )) = flip (P ) .

(f) Recall that we defined a nonnegative integer ` (T ) for every 12-table T in Definition
9. We have

` (P ) > ` (resk P ) .

Proof of Proposition 12. All parts of Proposition 12 follow from straightforward argu-
ments using the definitions of resk and flip and (3).
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5.4 The descent-resolution relation V

Definition 13. Let us now define a binary relation V on the set BT12 (λ/µ) as follows:
Let P ∈ BT12 (λ/µ) and Q ∈ BT12 (λ/µ). If k ∈ N+, then we write P V

k
Q if k is a

descent of P and we have Q = resk P . We write P V Q if there exists a k ∈ N+ such
that P V

k
Q.

Proposition 12 translates into the following properties of this relation V:

Lemma 14. Let P ∈ BT12 (λ/µ) and Q ∈ BT12 (λ/µ) be such that P V Q. Then:

(a) We have ceq (Q) = ceq (P ).

(b) We have ircont (Q) = ircont (P ).

(c) The benign 12-tables flip (P ) and flip (Q) have the property that flip (Q) V flip (P ).

(d) We have ` (P ) > ` (Q).

We now define
∗
V to be the reflexive-and-transitive closure of the relation V. This

relation
∗
V is reflexive and transitive, and extends the relation V. Lemma 14 thus yields:

Lemma 15. Let P ∈ BT12 (λ/µ) and Q ∈ BT12 (λ/µ) be such that P
∗
V Q. Then:

(a) We have ceq (Q) = ceq (P ).

(b) We have ircont (Q) = ircont (P ).

(c) The benign 12-tables flip (P ) and flip (Q) have the property that flip (Q)
∗
V flip (P ).

(d) We have ` (P ) > ` (Q).

We now state the following crucial lemma:

Lemma 16. Let A, B and C be three elements of BT12 (λ/µ) satisfying A V B and

AV C. Then, there exists a D ∈ BT12 (λ/µ) such that B
∗
V D and C

∗
V D.

Proof of Lemma 16. If B = C, then we can simply choose D = B = C; thus, we assume
that B 6= C.

Let u, v ∈ N+ be such that A V
u
B and A V

v
C. Thus, B = resuA and C = resv A.

Since B 6= C, we have u 6= v. Without loss of generality, assume that u < v. We are in
one of the following two cases:

Case 1: We have u = v − 1.
Case 2: We have u < v − 1.
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Let us deal with Case 2 first. In this case, {u, u+ 1} ∩ {v, v + 1} = ∅. It follows that
resv (resuA) and resu (resv A) are well-defined and resu (resv A) = resv (resuA). Setting
D = resu (resv A) = resv (resuA) completes the proof in this case.

Now, let us consider Case 1. The v-th column of A must contain a 1 (since v−1 = u is
a descent of A) and a 2 (since v is a descent of A). Hence, the v-th column of A is mixed.
Since A is benign but has v − 1 and v as descents, it thus follows that the (v − 1)-th
column of A is 2-pure and the (v + 1)-th column of A is 1-pure. We can represent the
relevant portion (that is, the (v − 1)-th, v-th and (v + 1)-th columns) of the 12-table A
as follows:

A =

1 1

2
2

. (5)

Notice that the separating line which separates the 1’s from the 2’s in column v is lower
than the upper border of the (v − 1)-th column (since v− 1 is a descent of A), and higher
than the lower border of the (v + 1)-th column (since v is a descent of A).

Let s = sepv A. Then, the cells (s, v − 1), (s, v), (s, v + 1), (s+ 1, v − 1), (s+ 1, v),
(s+ 1, v + 1) all belong to λ/µ, due to what we just said about separating lines. We shall
refer to this observation as the “six-cells property”.

Now, B = resuA = resv−1A, so B is represented as follows:

B =

1
1 2

2

,

where sepv−1B = s. In other words, the separating line in the (v − 1)-th column of B is
between the cells (s, v − 1) and (s+ 1, v − 1). Now, v is a descent of B. Resolving this

the electronic journal of combinatorics 23(3) (2016), #P3.14 15



descent yields a 12-table resv B which is represented as follows:

resv B =

2
1 1

2

.

This, in turn, shows that v − 1 is a descent of resv B by the six-cells property. Resolving
this descent yields a 12-table resv−1 (resv B) which is represented as follows:

resv−1 (resv B) =

1 2

1
2

, (6)

where sepv (resv−1 (resv B)) = s.
On the other hand, C = resv A. We can apply a similar argument as above to show

that the 12-table resv (resv−1C) is well-defined, and is exactly equal to the 12-table in (6).
Hence, resv−1 (resv B) = resv (resv−1C), and setting D equal to this 12-table completes
the proof in Case 1.

5.5 The normalization map

The following proposition is the most important piece in our puzzle:

Proposition 17. For every T ∈ BT12 (λ/µ), there exists a unique N ∈ RPP12 (λ/µ) such

that T
∗
V N .

Proof of Proposition 17. For every T ∈ BT12 (λ/µ), let Norm (T ) denote the set{
N ∈ RPP12 (λ/µ) | T

∗
V N

}
.

Thus, in order to prove Proposition 17, we need to show that for every T ∈ BT12 (λ/µ)
this set Norm (T ) is a one-element set.

We shall prove this by strong induction on ` (T ). Fix some T ∈ BT12 (λ/µ), and
assume that

Norm (S) is a one-element set for every S ∈ BT12 (λ/µ) satisfying ` (S) < ` (T ) . (7)
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We then need to prove that Norm (T ) is a one-element set.
Let Z =

{
S ∈ BT12 (λ/µ) | T V S

}
. In other words, Z is the set of all benign 12-

tables S which can be obtained from T by resolving one descent. If Z is empty, then
T ∈ RPP12 (λ/µ), so that Norm (T ) = {T} and we are done. Hence, we can assume that
Z is nonempty. Therefore T /∈ RPP12 (λ/µ).

Thus, every N ∈ RPP12 (λ/µ) satisfying T
∗
V N must satisfy Z

∗
V N for some Z ∈ Z.

In other words, every N ∈ Norm (T ) must belong to Norm (Z) for some Z ∈ Z. The
converse of this clearly holds as well. Hence,

Norm (T ) =
⋃
Z∈Z

Norm (Z) . (8)

Let us now notice that:

• By Lemma 14 (d) and (7), for every Z ∈ Z, the set Norm (Z) is a one-element set.

• By Lemma 16, for every B ∈ Z and C ∈ Z, we have Norm (B)∩Norm (C) 6= ∅. (In
more detail: Let B ∈ Z and C ∈ Z. By Lemma 16, applied to A = T , there exists a

D ∈ BT12 (λ/µ) such that B
∗
V D and C

∗
V D. This D has ` (T ) > ` (B) > ` (D),

by Lemma 14 (d) and Lemma 15 (d), respectively. Hence, by (7), the set Norm (D)
is a one-element set. Its unique element clearly lies in both Norm (B) and Norm (C),
so Norm (B) ∩ Norm (C) 6= ∅.)

Hence, (8) shows that Norm (T ) is a union of one-element sets, any two of which
have a nonempty intersection, and thus are identical. Moreover, this union is nonempty,
since Z is nonempty. Hence, Norm (T ) itself is a one-element set. This completes our
induction.

Definition 18. Let T ∈ BT12 (λ/µ). Proposition 17 shows that there exists a unique

N ∈ RPP12 (λ/µ) such that T
∗
V N . We define norm (T ) to be this N .

5.6 Definition of B

Definition 19. Let us define a map B : RPP12 (λ/µ) → RPP12 (λ/µ) as follows: For
every T ∈ RPP12 (λ/µ), set B (T ) = norm (flip (T )).

In order to complete the proof of Lemma 7, we need to show that B is an involution,
preserves the ceq statistic, and switches the number of columns containing a 1 with the
number of columns containing a 2. At this point, all of this is easy:

B is an involution. Let T ∈ RPP12 (λ/µ). We have flip (T )
∗
V norm (flip (T )) = B (T ).

Lemma 15 (c) thus yields flip (B (T ))
∗
V flip (flipT ) = T .

But B(B(T )) = norm (flip (B (T ))) is the unique N ∈ RPP12 (λ/µ) such that

flip (B (T ))
∗
V N.

Since T ∈ RPP12 (λ/µ), we have B(B(T )) = T , as desired.
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B preserves ceq. Let T ∈ RPP12 (λ/µ). As above, flip (T )
∗
V B (T ). Lemma 15 (a) and

Remark 10 thus yield ceq (B (T )) = ceq (flip (T )) = ceq (T ).

B switches the numbers of columns containing 1 and 2. Let T ∈ RPP12 (λ/µ). As above,

flip (T )
∗
V B (T ). Lemma 15 (b) thus yields ircont (B (T )) = ircont (flip (T )). Due to

Remark 10, this is the result of switching the first two entries of ircont (T ).

Lemma 7 is now proven.

6 The classical Bender-Knuth involutions

Fix a skew partition λ/µ and a positive integer i. We claim that the involution Bi :
RPP (λ/µ) → RPP (λ/µ) we have constructed in the proof of Theorem 6 is a general-
ization of the i-th Bender-Knuth involution defined for semistandard tableaux. First, we
shall define the i-th Bender-Knuth involution, following [GriRei15, proof of Proposition
2.11] and [Stan99, proof of Theorem 7.10.2].

Let SST (λ/µ) denote the set of all semistandard tableaux of shape λ/µ. We define a
map BKi : SST (λ/µ)→ SST (λ/µ) as follows:

Let T ∈ SST (λ/µ). Then every column of T contains at most one i and at most one
i+ 1. If a column contains both an i and an i+ 1, we will mark its entries as “ignored”.
Now, let k ∈ N+. The k-th row of T is a weakly increasing sequence of positive integers;
thus, it contains a (possibly empty) string of i’s followed by a (possibly empty) string
of (i+ 1)’s. These two strings together form a substring of the k-th row which looks as
follows:

(i, i, . . . , i, i+ 1, i+ 1, . . . , i+ 1) .

Some of the entries of this substring are “ignored”; it is easy to see that the “ignored” i’s
are gathered at the left end of the substring whereas the “ignored” (i+ 1)’s are gathered
at the right end of the substring. So the substring looks as follows: i, i, . . . , i︸ ︷︷ ︸

a many i’s which
are “ignored”

, i, i, . . . , i︸ ︷︷ ︸
r many i’s which
are not “ignored”

, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
s many (i+1)’s which
are not “ignored”

, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
b many (i+1)’s which

are “ignored”


for some a, r, s, b ∈ N. Now, we change this substring into i, i, . . . , i︸ ︷︷ ︸

a many i’s which
are “ignored”

, i, i, . . . , i︸ ︷︷ ︸
s many i’s which
are not “ignored”

, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
r many (i+1)’s which
are not “ignored”

, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
b many (i+1)’s which

are “ignored”

 .

We do this for every k ∈ N+. At the end, we have obtained a new semistandard tableau
of shape λ/µ. We define BKi (T ) to be this new tableau.
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Proposition 20. The map BKi : SST (λ/µ)→ SST (λ/µ) thus defined is an involution.
It is known as the i-th Bender-Knuth involution.

Now, every semistandard tableau of shape λ/µ is also an rpp of shape λ/µ. Hence,
Bi (T ) is defined for every T ∈ SST (λ/µ). Our claim is the following:

Proposition 21. For every T ∈ SST (λ/µ), we have BKi (T ) = Bi (T ).

Proof of Proposition 21. Recall that the map Bi comes from the map B we defined on
12-rpps in Section 5. We could have constructed the map BKi from the map BK1 in an
analogous way. We define a 12-sst to be a semistandard tableau whose entries all belong to
the set {1, 2}. Clearly, to prove Proposition 21, it suffices to prove that BK1(T ) = B(T )
for all 12-ssts T .

Let T be a 12-sst, and let k ∈ N+. The k-th row of T has the form 1, 1, . . . , 1︸ ︷︷ ︸
a 1’s which are in
mixed columns

, 1, 1, . . . , 1︸ ︷︷ ︸
r 1-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
s 2-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
b 2’s which are in
mixed columns


where we use the observation that each 1-pure and each 2-pure column contains only one
entry. Thus, the k-th row of flip (T ) is 1, 1, . . . , 1︸ ︷︷ ︸

a 1’s which are in
mixed columns

, 2, 2, . . . , 2︸ ︷︷ ︸
r 2-pure
columns

, 1, 1, . . . , 1︸ ︷︷ ︸
s 1-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
b 2’s which are in
mixed columns

 .

We can now repeatedly apply descent-resolution steps to obtain a tableau whose k-th row
is  1, 1, . . . , 1︸ ︷︷ ︸

a 1’s which are in
mixed columns

, 1, 1, . . . , 1︸ ︷︷ ︸
s 1-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
r 2-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
b 2’s which are in
mixed columns

 .

Repeating this process for every row of flip (T ), we obtain a 12-rpp. By the definition
of B, this rpp must equal B(T ). By the above description, it is also equal to BK1(T ),
because the ignored entries in the construction of BK1(T ) are precisely the entries lying
in mixed columns. This completes the proof.

7 The structure of 12-rpps

In this section, we restrict ourselves to the two-variable dual stable Grothendieck polyno-
mial g̃λ/µ(x1, x2, 0, 0, . . . ; t) defined as the result of substituting 0, 0, 0, . . . for x3, x4, x5, . . .
in g̃λ/µ. We can represent it as a polynomial in t with coefficients in Z[x1, x2]:

g̃λ/µ(x1, x2, 0, 0, . . . ; t) =
∑
α∈NN+

tαQα(x1, x2),
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1 2

1 1 1 2

1 1 1 2 2

1 2 2 2

2 2 2 2

1 1

1 1 1 1

1 1 1 1 2

1 1 2 2

2 2 2 2

NR(T1) = {(4, 1), (3, 3), (3, 4), (2, 6)} NR(T2) = {(4, 2), (3, 3), (3, 4), (2, 7)}
seplist(T1) = (4, 3, 3, 2) seplist(T2) = (4, 3, 3, 2)

Figure 3: Two 12-rpps of the same shape and with the same seplist-partition.

where the sum ranges over all weak compositions α, and all but finitely many Qα(x1, x2)
are 0.

We shall show that each Qα(x1, x2) is either zero or has the form

Qα(x1, x2) = (x1x2)
MPn0(x1, x2)Pn1(x1, x2) · · ·Pnr(x1, x2), (9)

where M, r and n0, n1, . . . , nr are nonnegative integers naturally associated to α and λ/µ
and

Pn(x1, x2) =
xn+1
1 − xn+1

2

x1 − x2
= xn1 + xn−11 x2 + · · ·+ x1x

n−1
2 + xn2 .

We fix the skew partition λ/µ throughout the whole section. We will have a running
example with λ = (7, 7, 7, 4, 4) and µ = (5, 3, 2).

7.1 Irreducible components

We recall that a 12-rpp means an rpp whose entries all belong to the set {1, 2}.
Given a 12-rpp T , consider the set NR(T ) of all cells (i, j) ∈ λ/µ such that T (i, j) = 1

but (i + 1, j) ∈ λ/µ and T (i + 1, j) = 2. In other words, NR(T ) is the set of all non-
redundant cells in T which are filled with a 1 and which are not the lowest cells in their
columns. Clearly, NR(T ) contains at most one cell from each column; thus, let us write
NR(T ) = {(i1, j1), (i2, j2), . . . , (is, js)} with j1 < j2 < · · · < js. Because T is a 12-rpp,
it follows that the numbers i1, i2, . . . , is decrease weakly, therefore they form a partition
which we denoted

seplist(T ) := (i1, i2, . . . , is)

in Section 5.1. This partition will be called the seplist-partition of T . An example of
calculation of seplist(T ) and NR(T ) is illustrated on Figure 3.

We would like to answer the following question: for which partitions ν = (i1 > · · · >
is > 0) does there exist a 12-rpp T of shape λ/µ such that seplist(T ) = ν?

A trivial necessary condition for this to happen is that there should exist some numbers
j1 < j2 < · · · < js such that

(i1, j1), (i1 + 1, j1), (i2, j2), (i2 + 1, j2), . . . , (is, js), (is + 1, js) ∈ λ/µ. (10)
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Until the end of Section 7, we make an assumption: namely, that the skew partition
λ/µ is connected as a subgraph of Z2 (where two nodes are connected if and only if
their cells have an edge in common), and that it has no empty columns. This is a
harmless assumption, since every skew partition λ/µ can be written as a disjoint union of
such connected skew partitions and the corresponding seplist-partition splits into several
independent parts, the polynomials g̃λ/µ get multiplied and the right hand side of (9)
changes accordingly.

For each integer i, the set of all integers j such that (i, j), (i + 1, j) ∈ λ/µ is just an
interval [µi + 1, λi+1], which we call the support of i and denote supp(i) := [µi + 1, λi+1].

Let #κ denote the length of a partition κ.
We say that a partition ν is admissible if every k satisfies supp(ik) 6= ∅. This is

clearly satisfied when there exist j1 < j2 < · · · < js satisfying (10), but also in other
cases. Assume that ν = (i1 > · · · > is > 0) is an admissible partition. For two integers
a < b, we let ν

∣∣
⊆[a,b) denote the subpartition (ir, ir+1, . . . , ir+q) of ν, where [r, r + q]

is the (possibly empty) set of all k for which supp(ik) ⊆ [a, b). Thus, the number of
entries in ν

∣∣
⊆[a,b) is #ν

∣∣
⊆[a,b) = q + 1. Similarly, we set ν

∣∣
∩[a,b) to be the subpartition

(ir, ir+1, . . . , ir+q) of ν, where [r, r + q] is the set of all k for which supp(ik) ∩ [a, b) 6= ∅.
For example, for ν = (4, 3, 3, 2) and λ/µ as on Figure 3, we have

supp(3) = [3, 4], supp(2) = [4, 7], supp(4) = [1, 4],

ν
∣∣
⊆[2,7) = (3, 3), ν

∣∣
⊆[2,8) = (3, 3, 2), ν

∣∣
⊆[4,8) = (2), ν

∣∣
∩[4,5) = (4, 3, 3, 2), #ν

∣∣
⊆[2,7) = 2.

Remark 22. If ν is not admissible, that is, if supp(ik) = ∅ for some k, then ik belongs
to ν

∣∣
⊆[a,b) for any a, b, so ν

∣∣
⊆[a,b) might no longer be a contiguous subpartition of ν. On

the other hand, if ν is an admissible partition, then the partitions ν
∣∣
⊆[a,b) and ν

∣∣
∩[a,b) are

clearly admissible as well. For the rest of this section, we will only work with admissible
partitions.

We introduce several definitions: An admissible partition ν = (i1 > · · · > is > 0) is
called
• non-representable if for some a < b we have #ν

∣∣
⊆[a,b) > b− a;

• representable if for all a < b we have #ν
∣∣
⊆[a,b) 6 b− a;

a representable partition ν is called
• irreducible if for all a < b we have #ν

∣∣
⊆[a,b) < b− a;

• reducible if for some a < b we have #ν
∣∣
⊆[a,b) = b− a.

For example, ν = (4, 3, 3, 2) is representable but reducible because we have ν
∣∣
⊆[3,5) =

(3, 3) so #ν
∣∣
⊆[3,5) = 2 = 5− 3.

Note that these notions depend on the skew partition; thus, when we want to use a skew

partition λ̃/µ rather than λ/µ, we will write that ν is non-representable/irreducible/etc.

with respect to λ̃/µ, and we denote the corresponding partitions by ν
∣∣λ̃/µ
⊆[a,b).

These definitions can be motivated as follows. Suppose that a partition ν is non-
representable, so there exist integers a < b such that #ν

∣∣
⊆[a,b) > b − a. Recall that
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ν
∣∣
⊆[a,b) =: (ir, ir+1, . . . , ir+q) contains all entries of ν whose support is a subset of [a, b).

Thus in order for condition (10) to be true there must exist some integers jr < jr+1 <
· · · < jr+q such that

(ir, jr), (ir + 1, jr), . . . , (ir+q, jr+q), (ir+q + 1, jr+q) ∈ λ/µ.

On the other hand, by the definition of the support, we must have jk ∈ supp(ik) ⊆ [a, b)
for all r 6 k 6 r+ q. Therefore we get q+ 1 distinct elements of [a, b) which is impossible
if q + 1 = #ν

∣∣
⊆[a,b) > b − a. It means that a non-representable partition ν is never a

seplist-partition of a 12-rpp T .
Suppose now that a partition ν is reducible, so for some a < b we get an equality

#ν
∣∣
⊆[a,b) = b− a. Then these integers jr < · · · < jr+q should still all belong to [a, b) and

there are exactly b− a of them, hence

jr = a, jr+1 = a+ 1, · · · , jr+q = a+ q = b− 1. (11)

Because supp(ir) ⊆ [a, b) but supp(ir) 6= ∅ (since ν is admissible), we have (ir, a − 1) /∈
λ/µ. Thus, placing a 1 into (ir, a) and 2’s into (ir + 1, a), (ir + 2, a), . . . does not put any
restrictions on entries in columns 1, . . . , a−1. And the same is true for columns b, b+1, . . .
when we place a 2 into (ir+q + 1, b− 1) and 1’s into all cells above. Thus, if a partition ν
is reducible, then the filling of columns a, a+ 1, . . . , b− 1 is uniquely determined by (11),
and the filling of the rest can be arbitrary – the problem of existence of a 12-rpp T such
that seplist(T ) = ν reduces to two smaller independent problems of the same kind: one
for the columns 1, 2, . . . , a − 1, the other for the columns b, b + 1, . . . , λ1. Recall that a
12-rpp of shape λ/µ cannot have any nonempty column beyond the λ1’th one.

One can continue this reduction process and end up with several independent irre-
ducible components separated from each other by mixed columns. An illustration of this
phenomenon can be seen on Figure 3: the columns 3 and 4 must be mixed for any 12-rpps
T with seplist(T ) = (4, 3, 3, 2).

More explicitly, we have thus shown that every nonempty interval [a, b) ⊆ [1, λ1 + 1)
satisfying #ν

∣∣
⊆[a,b) = b − a splits our problem into two independent subproblems. But

if two such intervals [a, b) and [c, d) satisfy a 6 c 6 b 6 d then their union [a, d) is
another such interval, because in this case, inclusion-exclusion gives #ν

∣∣
⊆[a,d) > #ν

∣∣
⊆[a,b)+

#ν
∣∣
⊆[c,d) − #ν

∣∣
⊆[c,b), but #ν

∣∣
⊆[c,b) 6 b − c by representability of ν. Hence, the maximal

(with respect to inclusion) among all such intervals are pairwise disjoint and separated
from each other by at least a distance of 1. This yields part (a) of the following lemma:

Lemma 23. Let ν be a representable partition.

(a) There exist unique integers (1 = b0 6 a1 < b1 < a2 < b2 < · · · < ar < br 6 ar+1 =
λ1 + 1) satisfying the following two conditions:

(a) For all 1 6 k 6 r, we have #ν
∣∣
⊆[ak,bk)

= bk − ak.
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(b) The set
⋃r
k=0[bk, ak+1) is minimal (with respect to inclusion) among all se-

quences (1 = b0 6 a1 < b1 < a2 < b2 < · · · < ar < br 6 ar+1 = λ1 + 1)
satisfying property 1.

Furthermore, for these integers, we have:

(b) The partition ν is the concatenation(
ν
∣∣
∩[b0,a1)

)(
ν
∣∣
⊆[a1,b1)

)(
ν
∣∣
∩[b1,a2)

)(
ν
∣∣
⊆[a2,b2)

)
· · ·
(
ν
∣∣
∩[br,ar+1)

)
(where we regard a partition as a sequence of positive integers, with no trailing
zeroes).

(c) The partitions ν
∣∣
∩[bk,ak+1)

are irreducible with respect to λ/µ
∣∣
[bk,ak+1)

, which is the

skew partition λ/µ with columns 1, 2, . . . , bk − 1, ak+1, ak+1 + 1, . . . removed.

Proof. Part (a) has already been proven.
(b) Let ν = (i1 > · · · > is > 0). If supp(ir) ⊆ [ak, bk) for some k, then ir appears

in exactly one of the concatenated partitions, namely, ν
∣∣
⊆[ak,bk)

. Otherwise there is an

integer k such that supp(ir) ∩ [bk, ak+1) 6= ∅. It remains to show that such k is unique,
that is, that supp(ir) ∩ [bk+1, ak+2) = ∅. Assume the contrary. The interval [ak+1, bk+1)
is nonempty, therefore there is an entry i of ν with supp(i) ⊆ [ak+1, bk+1). It remains to
note that we get a contradiction: we get two numbers i, ir with supp(ir) being both to
the left and to the right of supp(i).

(c) Fix k. Let J denote the restricted skew partition λ/µ
∣∣
[bk,ak+1)

, and let ν ′ =

ν
∣∣
∩[bk,ak+1)

. We need to show that if [c, d) is a nonempty interval contained in [bk, ak+1),

then #ν ′
∣∣J
⊆[c,d) < d− c. We are in one of the following four cases:

• Case 1: We have c > bk (or k = 0) and d < ak+1 (or k = r). In this case, every ip

with suppJ(ip) ⊆ [c, d) must satisfy supp(ip) ⊆ [c, d). Hence, ν ′
∣∣J
⊆[c,d) = ν

∣∣
⊆[c,d), so

that #ν ′
∣∣J
⊆[c,d) = #ν

∣∣
⊆[c,d) < d− c, and we are done.

• Case 2: We have c = bk and k > 0 (but not d = ak+1 and k < r). Assume for the

sake of contradiction that #ν ′
∣∣J
⊆[c,d) > d − c. Then, the ip satisfying suppJ(ip) ⊆

[c, d) must satisfy supp(ip) ⊆ [ak, d), since otherwise, supp(ip) would intersect both
[bk−1, ak) and [bk, ak+1), something we have ruled out in the proof of (b). Thus,
#ν
∣∣
⊆[ak,d)

> (d − c) + (bk − ak) = d − ak, which contradicts the minimality of⋃r
k=0[bk, ak+1): we could increase bk to d.

• Case 3: We have d = ak+1 and k < r (but not c = bk and k > 0). The argument
here is analogous to Case 2.

• Case 4: Neither of the above. Exercise.
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Definition 24. In the context of Lemma 23, for 0 6 k 6 r the subpartitions ν
∣∣
∩[bk,ak+1)

are called the irreducible components of ν and the nonnegative integers nk := ak+1− bk −
#ν
∣∣
∩[bk,ak+1)

are called their degrees. For T with seplist(T ) = ν, the k-th degree nk is equal

to the number of pure columns of T inside the corresponding k-th irreducible component.
All nk are positive, except for n0 if a1 = 1 and nr if br = λ1 + 1.

Example 25. For ν = (4, 3, 3, 2) we have r = 1, b0 = 1, a1 = 3, b1 = 5, a2 = 8. The
irreducible components of ν are (4) and (2) and their degrees are 3 − 1 − 1 = 1 and
8− 5− 1 = 2 respectively. We have ν

∣∣
∩[1,3) = (4), ν

∣∣
⊆[3,5) = (3, 3), ν

∣∣
∩[5,8) = (2).

7.2 The structural theorem and its applications

It is easy to see that for a 12-rpp T , the number #seplist(T ) is equal to the number of
mixed columns in T .

Recall that RPP12 (λ/µ) denotes the set of all 12-rpps T of shape λ/µ, and let
RPP12 (λ/µ; ν) denote its subset consisting of all 12-rpps T with seplist(T ) = ν. Now
we are ready to state a theorem that completely describes the structure of irreducible
components:

Theorem 26. Let ν be an irreducible partition. Then for all 0 6 m 6 λ1 −#ν there is
exactly one 12-rpp T ∈ RPP12 (λ/µ; ν) with #ν mixed columns, m 1-pure columns and
(λ1−#ν −m) 2-pure columns. Moreover, these are the only elements of RPP12 (λ/µ; ν).
In other words, for an irreducible partition ν we have∑

T∈RPP12(λ/µ;ν)

xircont(T ) = (x1x2)
#νPλ1−#ν(x1, x2). (12)

Before we proceed to the proof, let us discuss some applications and examples.

Example 27. Each of the two 12-rpps on Figure 3 has two irreducible components. One
of them is supported on the first two columns and the other one is supported on the last
three columns. Here are all possible 12-rpps for each component:

1 1

1 2

1 2

2 2

1 1

1 1 1

1 1 2

1 2

1 1 2

1 2 2

2 2

1 2 2

2 2 2

λ = (2, 2); µ = (); ν = (4) λ = (3, 3, 3); µ = (1); ν = (2).

After decomposing into irreducible components, we can obtain a formula for general
representable partitions:

Corollary 28. Let ν be a representable partition. Then∑
T∈RPP12(λ/µ;ν)

xircont(T ) = (x1x2)
MPn0(x1, x2)Pn1(x1, x2) · · ·Pnr(x1, x2), (13)
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where the numbers M, r, n0, . . . , nr are defined above: M = #ν, r + 1 is the number of
irreducible components of ν and n0, n1, . . . , nr are their degrees.

Proof of Corollary 28. The restriction map

RPP12 (λ/µ; ν)→
r∏

k=0

RPP12
(
λ/µ

∣∣
[bk,ak+1)

; ν
∣∣
∩[bk,ak+1)

)
is injective, since, as we know, the entries of a T ∈ RPP12 (λ/µ; ν) in any column outside
of the irreducible components are uniquely determined. It is also surjective, as one can
“glue” rpps together. Now use Theorem 26.

For a 12-rpp T , the vectors seplist(T ) and ceq(T ) uniquely determine each other: if
(ceq(T ))i = h then seplist(T ) contains exactly λi+1 − µi − h entries equal to i, and this
correspondence is one-to-one. Therefore, the polynomials on both sides of (13) are equal
to Qα(x1, x2) where the vector α is the one that corresponds to ν.

Note that the polynomials Pn(x1, x2) are symmetric for all n. Since the question
about the symmetry of g̃λ/µ can be reduced to the two-variable case, Corollary 28 gives
an alternative proof of the symmetry of g̃λ/µ:

Corollary 29. The polynomials g̃λ/µ ∈ Z[t1, t2, . . . ] [[x1, x2, x3, . . .]] are symmetric.

Of course, our standing assumption that λ/µ is connected can be lifted here, because in
general, g̃λ/µ is the product of the analogous power series corresponding to the connected
components of λ/µ. So we have obtained a new proof of Theorem 5.

Another application of Theorem 26 is a complete description of Bender-Knuth invo-
lutions on rpps.

Corollary 30. Let ν be an irreducible partition. Then there is a unique map

b : RPP12 (λ/µ; ν)→ RPP12 (λ/µ; ν)

such that for all T ∈ RPP12 (λ/µ; ν), the sequence ircont(b(T )) is obtained from ircont(T )
by switching the first two entries. This unique map b is an involution on RPP12 (λ/µ; ν).
So, for irreducible partition ν the corresponding Bender-Knuth involution exists and is
unique.

Take any 12-rpp T ∈ RPP12 (λ/µ; ν) and recall that a 12-table flip(T ) is obtained from
T by simultaneously replacing all entries in 1-pure columns by 2 and all entries in 2-pure
columns by 1.

Corollary 31. If ν is an irreducible partition, then, no matter in which order one resolves
descents in flip(T ), the resulting 12-rpp T ′ will be the same. The map T 7→ T ′ is the unique
Bender-Knuth involution on RPP12 (λ/µ; ν).
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Proof of Corollary 31. Descent-resolution steps applied to flip(T ) in any order eventually
give an element of RPP12 (λ/µ; ν) with the desired ircont. There is only one such element.
So we get a map RPP12 (λ/µ; ν) → RPP12 (λ/µ; ν) that satisfies the assumptions of
Corollary 30.

Finally, notice that, for a general representable partition ν, descents in a 12-table T
with seplist(T ) = ν may only occur inside each irreducible component independently.
Thus, we conclude the chain of corollaries by stating that our constructed involutions are
canonical in the following sense:

Corollary 32. For a representable partition ν, the map

B : RPP12 (λ/µ; ν)→ RPP12 (λ/µ; ν)

is the unique involution that interchanges the number of 1-pure columns with the number
of 2-pure columns inside each irreducible component.

7.3 The proof

Let ν = (i1, . . . , is) be an irreducible partition. We start with the following simple obser-
vation:

Lemma 33. Let T ∈ RPP12 (λ/µ; ν) for an irreducible partition ν. Then any 1-pure
column of T is to the left of any 2-pure column of T .

Proof of Lemma 33. Suppose it is false and we have a 1-pure column to the right of a 2-
pure column. Among all pairs (a, b) such that column a is 2-pure and column b is 1-pure,
and b > a, consider the one with smallest b−a. Then, the columns a+1, . . . , b−1 must all
be mixed. Therefore the set NR(T ) contains {(ip+1, a+1), (ip+2, a+2), . . . , (ip+b−1−a, b−1)}
for some p ∈ N. And because a is 2-pure and b is 1-pure, each ip+k for k = 1, . . . , b−1−a
must be 6 to the y-coordinate of the highest cell in column a and > than the y-coordinate
of the lowest cell in column b. Thus, the support of any ip+k for k = 1, . . . , b− 1− a is a
subset of [a+ 1, b), which contradicts the irreducibility of ν.

Proof of Theorem 26. We proceed by strong induction on the number of columns in λ/µ.
If the number of columns is 1, then the statement of Theorem 26 is obvious. Suppose

that we have proven that for all skew partitions λ̃/µ with less than λ1 columns and for all

partitions ν̃ irreducible with respect to λ̃/µ and for all 0 6 m̃ 6 λ̃1−#ν̃, there is exactly

one 12-rpp T̃ of shape λ̃/µ with exactly m̃ 1-pure columns, exactly #ν̃ mixed columns

and exactly (λ̃1 −#ν̃ − m̃) 2-pure columns. Now we want to prove the same for λ/µ.
Take any 12-rpp T ∈ RPP12 (λ/µ; ν) with seplist(T ) = ν and with m 1-pure columns

for 0 6 m 6 λ1−#ν. Suppose first that m > 0. Then there is at least one 1-pure column
in T . Let q > 0 be such that the leftmost 1-pure column is column q+1. Then by Lemma
33 the columns 1, 2, . . . , q are mixed. If q > 0 then the supports of i1, i2, . . . , iq are all
contained inside [1, q+1) and we get a contradiction with the irreducibility of ν. The only
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remaining case is that q = 0 and the first column of T is 1-pure. Let λ̃/µ denote λ/µ with
the first column removed. Then ν is obviously admissible but may not be irreducible with

respect to λ̃/µ, because it may happen that #ν
∣∣λ̃/µ
⊆[2,b+1)

= b − 1 for some b > 1. In this

case we can remove these b − 1 nonempty columns from λ̃/µ and remove the first b − 1
entries from ν to get an irreducible partition again1, to which we can apply the induction
hypothesis. We are done with the case m > 0. If m < λ1 − #ν then we can apply a
mirrored argument to the last column, and it remains to note that the cases m > 0 and
m < λ1 −#ν cover everything, since the irreducibility of ν shows that λ1 −#ν > 0.

This inductive proof shows the uniqueness of the 12-rpp with desired properties. Its
existence follows from a parallel argument, using the observation that the first b − 1

columns of λ̃/µ can actually be filled in. This amounts to showing that for a representable
ν, the set RPP12 (λ/µ; ν) is non-empty in the case when λ1 = #ν, that is, all columns of
T ∈ RPP12 (λ/µ; ν) must be mixed.

This is clear when there is just one column. To prove it in the general case, we proceed
by induction on the number of columns:

If we had 1 /∈ supp(ν1), then we would have supp(ν1) ⊆ [2, λ1+1), and thus supp(νj) ⊆
[2, λ1 + 1) for every j, since ν is weakly decreasing and since supp(ν1) is nonempty. This
would lead to ν

∣∣
⊆[2,λ1+1)

= ν and thus #ν
∣∣
⊆[2,λ1+1)

= #ν = λ1 > λ1 + 1− 2, contradicting

the representability of ν. Hence, we have 1 ∈ supp(ν1), so that we can fill the first column
of λ/µ with 1’s and 2’s in such a way that it becomes mixed and the 1’s are displaced by

2’s at level ν1. Now, let λ̃/µ be the skew partition λ/µ without its first column, and ν̃

be the partition (ν2, ν3, . . .). Then, the partition ν̃ is representable with respect to λ̃/µ.

Otherwise we would have #ν
∣∣λ̃/µ
⊆[2,b+1)

> b − 1 for some b > 1, but then we would have

supp(ν1) ⊆ [1, b+ 1) as well and therefore #ν
∣∣
⊆[1,b+1)

> (b− 1) + 1 = b, contradicting the

representability of λ/µ. Thus we can fill in the entries in the cells of λ̃/µ by induction.
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