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Abstract

We prove a conjecture of Gessel, which asserts that the joint distribution of
descents and inverse descents on permutations has a fascinating refined γ-positivity.
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1 Introduction

Let Sn denote the set of all permutations of [n] := {1, 2, . . . , n}. A permutation π ∈ Sn

will be represented here in one line notation as π = π1 · · · πn. For a permutation π ∈ Sn,
an index i ∈ [n−1] is a descent of π if πi > πi+1. Denote by des(π) the number of descents
of π. The descent polynomial on Sn

An(t) :=
∑
π∈Sn

tdes(π)+1

is known as the classical Eulerian polynomial (cf. [14, Section 1.3]) of order n. Foata and
Schützenberger [7] proved the following beautiful γ-positivity result, which implies the
symmetry and unimodality (see [2] for definitions) of the Eulerian polynomials.

Theorem 1 (Foata–Schützenberger). For n > 1,

An(t) =

b(n+1)/2c∑
i=1

γn,it
i(1 + t)n+1−2i, (1.1)

where γn,i are nonnegative integers.
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Foata and Strehl [8] later constructed an elegant combinatorial proof of (1.1) via a
group action, which has sparked various interesting extensions [1,5,6,10]. For many other
γ-positivity results and problems arising in enumerative and geometric combinatorics,
we refer the reader to the excellent exposition by Petersen [13]. Regarding the joint
distribution of descents and inverse descents on permutations, Gessel (see [1, 2, 12, 15])
has conjectured the following refined γ-positivity:

Conjecture 2 (Gessel 2005). Let

An(s, t) :=
∑
π∈Sn

sdes(π
−1)+1tdes(π)+1.

Then, for n > 1

An(s, t) =
∑

i>1,j>0
j+2i6n+1

γn,i,j(st)
i(1 + st)j(s+ t)n+1−j−2i, (1.2)

where γn,i,j are nonnegative integers.

These refined Eulerian polynomials An(s, t), that we shall call double Eulerian poly-
nomials, were first studied by Carlitz, Roselle and Scoville [4]. Conjecture 2 has received
considerable attention since the publication of Brändén [1] in 2008. The existence of in-
tegers γn,i,j satisfying (1.2) follows from symmetry properties of An(s, t) and Lemma 5.
The open problem is nonnegativity. For example, we have:

A1(s, t) = st,

A2(s, t) = st(1 + st),

A3(s, t) = st(1 + st)2 + 2(st)2,

A4(s, t) = st(1 + st)3 + 7(st)2(1 + st) + (st)2(s+ t),

A5(s, t) = st(1 + st)4 + 16(st)2(1 + st)2 + 6(st)2(1 + st)(s+ t) + 16(st)3.

In this note, we give a proof of Conjecture 2.
Using Eulerian operators and a homogenized multivariate refinement for An(s, t), Vi-

sontai [15] derived a recurrence for the coefficients γn,i,j, from which the nonnegativity
does not follow immediately. But surprisingly, we are able to deduce the nonnegativity
of γn,i,j from his recurrence. Even more, we characterize completely when the coefficient
γn,i,j is positive. Generalizations of Conjecture 2 will also be proved (see Theorems 6
and 10). The question of finding a combinatorial proof of expansion (1.2) is still open.

2 Proof of Conjecture 2

We shall first provide a new direct approach to the following recurrence relation due to
Visontai and then apply it to give a proof of Conjecture 2.
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Lemma 3 (Theorem 10 of [15]). Let n > 1. For all i > 1 and j > 0, we have

(n+ 1)γn+1,i,j = (n+ i(n+ 2− i− j))γn,i,j−1 + (i(i+ j)− n)γn,i,j

+ (n+ 4− 2i− j)(n+ 3− 2i− j)γn,i−1,j−1
+ (n+ 2i+ j)(n+ 3− 2i− j)γn,i−1,j
+ (j + 1)(2n+ 2− j)γn,i−1,j+1 + (j + 1)(j + 2)γn,i−1,j+2,

(2.1)

where γ1,1,0 = 1, γ1,i,j = 0 (unless i = 1 and j = 0) and γn,i,j = 0 if i < 1 or j < 0.

Proof. We will use the following recurrence of An(s, t) computed by Petersen [12, Equation
(9)] via the machine of balls in boxes (or 2-D barred permutations):

nAn(s, t) = (n2st+ (n− 1)(1− s)(1− t))An−1(s, t)

+ nst(1− s) ∂
∂s
An−1(s, t) + nst(1− t) ∂

∂t
An−1(s, t)

+ st(1− s)(1− t) ∂2

∂s∂t
An−1(s, t).

(2.2)

Let Γn(X, Y ) :=
∑

i,j γn,i,jX
iY j. Observe that decomposition (1.2) is equivalent to

the following relationship:

An(s, t) = (s+ t)n+1Γn(X, Y ) with X =
st

(s+ t)2
and Y =

1 + st

s+ t
.

Substituting this into (2.2) and dividing both sides by (s+ t)n+1, we get

nΓn(X, Y ) = α1Γn−1(X, Y ) + α2
∂Γn−1(X, Y )

∂X
+ α3

∂Γn−1(X, Y )

∂Y

+ α4
∂2Γn−1(X, Y )

∂X2
+ α5

∂2Γn−1(X, Y )

∂Y 2
+ α6

∂2Γn−1(X, Y )

∂X∂Y
,

(2.3)

where

α1 =
n2st+ (n− 1)(1− s)(1− t)

s+ t
+
n2st(2− s− t)

(s+ t)2
+
n(n− 1)st(1− s)(1− t)

(s+ t)3

= (n− 1)(Y − 1) + n(n− 1)XY + (n2 + n)X,

α2 =
nst

s+ t

(
(1− s)∂X

∂s
+ (1− t)∂X

∂t

)
+
nst(1− s)(1− t)

(s+ t)2

(
∂X

∂t
+
∂X

∂s

)
+

+
st(1− s)(1− t)

s+ t

∂2X

∂s∂t
= (n− 1)XY + (6− 4n)X2Y +X − 6X2,

α3 =
nst

s+ t

(
(1− s)∂Y

∂s
+ (1− t)∂Y

∂t

)
+
nst(1− s)(1− t)

(s+ t)2

(
∂Y

∂t
+
∂Y

∂s

)
+

+
st(1− s)(1− t)

s+ t

∂2Y

∂s∂t
= (−2n+ 2)XY 2 + 2nX − 2XY,
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α4 =
st(1− s)(1− t)

s+ t

∂X

∂s

∂X

∂t
= 4X3(Y − 1)−X2(Y − 1),

α5 =
st(1− s)(1− t)

s+ t

∂Y

∂s

∂Y

∂t
= −X(Y − 1) +XY 2(Y − 1)

and

α6 =
st(1− s)(1− t)

s+ t

(
∂X

∂s

∂Y

∂t
+
∂Y

∂s

∂X

∂t

)
= −XY (Y − 1) + 4X2Y (Y − 1).

Extracting the coefficient of X iY j in both sides of (2.3), we get (2.1) after shifting the
index n by one.

The same manipulations above can be applied to deduce the recurrence relations for
the γ-coefficients of two extensions of An(s, t) in the next section. It does not follow
immediately from recurrence relation (2.1) that γn+1,i,j is a nonnegative integer: the left-
hand side has the multiplicative factor (n + 1) and the coefficient i(i + j) − n in the
right-hand side may assume negative values. Nevertheless, the crucial observation that
γn,i,j 6= 0 only if when i(i+ j) > n will lead to the nonnegativity of γn,i,j, as stated in the
following.

Theorem 4. For n > 1, the coefficients γn,i,j are nonnegative. Moreover, the coefficient
γn,i,j is positive if and only if i > 1, j > 0, 2i+ j 6 n+ 1 and i(i+ j) > n.

Proof. We will prove this result by induction on n using recurrence relation (2.1) for the
coefficient γn,i,j.

Clearly, the result is true for n 6 5 by the first formulae produced in the introduction.
Suppose that this result is true for some n with n > 5. We need to show the result for
n+ 1. We can assume that i > 1, j > 0 and 2i+ j 6 n+ 2, otherwise γn+1,i,j = 0. There
are three cases to be considered.

Case 1: If i(i+j) = n, then the inductive hypothesis implies that all γn,i,j−1, γn,i−1,j−1,
γn,i−1,j, γn,i−1,j+1, γn,i−1,j+1, γn,i−1,j+2 are 0 (except γn,i,j may not be zero), since now

i(i+ j − 1) < n, (i− 1)(i+ j − 2) < n, (i− 1)(i+ j + 1) < n.

Thus, γn+1,i,j = 0 if i(i+ j) = n.
Case 2: If i(i+j) < n, then the inductive hypothesis implies that all γn,i,j−1, γn,i−1,j−1,

γn,i−1,j, γn,i−1,j+1, γn,i−1,j+1 and γn,i−1,j+2, including γn,i,j, are 0, which forces γn+1,i,j = 0.
Case 3: If i(i+ j) > n+ 1, then we need further to distinguish two subcases. Subcase

I: 2i+j 6 n+1. In this case, the expression (i(i+j)−n)γn,i,j in the right-hand side of (2.1)
is positive by the inductive hypothesis, and so γn+1,i,j > 0. Subcase II: 2i+ j = n+ 2. In
this case, as

i(i+ j − 1) = i(n+ 1− i) > n and 2i+ j − 1 = n+ 1,

we have (n + i(n + 2 − i − j))γn,i,j−1 > 0 (again by the inductive hypothesis) in the
right-hand side of (2.1), and therefore γn+1,i,j > 0. This ends the proof by induction.
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For the sake of completeness, we provide a proof of the following fundamental result
regarding the basis

Bn := {(st)i(1 + st)j(s+ t)n−j−2i : i, j > 0, j + 2i 6 n}.

Lemma 5. The set Bn is a basis (over Z) for polynomials A(s, t) =
∑n

k,l>0 ak,ls
ktl ∈ Z[s, t]

with symmetries

ak,l = al,k and ak,l = an−k,n−l for all k, l > 0. (2.4)

Proof. Clearly, all polynomials in Bn satisfy the symmetries (2.4), as well as their linear
combinations. It remains to show that each polynomial with symmetries (2.4) can be
expanded uniquely in Bn.

Let bn,i,j := (st)i(1 + st)j(s+ t)n−j−2i. We order the polynomials in Bn as:

bn,i,j is before bn,u,v if i < u or i = u but j < v

so that the term sn−iti+j does not appear in any polynomial after bn,i,j in this order. Let
An be the set of all polynomials in Z[s, t] with symmetries (2.4). We say a polynomial
A(s, t) ∈ An has complexity

(b(n+ 2)/2c − i)(b(n+ 3)/2c − i)− j

if it contains the term sn−iti+j but does not contain any term sktl satisfying k > n − i
or k = n − i but l < i + j. For such a polynomial A(s, t), consider the polynomial
A(s, t)−an−i,i+jbn,i,j (obviously in An). The complexity of this new polynomial reduces at
least by one, since the term sn−iti+j vanishes. Therefore, by induction on the complexity,
we can show that each polynomial from An can be expanded uniquely in Bn.

3 Generalizations

Fix a positive integer k 6 n. Define the generalized double Eulerian polynomial A
(k)
n (s, t)

by the identity ∑
i,j>0

(
ij + n− k

n

)
sitj =

A
(k)
n (s, t)

(1− s)n+1(1− t)n+1
. (3.1)

The generalized double Eulerian polynomials first arise implicitly in [11]. Gessel [15]
(see also [9]) further noticed that the generalized double Eulerian polynomials have the
following nice interpretation

A(k)
n (s, t) =

∑
π∈Sn

sdes(π
−1)+1tdes(πσ)+1,

where σ ∈ Sn is any fixed permutation with des(σ) = k − 1. Note that A
(1)
n (s, t) =

An(s, t). This suggests the following more general form of γ-positivity, first appeared as
Conjecture 10.2 (also due to Gessel) in [1].
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Theorem 6 (Generalization of Conj. 2). For n > 1 and 1 6 k 6 n, we have

A(k)
n (s, t) =

∑
i>1,j>0

j+2i6n+1

γ
(k)
n,i,j(st)

i(1 + st)j(s+ t)n+1−j−2i, (3.2)

where γ
(k)
n,i,j are nonnegative integers.

For s = 1 or t = 1, expansion (3.2) reduces to the classical result (1.1) with γn,i =∑
j>0 γ

(k)
n,i,j. Thus, the coefficients γ

(k)
n,i,j are refinements of the triangle γn,i. We decompose

the proof of Theorem 6 into the following three lemmas.

Lemma 7. The generalized double Eulerian polynomial A
(k)
n (s, t) satisfies the recurrence

relation

nA(k)
n (s, t) = (n2st+ (n− k)(1− s)(1− t))A(k)

n−1(s, t)

+ nst(1− s) ∂
∂s
A

(k)
n−1(s, t) + nst(1− t) ∂

∂t
A

(k)
n−1(s, t)

+ st(1− s)(1− t) ∂2

∂s∂t
A

(k)
n−1(s, t),

(3.3)

where
A

(k)
k (s, t) =

∑
π∈Sk

sdes(π
−1)+1tk−des(π) = tk+1Ak(s, 1/t). (3.4)

Proof. In the special case when σ = k(k − 1) · · · 21, we have des(πσ) = k − 1 − des(π)
for each π ∈ Sk and (3.4) follows. For simplicity, the left-hand side of (3.1) is denoted as

F
(k)
n (s, t). Since

n

(
ij + n− k

n

)
= (ij + n− k)

(ij + n− k − 1)!

(n− 1)!(ij − k)!

= ij

(
ij + n− k − 1

n− 1

)
+ (n− k)

(
ij + n− k − 1

n− 1

)
,

we have

nF (k)
n (s, t) =

∑
i,j>0

n

(
ij + n− k

n

)
sitj

=
∑
i,j>0

ij

(
ij + n− k − 1

n− 1

)
sitj +

∑
i,j>0

(n− k)

(
ij + n− k − 1

n− 1

)
sitj

= st
∂2

∂s∂t
F

(k)
n−1(s, t) + (n− k)F

(k)
n−1(s, t).

Substituting F
(k)
n (s, t) = A

(k)
n (s, t)(1 − s)−n−1(1 − t)−n−1 into the above relation, we

get (3.3) after simplification.

the electronic journal of combinatorics 23(3) (2016), #P3.15 6



Lemma 8. Fix a positive integer k. Let n > k. Then, for all i > 1 and j > 0

(n+ 1)γ
(k)
n+1,i,j = (n+ 1− k + i(n+ 2− i− j))γ(k)n,i,j−1

+ (i(i+ j)− (n+ 1− k))γ
(k)
n,i,j

+ (n+ 4− 2i− j)(n+ 3− 2i− j)γ(k)n,i−1,j−1

+ (n+ 2i+ j)(n+ 3− 2i− j)γ(k)n,i−1,j

+ (j + 1)(2n+ 2− j)γ(k)n,i−1,j+1 + (j + 1)(j + 2)γ
(k)
n,i−1,j+2,

(3.5)

where γ
(k)
k,i,j = γk,i,k+1−2i−j.

Proof. Follows from Lemma 7 by the same manipulations as the proof of Lemma 3. Note
that γ

(k)
k,i,j = γk,i,k+1−2i−j is equivalent to (3.4).

If we sum up both side of (3.5) for all possible j, then we go back to the recurrence
relation for γn,i [7, Remarque 5.3]:

γn+1,i = iγn,i + 2(n+ 3− 2i)γn,i−1.

Note that in recurrence (3.5) the integer i(i + j) − (n + 1 − k) may assume negative

value. The nonnegativity of coefficients γ
(k)
n,i,j is confirmed by the following lemma based

on Theorem 4.

Lemma 9. Fix a positive integer k. Let n > k. Then, for i > 1, j > 0 and 2i+ j 6 n+1:

(i) all the coefficients γ
(k)
n,i,j are nonnegative;

(ii) the coefficient γ
(k)
n,i,j vanishes if i(i+ j) < n+ 1− k.

We will prove this result by induction on n (for n > k) using recurrence relation (3.5)

for the generalized coefficients γ
(k)
n,i,j.

Proof. As γ
(k)
k,i,j = γk,i,k+1−2i−j, the two statements are true for n = k by Theorem 4.

Suppose that this result is true for some n with n > k. We need to show the two
statements for n + 1. It suffices to show statement (ii) in view of recurrence (3.5). We
distinguish two cases.

Case 1: If i(i+ j) = n+ 1− k, then the inductive hypothesis implies that all γ
(k)
n,i,j−1,

γ
(k)
n,i−1,j−1, γ

(k)
n,i−1,j, γ

(k)
n,i−1,j+1, γ

(k)
n,i−1,j+1, γ

(k)
n,i−1,j+2 vanish (except γ

(k)
n,i,j may be positive),

since now

max{i(i+ j − 1), (i− 1)(i+ j − 2), (i− 1)(i+ j + 1)} < n+ 1− k.

Thus, γ
(k)
n+1,i,j = 0 if i(i+ j) = n+ 1− k.

Case 2: If i(i+ j) < n+ 1− k, then the inductive hypothesis implies that all γ
(k)
n,i,j−1,

γ
(k)
n,i−1,j−1, γ

(k)
n,i−1,j, γ

(k)
n,i−1,j+1, γ

(k)
n,i−1,j+1 and γ

(k)
n,i−1,j+2, including γ

(k)
n,i,j, vanish, which forces

γ
(k)
n+1,i,j = 0.

Thus, the proof is completed by induction.
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3.1 Type B analog

Consider the Type B Coxeter group Bn, whose elements are regarded as signed permuta-
tions of [n]. The type B descent statistic of π ∈ Bn, denoted desB(π), is defined as

desB(π) := #{i ∈ [n− 1] : πi > πi+1}+ χ(π1 < 0).

This type B descent statistic was introduced by Brenti [3]. Gessel [15] noted that the
Type B double Eulerian polynomials Bn(s, t) :=

∑
σ∈Bn

sdesB(π−1)tdesB(π) has the generating
function ∑

i,j>0

(
2ij + i+ j + n

n

)
sitj =

Bn(s, t)

(1− s)n+1(1− t)n+1
. (3.6)

We have the following type B analog of Conjecture 2, which also implies the γ-positivity
of Bn(1, t), a result known previously [5, 6].

Theorem 10 (Type B analog of Conj. 2). For n > 1,

Bn(s, t) =
∑
i,j>0

j+2i6n

γ̃n,i,j(st)
i(1 + st)j(s+ t)n−j−2i,

where γ̃n,i,j are nonnegative integers. Moreover, γ̃n,i,j is positive if and only if i, j > 0,
2i+ j 6 n and 2i(i+ j + 1) + j > n.

For instance, the first few expansions of Bn(s, t) are

B1(s, t) = 1 + st,

B2(s, t) = (1 + st)2 + 4st,

B3(s, t) = (1 + st)3 + 16st(1 + st) + 4st(s+ t),

B4(s, t) = (1 + st)4 + 41st(1 + st)2 + 30st(s+ t)(1 + st) + st(s+ t)2 + 80(st)2.

We have the following recursion for the type B γ-coefficients γ̃n,i,j.

Lemma 11. Let n > 2. For all i, j > 0, we have

nγ̃n,i,j = (2n− j + 2i(n− i− j))γ̃n−1,i,j−1 + (2i(i+ j + 1) + j + 1− n)γ̃n−1,i,j

+ 2(n+ 2− 2i− j)(n+ 1− 2i− j)γ̃n−1,i−1,j−1
+ 2(n+ 2i+ j)(n+ 1− 2i− j)γ̃n−1,i−1,j
+ (j + 1)(4n− 2j)γ̃n−1,i−1,j+1 + 2(j + 1)(j + 2)γ̃n−1,i−1,j+2.

(3.7)

Proof. By (3.6) using similar approach as Lemma 3. All the computations are routine
and tedious which we omit.

Proof of Theorem 10. The proof is essentially the same as that of Theorem 4 by in-
duction on n, but using recursion (3.7) for γ̃n,i,j instead.

the electronic journal of combinatorics 23(3) (2016), #P3.15 8



Acknowledgement

I thank Ira M. Gessel, T. Kyle Petersen and Jiang Zeng for their comments. I also would
like to thank the referees for their suggestions to improve the paper. This work was
partially supported by the National Science Foundation of China grant 11501244.

References
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