Proof of Gessel's γ-positivity conjecture

Zhicong Lin
School of Science, Jimei University
Xiamen 361021, P.R. China
CAMP, National Institute for Mathematical Sciences
Daejeon 305-811, Republic of Korea
lin@nims.re.kr

Submitted: Dec 17, 2015; Accepted: Jun 30, 2016; Published: Jul 22, 2016
Mathematics Subject Classifications: 05A05, 05A19

Abstract

We prove a conjecture of Gessel, which asserts that the joint distribution of descents and inverse descents on permutations has a fascinating refined γ-positivity.

Keywords: descents; inverse descents; Eulerian polynomials; γ-positivity

1 Introduction

Let \mathfrak{S}_{n} denote the set of all permutations of $[n]:=\{1,2, \ldots, n\}$. A permutation $\pi \in \mathfrak{S}_{n}$ will be represented here in one line notation as $\pi=\pi_{1} \cdots \pi_{n}$. For a permutation $\pi \in \mathfrak{S}_{n}$, an index $i \in[n-1]$ is a descent of π if $\pi_{i}>\pi_{i+1}$. Denote by des (π) the number of descents of π. The descent polynomial on \mathfrak{S}_{n}

$$
A_{n}(t):=\sum_{\pi \in \mathfrak{S}_{n}} t^{\operatorname{des}(\pi)+1}
$$

is known as the classical Eulerian polynomial (cf. [14, Section 1.3]) of order n. Foata and Schützenberger [7] proved the following beautiful γ-positivity result, which implies the symmetry and unimodality (see [2] for definitions) of the Eulerian polynomials.

Theorem 1 (Foata-Schützenberger). For $n \geqslant 1$,

$$
\begin{equation*}
A_{n}(t)=\sum_{i=1}^{\lfloor(n+1) / 2\rfloor} \gamma_{n, i} t^{i}(1+t)^{n+1-2 i}, \tag{1.1}
\end{equation*}
$$

where $\gamma_{n, i}$ are nonnegative integers.

Foata and Strehl [8] later constructed an elegant combinatorial proof of (1.1) via a group action, which has sparked various interesting extensions [1,5,6,10]. For many other γ-positivity results and problems arising in enumerative and geometric combinatorics, we refer the reader to the excellent exposition by Petersen [13]. Regarding the joint distribution of descents and inverse descents on permutations, Gessel (see [1, 2, 12, 15]) has conjectured the following refined γ-positivity:

Conjecture 2 (Gessel 2005). Let

$$
A_{n}(s, t):=\sum_{\pi \in \mathfrak{S}_{n}} s^{\operatorname{des}\left(\pi^{-1}\right)+1} t^{\operatorname{des}(\pi)+1}
$$

Then, for $n \geqslant 1$

$$
\begin{equation*}
A_{n}(s, t)=\sum_{\substack{i \geq 1, j \geqslant 0 \\ j+2 i \leqslant n+1}} \gamma_{n, i, j}(s t)^{i}(1+s t)^{j}(s+t)^{n+1-j-2 i} \tag{1.2}
\end{equation*}
$$

where $\gamma_{n, i, j}$ are nonnegative integers.
These refined Eulerian polynomials $A_{n}(s, t)$, that we shall call double Eulerian polynomials, were first studied by Carlitz, Roselle and Scoville [4]. Conjecture 2 has received considerable attention since the publication of Brändén [1] in 2008. The existence of integers $\gamma_{n, i, j}$ satisfying (1.2) follows from symmetry properties of $A_{n}(s, t)$ and Lemma 5. The open problem is nonnegativity. For example, we have:

$$
\begin{aligned}
& A_{1}(s, t)=s t \\
& A_{2}(s, t)=s t(1+s t) \\
& A_{3}(s, t)=s t(1+s t)^{2}+2(s t)^{2} \\
& A_{4}(s, t)=s t(1+s t)^{3}+7(s t)^{2}(1+s t)+(s t)^{2}(s+t) \\
& A_{5}(s, t)=s t(1+s t)^{4}+16(s t)^{2}(1+s t)^{2}+6(s t)^{2}(1+s t)(s+t)+16(s t)^{3} .
\end{aligned}
$$

In this note, we give a proof of Conjecture 2.
Using Eulerian operators and a homogenized multivariate refinement for $A_{n}(s, t)$, Visontai [15] derived a recurrence for the coefficients $\gamma_{n, i, j}$, from which the nonnegativity does not follow immediately. But surprisingly, we are able to deduce the nonnegativity of $\gamma_{n, i, j}$ from his recurrence. Even more, we characterize completely when the coefficient $\gamma_{n, i, j}$ is positive. Generalizations of Conjecture 2 will also be proved (see Theorems 6 and 10). The question of finding a combinatorial proof of expansion (1.2) is still open.

2 Proof of Conjecture 2

We shall first provide a new direct approach to the following recurrence relation due to Visontai and then apply it to give a proof of Conjecture 2.

Lemma 3 (Theorem 10 of [15]). Let $n \geqslant 1$. For all $i \geqslant 1$ and $j \geqslant 0$, we have

$$
\begin{align*}
(n+1) \gamma_{n+1, i, j}= & (n+i(n+2-i-j)) \gamma_{n, i, j-1}+(i(i+j)-n) \gamma_{n, i, j} \\
& +(n+4-2 i-j)(n+3-2 i-j) \gamma_{n, i-1, j-1} \tag{2.1}\\
& +(n+2 i+j)(n+3-2 i-j) \gamma_{n, i-1, j} \\
& +(j+1)(2 n+2-j) \gamma_{n, i-1, j+1}+(j+1)(j+2) \gamma_{n, i-1, j+2},
\end{align*}
$$

where $\gamma_{1,1,0}=1, \gamma_{1, i, j}=0$ (unless $i=1$ and $j=0$) and $\gamma_{n, i, j}=0$ if $i<1$ or $j<0$.
Proof. We will use the following recurrence of $A_{n}(s, t)$ computed by Petersen [12, Equation (9)] via the machine of balls in boxes (or 2-D barred permutations):

$$
\begin{align*}
n A_{n}(s, t)= & \left(n^{2} s t+(n-1)(1-s)(1-t)\right) A_{n-1}(s, t) \\
& +n s t(1-s) \frac{\partial}{\partial s} A_{n-1}(s, t)+n s t(1-t) \frac{\partial}{\partial t} A_{n-1}(s, t) \tag{2.2}\\
& +s t(1-s)(1-t) \frac{\partial^{2}}{\partial s \partial t} A_{n-1}(s, t) .
\end{align*}
$$

Let $\Gamma_{n}(X, Y):=\sum_{i, j} \gamma_{n, i, j} X^{i} Y^{j}$. Observe that decomposition (1.2) is equivalent to the following relationship:

$$
A_{n}(s, t)=(s+t)^{n+1} \Gamma_{n}(X, Y) \quad \text { with } X=\frac{s t}{(s+t)^{2}} \text { and } Y=\frac{1+s t}{s+t}
$$

Substituting this into (2.2) and dividing both sides by $(s+t)^{n+1}$, we get

$$
\begin{align*}
n \Gamma_{n}(X, Y)= & \alpha_{1} \Gamma_{n-1}(X, Y)+\alpha_{2} \frac{\partial \Gamma_{n-1}(X, Y)}{\partial X}+\alpha_{3} \frac{\partial \Gamma_{n-1}(X, Y)}{\partial Y} \\
& +\alpha_{4} \frac{\partial^{2} \Gamma_{n-1}(X, Y)}{\partial X^{2}}+\alpha_{5} \frac{\partial^{2} \Gamma_{n-1}(X, Y)}{\partial Y^{2}}+\alpha_{6} \frac{\partial^{2} \Gamma_{n-1}(X, Y)}{\partial X \partial Y} \tag{2.3}
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha_{1}=\frac{n^{2} s t+(n-1)(1-s)(1-t)}{s+t}+\frac{n^{2} s t(2-s-t)}{(s+t)^{2}}+\frac{n(n-1) s t(1-s)(1-t)}{(s+t)^{3}} \\
& =(n-1)(Y-1)+n(n-1) X Y+\left(n^{2}+n\right) X, \\
& \alpha_{2}=\frac{n s t}{s+t}\left((1-s) \frac{\partial X}{\partial s}+(1-t) \frac{\partial X}{\partial t}\right)+\frac{n s t(1-s)(1-t)}{(s+t)^{2}}\left(\frac{\partial X}{\partial t}+\frac{\partial X}{\partial s}\right)+ \\
& +\frac{s t(1-s)(1-t)}{s+t} \frac{\partial^{2} X}{\partial s \partial t}=(n-1) X Y+(6-4 n) X^{2} Y+X-6 X^{2}, \\
& \alpha_{3}=\frac{n s t}{s+t}\left((1-s) \frac{\partial Y}{\partial s}+(1-t) \frac{\partial Y}{\partial t}\right)+\frac{n s t(1-s)(1-t)}{(s+t)^{2}}\left(\frac{\partial Y}{\partial t}+\frac{\partial Y}{\partial s}\right)+ \\
& +\frac{s t(1-s)(1-t)}{s+t} \frac{\partial^{2} Y}{\partial s \partial t}=(-2 n+2) X Y^{2}+2 n X-2 X Y,
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{4}=\frac{s t(1-s)(1-t)}{s+t} \frac{\partial X}{\partial s} \frac{\partial X}{\partial t}=4 X^{3}(Y-1)-X^{2}(Y-1), \\
& \alpha_{5}=\frac{s t(1-s)(1-t)}{s+t} \frac{\partial Y}{\partial s} \frac{\partial Y}{\partial t}=-X(Y-1)+X Y^{2}(Y-1)
\end{aligned}
$$

and

$$
\alpha_{6}=\frac{s t(1-s)(1-t)}{s+t}\left(\frac{\partial X}{\partial s} \frac{\partial Y}{\partial t}+\frac{\partial Y}{\partial s} \frac{\partial X}{\partial t}\right)=-X Y(Y-1)+4 X^{2} Y(Y-1)
$$

Extracting the coefficient of $X^{i} Y^{j}$ in both sides of (2.3), we get (2.1) after shifting the index n by one.

The same manipulations above can be applied to deduce the recurrence relations for the γ-coefficients of two extensions of $A_{n}(s, t)$ in the next section. It does not follow immediately from recurrence relation (2.1) that $\gamma_{n+1, i, j}$ is a nonnegative integer: the lefthand side has the multiplicative factor $(n+1)$ and the coefficient $i(i+j)-n$ in the right-hand side may assume negative values. Nevertheless, the crucial observation that $\gamma_{n, i, j} \neq 0$ only if when $i(i+j) \geqslant n$ will lead to the nonnegativity of $\gamma_{n, i, j}$, as stated in the following.

Theorem 4. For $n \geqslant 1$, the coefficients $\gamma_{n, i, j}$ are nonnegative. Moreover, the coefficient $\gamma_{n, i, j}$ is positive if and only if $i \geqslant 1, j \geqslant 0,2 i+j \leqslant n+1$ and $i(i+j) \geqslant n$.
Proof. We will prove this result by induction on n using recurrence relation (2.1) for the coefficient $\gamma_{n, i, j}$.

Clearly, the result is true for $n \leqslant 5$ by the first formulae produced in the introduction. Suppose that this result is true for some n with $n \geqslant 5$. We need to show the result for $n+1$. We can assume that $i \geqslant 1, j \geqslant 0$ and $2 i+j \leqslant n+2$, otherwise $\gamma_{n+1, i, j}=0$. There are three cases to be considered.

Case 1: If $i(i+j)=n$, then the inductive hypothesis implies that all $\gamma_{n, i, j-1}, \gamma_{n, i-1, j-1}$, $\gamma_{n, i-1, j}, \gamma_{n, i-1, j+1}, \gamma_{n, i-1, j+1}, \gamma_{n, i-1, j+2}$ are 0 (except $\gamma_{n, i, j}$ may not be zero), since now

$$
i(i+j-1)<n, \quad(i-1)(i+j-2)<n, \quad(i-1)(i+j+1)<n
$$

Thus, $\gamma_{n+1, i, j}=0$ if $i(i+j)=n$.
Case 2: If $i(i+j)<n$, then the inductive hypothesis implies that all $\gamma_{n, i, j-1}, \gamma_{n, i-1, j-1}$, $\gamma_{n, i-1, j}, \gamma_{n, i-1, j+1}, \gamma_{n, i-1, j+1}$ and $\gamma_{n, i-1, j+2}$, including $\gamma_{n, i, j}$, are 0 , which forces $\gamma_{n+1, i, j}=0$.

Case 3: If $i(i+j) \geqslant n+1$, then we need further to distinguish two subcases. Subcase I: $2 i+j \leqslant n+1$. In this case, the expression $(i(i+j)-n) \gamma_{n, i, j}$ in the right-hand side of (2.1) is positive by the inductive hypothesis, and so $\gamma_{n+1, i, j}>0$. Subcase II: $2 i+j=n+2$. In this case, as

$$
i(i+j-1)=i(n+1-i) \geqslant n \quad \text { and } \quad 2 i+j-1=n+1,
$$

we have $(n+i(n+2-i-j)) \gamma_{n, i, j-1}>0$ (again by the inductive hypothesis) in the right-hand side of (2.1), and therefore $\gamma_{n+1, i, j}>0$. This ends the proof by induction.

For the sake of completeness, we provide a proof of the following fundamental result regarding the basis

$$
\mathcal{B}_{n}:=\left\{(s t)^{i}(1+s t)^{j}(s+t)^{n-j-2 i}: i, j \geqslant 0, j+2 i \leqslant n\right\} .
$$

Lemma 5. The set \mathcal{B}_{n} is a basis (over \mathbb{Z}) for polynomials $A(s, t)=\sum_{k, l \geqslant 0}^{n} a_{k, l} s^{k} t^{l} \in \mathbb{Z}[s, t]$ with symmetries

$$
\begin{equation*}
a_{k, l}=a_{l, k} \quad \text { and } \quad a_{k, l}=a_{n-k, n-l} \quad \text { for all } k, l \geqslant 0 . \tag{2.4}
\end{equation*}
$$

Proof. Clearly, all polynomials in \mathcal{B}_{n} satisfy the symmetries (2.4), as well as their linear combinations. It remains to show that each polynomial with symmetries (2.4) can be expanded uniquely in \mathcal{B}_{n}.

Let $b_{n, i, j}:=(s t)^{i}(1+s t)^{j}(s+t)^{n-j-2 i}$. We order the polynomials in \mathcal{B}_{n} as:

$$
b_{n, i, j} \text { is before } b_{n, u, v} \text { if } i<u \text { or } i=u \text { but } j<v
$$

so that the term $s^{n-i} t^{i+j}$ does not appear in any polynomial after $b_{n, i, j}$ in this order. Let \mathcal{A}_{n} be the set of all polynomials in $\mathbb{Z}[s, t]$ with symmetries (2.4). We say a polynomial $A(s, t) \in \mathcal{A}_{n}$ has complexity

$$
(\lfloor(n+2) / 2\rfloor-i)(\lfloor(n+3) / 2\rfloor-i)-j
$$

if it contains the term $s^{n-i} t^{i+j}$ but does not contain any term $s^{k} t^{l}$ satisfying $k>n-i$ or $k=n-i$ but $l<i+j$. For such a polynomial $A(s, t)$, consider the polynomial $A(s, t)-a_{n-i, i+j} b_{n, i, j}$ (obviously in \mathcal{A}_{n}). The complexity of this new polynomial reduces at least by one, since the term $s^{n-i} t^{i+j}$ vanishes. Therefore, by induction on the complexity, we can show that each polynomial from \mathcal{A}_{n} can be expanded uniquely in \mathcal{B}_{n}.

3 Generalizations

Fix a positive integer $k \leqslant n$. Define the generalized double Eulerian polynomial $A_{n}^{(k)}(s, t)$ by the identity

$$
\begin{equation*}
\sum_{i, j \geqslant 0}\binom{i j+n-k}{n} s^{i} t^{j}=\frac{A_{n}^{(k)}(s, t)}{(1-s)^{n+1}(1-t)^{n+1}} . \tag{3.1}
\end{equation*}
$$

The generalized double Eulerian polynomials first arise implicitly in [11]. Gessel [15] (see also [9]) further noticed that the generalized double Eulerian polynomials have the following nice interpretation

$$
A_{n}^{(k)}(s, t)=\sum_{\pi \in \mathfrak{S}_{n}} s^{\operatorname{des}\left(\pi^{-1}\right)+1} t^{\operatorname{des}(\pi \sigma)+1}
$$

where $\sigma \in \mathfrak{S}_{n}$ is any fixed permutation with $\operatorname{des}(\sigma)=k-1$. Note that $A_{n}^{(1)}(s, t)=$ $A_{n}(s, t)$. This suggests the following more general form of γ-positivity, first appeared as Conjecture 10.2 (also due to Gessel) in [1].

Theorem 6 (Generalization of Conj. 2). For $n \geqslant 1$ and $1 \leqslant k \leqslant n$, we have

$$
\begin{equation*}
A_{n}^{(k)}(s, t)=\sum_{\substack{i \geqslant 1, j \geq 0 \\ j+2 i \leqslant n+1}} \gamma_{n, i, j}^{(k)}(s t)^{i}(1+s t)^{j}(s+t)^{n+1-j-2 i}, \tag{3.2}
\end{equation*}
$$

where $\gamma_{n, i, j}^{(k)}$ are nonnegative integers.
For $s=1$ or $t=1$, expansion (3.2) reduces to the classical result (1.1) with $\gamma_{n, i}=$ $\sum_{j \geqslant 0} \gamma_{n, i, j}^{(k)}$. Thus, the coefficients $\gamma_{n, i, j}^{(k)}$ are refinements of the triangle $\gamma_{n, i}$. We decompose the proof of Theorem 6 into the following three lemmas.

Lemma 7. The generalized double Eulerian polynomial $A_{n}^{(k)}(s, t)$ satisfies the recurrence relation

$$
\begin{align*}
n A_{n}^{(k)}(s, t)= & \left(n^{2} s t+(n-k)(1-s)(1-t)\right) A_{n-1}^{(k)}(s, t) \\
& +n s t(1-s) \frac{\partial}{\partial s} A_{n-1}^{(k)}(s, t)+n s t(1-t) \frac{\partial}{\partial t} A_{n-1}^{(k)}(s, t) \tag{3.3}\\
& +s t(1-s)(1-t) \frac{\partial^{2}}{\partial s \partial t} A_{n-1}^{(k)}(s, t),
\end{align*}
$$

where

$$
\begin{equation*}
A_{k}^{(k)}(s, t)=\sum_{\pi \in \mathfrak{S}_{k}} s^{\operatorname{des}\left(\pi^{-1}\right)+1} t^{k-\operatorname{des}(\pi)}=t^{k+1} A_{k}(s, 1 / t) . \tag{3.4}
\end{equation*}
$$

Proof. In the special case when $\sigma=k(k-1) \cdots 21$, we have $\operatorname{des}(\pi \sigma)=k-1-\operatorname{des}(\pi)$ for each $\pi \in \mathfrak{S}_{k}$ and (3.4) follows. For simplicity, the left-hand side of (3.1) is denoted as $F_{n}^{(k)}(s, t)$. Since

$$
\begin{aligned}
n\binom{i j+n-k}{n} & =(i j+n-k) \frac{(i j+n-k-1)!}{(n-1)!(i j-k)!} \\
& =i j\binom{i j+n-k-1}{n-1}+(n-k)\binom{i j+n-k-1}{n-1},
\end{aligned}
$$

we have

$$
\begin{aligned}
n F_{n}^{(k)}(s, t) & =\sum_{i, j \geqslant 0} n\binom{i j+n-k}{n} s^{i} t^{j} \\
& =\sum_{i, j \geqslant 0} i j\binom{i j+n-k-1}{n-1} s^{i} t^{j}+\sum_{i, j \geqslant 0}(n-k)\binom{i j+n-k-1}{n-1} s^{i} t^{j} \\
& =s t \frac{\partial^{2}}{\partial s \partial t} F_{n-1}^{(k)}(s, t)+(n-k) F_{n-1}^{(k)}(s, t) .
\end{aligned}
$$

Substituting $F_{n}^{(k)}(s, t)=A_{n}^{(k)}(s, t)(1-s)^{-n-1}(1-t)^{-n-1}$ into the above relation, we get (3.3) after simplification.

Lemma 8. Fix a positive integer k. Let $n \geqslant k$. Then, for all $i \geqslant 1$ and $j \geqslant 0$

$$
\begin{align*}
(n+1) \gamma_{n+1, i, j}^{(k)}= & (n+1-k+i(n+2-i-j)) \gamma_{n, i, j-1}^{(k)} \\
& +(i(i+j)-(n+1-k)) \gamma_{n, i, j}^{(k)} \\
& +(n+4-2 i-j)(n+3-2 i-j) \gamma_{n, i-1, j-1}^{(k)} \tag{3.5}\\
& +(n+2 i+j)(n+3-2 i-j) \gamma_{n, i-1, j}^{(k)} \\
& +(j+1)(2 n+2-j) \gamma_{n, i-1, j+1}^{(k)}+(j+1)(j+2) \gamma_{n, i-1, j+2}^{(k)},
\end{align*}
$$

where $\gamma_{k, i, j}^{(k)}=\gamma_{k, i, k+1-2 i-j}$.
Proof. Follows from Lemma 7 by the same manipulations as the proof of Lemma 3. Note that $\gamma_{k, i, j}^{(k)}=\gamma_{k, i, k+1-2 i-j}$ is equivalent to (3.4).

If we sum up both side of (3.5) for all possible j, then we go back to the recurrence relation for $\gamma_{n, i}$ [7, Remarque 5.3]:

$$
\gamma_{n+1, i}=i \gamma_{n, i}+2(n+3-2 i) \gamma_{n, i-1} .
$$

Note that in recurrence (3.5) the integer $i(i+j)-(n+1-k)$ may assume negative value. The nonnegativity of coefficients $\gamma_{n, i, j}^{(k)}$ is confirmed by the following lemma based on Theorem 4.

Lemma 9. Fix a positive integer k. Let $n \geqslant k$. Then, for $i \geqslant 1, j \geqslant 0$ and $2 i+j \leqslant n+1$:
(i) all the coefficients $\gamma_{n, i, j}^{(k)}$ are nonnegative;
(ii) the coefficient $\gamma_{n, i, j}^{(k)}$ vanishes if $i(i+j)<n+1-k$.

We will prove this result by induction on n (for $n \geqslant k$) using recurrence relation (3.5) for the generalized coefficients $\gamma_{n, i, j}^{(k)}$.

Proof. As $\gamma_{k, i, j}^{(k)}=\gamma_{k, i, k+1-2 i-j}$, the two statements are true for $n=k$ by Theorem 4. Suppose that this result is true for some n with $n \geqslant k$. We need to show the two statements for $n+1$. It suffices to show statement (ii) in view of recurrence (3.5). We distinguish two cases.

Case 1: If $i(i+j)=n+1-k$, then the inductive hypothesis implies that all $\gamma_{n, i, j-1}^{(k)}$, $\gamma_{n, i-1, j-1}^{(k)}, \gamma_{n, i-1, j}^{(k)}, \gamma_{n, i-1, j+1}^{(k)}, \gamma_{n, i-1, j+1}^{(k)}, \gamma_{n, i-1, j+2}^{(k)}$ vanish (except $\gamma_{n, i, j}^{(k)}$ may be positive), since now

$$
\max \{i(i+j-1),(i-1)(i+j-2),(i-1)(i+j+1)\}<n+1-k .
$$

Thus, $\gamma_{n+1, i, j}^{(k)}=0$ if $i(i+j)=n+1-k$.
Case 2: If $i(i+j)<n+1-k$, then the inductive hypothesis implies that all $\gamma_{n, i, j-1}^{(k)}$, $\gamma_{n, i-1, j-1}^{(k)}, \gamma_{n, i-1, j}^{(k)}, \gamma_{n, i-1, j+1}^{(k)}, \gamma_{n, i-1, j+1}^{(k)}$ and $\gamma_{n, i-1, j+2}^{(k)}$, including $\gamma_{n, i, j}^{(k)}$, vanish, which forces $\gamma_{n+1, i, j}^{(k)}=0$.

Thus, the proof is completed by induction.

3.1 Type B analog

Consider the Type B Coxeter group \mathfrak{B}_{n}, whose elements are regarded as signed permutations of $[n]$. The type B descent statistic of $\pi \in \mathfrak{B}_{n}$, denoted $\operatorname{des}_{B}(\pi)$, is defined as

$$
\operatorname{des}_{B}(\pi):=\#\left\{i \in[n-1]: \pi_{i}>\pi_{i+1}\right\}+\chi\left(\pi_{1}<0\right) .
$$

This type B descent statistic was introduced by Brenti [3]. Gessel [15] noted that the Type B double Eulerian polynomials $B_{n}(s, t):=\sum_{\sigma \in \mathfrak{B}_{n}} s^{\operatorname{des}_{B}\left(\pi^{-1}\right)} t^{\operatorname{des}_{B}(\pi)}$ has the generating function

$$
\begin{equation*}
\sum_{i, j \geqslant 0}\binom{2 i j+i+j+n}{n} s^{i} t^{j}=\frac{B_{n}(s, t)}{(1-s)^{n+1}(1-t)^{n+1}} . \tag{3.6}
\end{equation*}
$$

We have the following type B analog of Conjecture 2, which also implies the γ-positivity of $B_{n}(1, t)$, a result known previously $[5,6]$.

Theorem 10 (Type B analog of Conj. 2). For $n \geqslant 1$,

$$
B_{n}(s, t)=\sum_{\substack{i, j>0 \\ j+2 i \leq n}} \widetilde{\gamma}_{n, i, j}(s t)^{i}(1+s t)^{j}(s+t)^{n-j-2 i},
$$

where $\widetilde{\gamma}_{n, i, j}$ are nonnegative integers. Moreover, $\widetilde{\gamma}_{n, i, j}$ is positive if and only if $i, j \geqslant 0$, $2 i+j \leqslant n$ and $2 i(i+j+1)+j \geqslant n$.

For instance, the first few expansions of $B_{n}(s, t)$ are

$$
\begin{aligned}
& B_{1}(s, t)=1+s t, \\
& B_{2}(s, t)=(1+s t)^{2}+4 s t, \\
& B_{3}(s, t)=(1+s t)^{3}+16 s t(1+s t)+4 s t(s+t), \\
& B_{4}(s, t)=(1+s t)^{4}+41 s t(1+s t)^{2}+30 s t(s+t)(1+s t)+s t(s+t)^{2}+80(s t)^{2} .
\end{aligned}
$$

We have the following recursion for the type B γ-coefficients $\widetilde{\gamma}_{n, i, j}$.
Lemma 11. Let $n \geqslant 2$. For all $i, j \geqslant 0$, we have

$$
\begin{align*}
n \widetilde{\gamma}_{n, i, j}= & (2 n-j+2 i(n-i-j)) \widetilde{\gamma}_{n-1, i, j-1}+(2 i(i+j+1)+j+1-n) \widetilde{\gamma}_{n-1, i, j} \\
& +2(n+2-2 i-j)(n+1-2 i-j) \widetilde{\gamma}_{n-1, i-1, j-1} \\
& +2(n+2 i+j)(n+1-2 i-j) \widetilde{\gamma}_{n-1, i-1, j} \tag{3.7}\\
& +(j+1)(4 n-2 j) \widetilde{\gamma}_{n-1, i-1, j+1}+2(j+1)(j+2) \widetilde{\gamma}_{n-1, i-1, j+2} .
\end{align*}
$$

Proof. By (3.6) using similar approach as Lemma 3. All the computations are routine and tedious which we omit.

Proof of Theorem 10. The proof is essentially the same as that of Theorem 4 by induction on n, but using recursion (3.7) for $\widetilde{\gamma}_{n, i, j}$ instead.

Acknowledgement

I thank Ira M. Gessel, T. Kyle Petersen and Jiang Zeng for their comments. I also would like to thank the referees for their suggestions to improve the paper. This work was partially supported by the National Science Foundation of China grant 11501244.

References

[1] P. Brändén, Actions on permutations and unimodality of descent polynomials, European J. Combin., 29 (2008), 514-531.
[2] P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, Handbook of Enumerative Combinatorics, CRC Press Book. (arXiv:1410.6601)
[3] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin., 15 (1994), 417-441.
[4] L. Carlitz, D.P. Roselle and R.A. Scoville, Permutations and sequences with repetitions by number of increases, J. Combinatorial Theory, 1 (1966), 350-374.
[5] C.-O. Chow, On certain combinatorial expansions of the Eulerian polynomials, Adv. in Appl. Math., 41 (2008), 133-157.
[6] K. Dilks, T.K. Petersen and J.R. Stembridge, Affine descents and the Steinberg torus, Adv. in Appl. Math., 42 (2009), 423-444.
[7] D. Foata and M.-P. Schützenberger, Théorie géométrique des polynômes eulériens, Lecture Notes in Mathematics, Vol. 138, Springer-Verlag, Berlin, 1970.
[8] D. Foata and V. Strehl, Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers, Math. Z., 137 (1974), 257-264.
[9] I.M. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983), 289-317, Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984.
[10] Z. Lin and J. Zeng, The γ-positivity of basic Eulerian polynomials via group actions, J. Combin. Theory, Ser. A, 135 (2015), 112-129.
[11] B. Mielnik and J. Plebański, Combinatorial approach to Baker-Campbell-Hausdorff exponents, Ann. Inst. H. Poincaré, Sect. A (N.S.), 12 (1970), 215-254.
[12] T.K. Petersen, Two-sided Eulerian numbers via balls in boxes, Math. Mag., 86 (2013), 159-176.
[13] T.K. Petersen, Eulerian numbers. With a foreword by Richard Stanley. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser/Springer, New York, 2015.
[14] R.P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambriage, 1997.
[15] M. Visontai, Some remarks on the joint distribution of descents and inverse descents, Electron. J. Combin., 20 (2013), \#P52.

