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Abstract

In this paper we consider mixed volumes of combinations of hypersimplices.
These numbers, called “mixed Eulerian numbers”, were first considered by A. Post-
nikov and were shown to satisfy many properties related to Eulerian numbers, Cata-
lan numbers, binomial coefficients, etc. We give a general combinatorial interpre-
tation for mixed Eulerian numbers and prove the above properties combinatorially.
In particular, we show that each mixed Eulerian number enumerates a certain set of
permutations in Sn. We also prove several new properties of mixed Eulerian num-
bers using our methods. Finally, we consider a type B analogue of mixed Eulerian
numbers and give an analogous combinatorial interpretation for these numbers.

1 Introduction

For integers 1 6 k 6 n, the hypersimplex ∆k,n ⊂ Rn+1 is the convex hull of all points of
the form

ei1 + ei2 + · · ·+ eik

where 1 6 i1 < i2 · · · < ik 6 n+1 and ei is the i-th standard basis vector. Thus, ∆k,n is an
n-dimensional polytope which lies in the hyperplane x1+ · · ·+xn+1 = k. Given a polytope
P ⊂ Rn+1 which lies in a hyperplane x1 + · · · + xn+1 = α for some α ∈ R, we define its
(normalized) volume VolP to be the usual n-dimensional volume of the projection of P
onto the first n coordinates. It is a classical result (usually attributed to Laplace [4]) that

n! Vol ∆k,n = A(n, k),

where the Eulerian number A(n, k) is the number of permutations on n letters with
exactly k − 1 descents.
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We now define the mixed volume of a set of polytopes. Given a polytope P and a
real number λ > 0, let λP = {λx | x ∈ P}. Given polytopes P1, . . . , Pm ⊂ Rn, let their
Minkowski sum be

P1 + · · ·+ Pm = {x1 + · · ·+ xm | xi ∈ Pi for all i}.

For nonnegative real numbers λ1, . . . , λm, the function

f(λ1, . . . , λm) = Vol(λ1P1 + · · ·+ λmPm)

is known to be a homogeneous polynomial of degree n in the variables λ1, . . . , λm. Hence
there is a unique symmetric function Vol defined on n-tuples of polytopes in Rn such that

f(λ1, . . . , λm) =
m∑

i1,...,in=1

Vol(Pi1 , . . . , Pin)λi1 · · ·λin .

The number Vol(P1, . . . , Pn) is called the mixed volume of P1, . . . , Pn. Mixed volumes
of lattice polytopes have important connections to algebraic geometry, where they count
the number of solutions to generic systems of polynomial equations; see [1]. If P1 = · · · =
Pn = P , then Vol(P1, . . . , Pn) equals the ordinary volume Vol(P ). If P1, . . . , Pm ⊂ Rn+1

and each Pi lies in a hyperplane x1 + · · ·+ xn+1 = αi for some αi ∈ R, then we define the
mixed volume Vol(P1, . . . , Pn) in terms of the normalized volume defined previously.

Let c1, c2, . . . , cn be nonnegative integers such that c1 + · · ·+ cn = n. We define

Ac1,...,cn = n! Vol(∆c1
1,n,∆

c2
2,n, . . . ,∆

cn
n,n)

where (∆c1
1,n,∆

c2
2,n, . . . ,∆

cn
n,n) denotes the n-tuple with c1 entries ∆1,n, c2 entries ∆2,n, and

so on. The numbers Ac1,...,cn are called mixed Eulerian numbers, and were introduced by
Postnikov in [6].

As with ordinary volumes of hypersimplices, mixed volumes of hypersimplices appear
to satisfy certain combinatorial identities. It is immediate that A0k−1,n,0n−k = A(n, k),
where 0l denotes l entries 0. Furthermore, the result of Ehrenborg, Readdy, and Ste-
ingŕımsson [3] states that

A0k−2,r,n−r,0n−k

equals the number of permutations w ∈ Sn+1 with k − 1 descents and w1 = r + 1. Other
properties are listed in Theorem 4.1 and include

A1,...,1 = n! Ak,0,...,0,n−k =

(
n

k

)
Ac1,...,cn = 1c12c2 · · ·ncn if c1 + · · ·+ ci > i for all i.

These results were proven in [6] using algebraic and geometric methods. Additional
formulas involving mixed Eulerian numbers and their generalizations to other root systems
were derived by Croitoru in [2].

In this paper, the main result is a general combinatorial interpretation for the mixed
Eulerian numbers which encompasses the previous results. In particular, we show that
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each mixed Eulerian number enumerates a certain well-defined set of permutations in Sn.
(When ck = n and ci = 0 for all i 6= k, this set is precisely the set of permutations with
k − 1 descents.) We show how the above results arise from this result. We also derive
some new identities which follow from this interpretation. For example, we show that
Ac1,...,cn 6 1c12c2 · · ·ncn for every mixed Eulerian number. We also show that

An−m,0k−3,r,m−r,0n−k =
n−m∑
i=0

(
m+ i

m

)
A(m, k − i; r) (1)

where A(n, k; r) equals the number of permutations w ∈ Sn+1 with k − 1 descents and
w1 = r + 1. This generalizes the result of Ehrenborg, Readdy, and Steingŕımsson. The
left hand side of (1) with r = 0 also appeared in the work of Micha lek et. al. [5] during
their study of exponential families arising from elementary symmetric polynomials. The
authors used the recursions of [2] to obtain the formula

An−m,0k−2,m,0n−k

=


n−k∑
i=0

(n− k + 1− i)
(
n− i
n−m

)
kiA(m− i− 1,m− n+ k − 1) if n−m < k − 1

km otherwise.

As a secondary result, we define the polytope Γk,n ⊂ Rn to be the convex hull of all
points of the form

±ei1 ± ei2 ± · · · ± eik
where 1 6 i1 < · · · < ik 6 n. For nonnegative integers c1, . . . , cn such that c1+· · ·+cn = n,
define

Bc1,...,cn = n! Vol(Γc11,n,Γ
c2
2,n, . . . ,Γ

cn
n,n).

We call the Bc1,...,cn the type B mixed Eulerian numbers, whereas the Ac1,...,cn are type A
mixed Eulerian numbers. We give a combinatorial interpretation for the Bc1,...,cn analogous
to that of the Ac1,...,cn and list several identities that follow from this interpretation.

2 Permutohedra and signed permutohedra

We first introduce two polytopes which will be used later in our proofs. Let y1, . . . , yn+1

be real numbers. The permutohedron P (y1, . . . , yn+1) is the convex hull of the (n + 1)!
points of the form (yw(1), . . . , yw(n+1)), where w ∈ Sn+1 is a permutation. For example,
∆k,n = P (1k, 0n+1−k). The permutohedron is an n-dimensional polytope lying in the
hyperplane x1 + · · ·+ xn+1 = y1 + · · ·+ yn+1.

We have the following characterizations of P (y1, . . . , yn+1); see, for example, [6].

Proposition 2.1. Let y1 > · · · > yn+1 be real numbers. Then P (y1, . . . , yn+1) is the set
of points (x1, . . . , xn+1) ∈ Rn+1 such that for all 1 6 k 6 n and all k-element subsets
{i1, . . . , ik} ⊂ {1, . . . , n+ 1}, we have

xi1 + · · ·+ xik 6 y1 + · · ·+ yk,
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and
x1 + · · ·+ xn+1 = y1 + · · ·+ yn+1.

Proposition 2.2. For nonnegative real numbers λ1, . . . , λn, we have

λ1∆1,n + λ2∆2,n + · · ·+ λn∆n,n = P (λ1 + · · ·+ λn, λ2 + · · ·+ λn, . . . , λn, 0).

Alternatively, if y1 > · · · > yn+1 are real numbers, then P (y1, . . . , yn+1) is a translation
by (yn+1, . . . , yn+1) of

(y1 − y2)∆1,n + (y2 − y3)∆2,n + · · ·+ (yn − yn+1)∆n,n.

Now let y1, . . . , yn be real numbers, and define the signed permutohedron SP (y1, . . . , yn)
to be the convex hull of the 2nn! points of the form (±yw(1), . . . ,±yw(n)), where w ∈ Sn
is a permutation. For example, Γk,n = SP (1k, 0n−k). The signed permutohedron is an
n-dimensional polytope lying in Rn.

We have the following characterizations of SP (y1, . . . , yn).

Proposition 2.3. Let y1 > · · · > yn > 0 be real numbers. Then SP (y1, . . . , yn) is the
set of points (x1, . . . , xn) ∈ Rn such that for all 1 6 k 6 n and all k-element subsets
{i1, . . . , ik} ⊂ {1, . . . , n}, we have

|xi1|+ · · ·+ |xik | 6 y1 + · · ·+ yk.

Proposition 2.4. For nonnegative real numbers λ1, . . . , λn, we have

λ1Γ1,n + λ2Γ2,n + · · ·+ λnΓn,n = SP (λ1 + · · ·+ λn, λ2 + · · ·+ λn, . . . , λn).

Alternatively, for real numbers y1 > · · · > yn > 0, we have

SP (y1, . . . , yn) = (y1 − y2)Γ1,n + (y2 − y3)Γ2,n + · · ·+ (yn−1 − yn)Γn−1,n + ynΓn,n.

3 The main theorem

3.1 C-permutations

Let n be a positive integer, and let S be a totally ordered set with |S| = n. Let C =
(C1, . . . , Cn) be a sequence of n pairwise disjoint sets such that

• C1 ∪ · · · ∪ Cn = S, and

• s < t whenever s ∈ Ci, t ∈ Cj, and i < j.

We will call such a C a division of S. Let |C| denote the sequence (|C1| , . . . , |Cn|).
We say that an element s ∈ S is admissible with respect to C if either s is the smallest

element of C1, s is the largest element of Cn, or s ∈ Ci for i 6= 1, n. Given an admissible
element s, we define the deletion of s from C as follows. Let i be such that s ∈ Ci, and
let C−i = {t ∈ Ci | t < s} and C+

i = {t ∈ Ci | t > s}. The deletion of admissible s from
C results in a sequence of n− 1 sets, denoted by Cs = (Cs

1 , . . . , C
s
n−1), given as follows:
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• If i = 1, then Cs = (C+
1 ∪ C2, C3, . . . , Cn).

• If i 6= 1, n, then Cs = (C1, . . . , Ci−2, Ci−1 ∪ C−i , C+
i ∪ Ci+1, Ci+2, . . . , Cn).

• If i = n, then Cs = (C1, . . . , Cn−2, Cn−1 ∪ C−n ).

In any case, Cs is a division of S \ {s}.
Suppose s1 ∈ S is admissible with respect to C, s2 ∈ S \ {s1} is admissible with

respect to Cs1 , s3 ∈ S \ {s1, s2} is admissible with respect to (Cs1)s2 , and so on until
si. Then we say that the sequence s1s2 . . . si is admissible with respect to C and write
((Cs1)s2 . . . )si = Cs1···si . If a permutation s1 . . . sn of S is admissible with respect to C,
then we call it a C-permutation. Note that the number of C-permutations depends only
on |C|.

Example 3.1. Suppose n = 5 and C = ({1}, ∅, {2, 3}, {4}, {5}). The element 2 is ad-
missible with respect to C, and C2 = ({1}, ∅, {3, 4}, {5}). The element 3 is admissible
with respect to C2, and C23 = ({1}, ∅, {4, 5}). The element 1 is admissible with respect
to C23, and C231 = (∅, {4, 5}). The element 5 is admissible with respect to C231, and
C2315 = ({4}). The element 4 is admissible with respect to C2315. Hence 23154 is a
C-permutation. The construction of this permutation is visualized below.

1 ∅ 23 4 5
1 ∅ 34 5

1 ∅ 45
∅ 45

4

On the other hand, 23145 is not a C-permutation because 4 is not admissible with
respect to C231 = (∅, {4, 5}).

Example 3.2. Suppose C = ({1, . . . , n}, ∅, . . . , ∅). The only element admissible with
respect to C is 1, and C1 = ({2, . . . , n}, ∅, . . . , ∅). The only element admissible with
respect to C1 is 2, and so on. Thus the only C-permutation is 12 . . . n.

Similarly, if C = (∅, . . . , ∅, {1, . . . , n}), then the only C-permutation is n(n− 1) . . . 1.

Example 3.3. Suppose C is a division of S and |C| = (1, . . . , 1). Then every element
of S is admissible with respect to C. Moreover, for any element s ∈ S, Cs satisfies
|Cs| = (1, . . . , 1). So by induction, every permutation of S is a C-permutation.

Example 3.4. Let C be a division of the form C = (C1, ∅, . . . , ∅, Cn). Then the only
admissible elements with respect to C are the first element of C1 and the last element
of Cn. Furthermore, when we delete either of these elements, the resulting sequence of
sets is again of the form (C ′1, ∅, . . . , ∅, C ′n−1). So when we construct a C-permutation by
successively deleting admissible elements, at each step we delete either the first element
of the first set or the last element of the last set. Thus the C-permutations are the
permutations where the elements of C1 appear in ascending order and the elements of Cn
appear in descending order.
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Example 3.5. We will see from Corollary 4.7 that if C = (∅k−1, {1, . . . , n}, ∅n−k), then a
permutation w ∈ Sn is a C-permutation if and only if it has k − 1 descents.

We now state our main result.

Theorem 3.6. The number of C-permutations is A|C|.

Proof. Let

fn(λ1, . . . , λn) = Vol(λ1∆1,n + λ2∆2,n + · · ·+ λn∆n,n)

=
∑

c1+···+cn=n

1

c1! · · · cn!
Ac1,...,cnλ

c1
1 · · ·λcnn

so that
Ac1,...,cn = ∂c11 · · · ∂cnn fn.

The idea of the proof is to write a recursive formula for fn. To do this, we make the
following observation:

Proposition 3.7. Let y1 > · · · > yn+1 be real numbers, and let P = P (y1, . . . , yn+1).
Fix a real number yn+1 6 x 6 y1, and let Px denote the cross section of P with the first
coordinate equal to x. Let 1 6 i 6 n be such that yi+1 6 x 6 yi. Then Px is equal to

{x} × P (y1, . . . , yi−1, yi + yi+1 − x, yi+2, . . . , yn+1).

Proof. By Proposition 2.1, Px is the set of points (x, x2, . . . , xn+1) ∈ Rn+1 such that for
all 1 6 k 6 n− 1 and k-element subsets {i1, . . . , ik} ⊂ {2, . . . , n+ 1}, we have

xi1 + · · ·+ xik 6 min(y1 + · · ·+ yk, y1 + · · ·+ yk+1 − x)

and
x2 + · · ·+ xn+1 = y1 + · · ·+ yn+1 − x.

We have y1 + · · ·+ yk 6 y1 + · · ·+ yk+1 − x if and only if x 6 yk+1. Hence, Px is the set
of points (x, x2, . . . , xn+1) ∈ Rn+1 such that for all 1 6 k 6 n − 1 and k-element subsets
{i1, . . . , ik} ⊂ {2, . . . , n+ 1}, we have

xi1 + · · ·+ xik 6 y1 + · · ·+ yk if x 6 yk+1

xi1 + · · ·+ xik 6 y1 + · · ·+ yk+1 − x if x > yk+1

and
x2 + · · ·+ xn+1 = y1 + · · ·+ yn+1 − x.

By Proposition 2.1, this is precisely the description of

{x} × P (y1, . . . , yi−1, yi + yi+1 − x, yi+2, . . . , yn+1),

as desired.
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Corollary 3.8. Let λ1, . . . , λn be nonnegative real numbers. Fix a real number 0 6 x 6
λ1 + · · · + λn, and let 1 6 i 6 n be such that λi+1 + · · · + λn 6 x 6 λi + · · · + λn (where
0 6 x 6 λn if i = n). Set t = λi + · · ·+ λn − x. Then the cross section of

λ1∆1,n + λ2∆2,n + · · ·+ λn∆n,n

with first coordinate equal to x is equal to {x} × Q, where Q is the following polytope in
the following cases:

• If i = 1,
(t+ λ2)∆1,n−1 + λ3∆2,n−1 + · · ·+ λn∆n−1,n−1.

• If 2 6 i 6 n− 1,

λ1∆1,n−1 + · · ·+ λi−2∆i−2,n−1 + (λi−1 + λi − t)∆i−1,n−1

+ (t+ λi+1)∆i,n−1 + λi+2∆i+1,n−1 + · · ·+ λn∆n−1,n−1.

• If i = n,

λ1∆1,n−1 + · · ·+ λn−2∆n−2,n−1 + (λn−1 + λn − t)∆n−1,n−1.

Proof. This follows by translating Proposition 3.7 through Proposition 2.2.

Corollary 3.8 now gives the following formula for fn:

Proposition 3.9. We have

fn(λ1, . . . , λn) =

∫ λ1

0

fn−1(t+ λ2, λ3, . . . , λn) dt

+
n−1∑
i=2

∫ λi

0

fn−1(λ1, . . . , λi−2, λi−1 + λi − t, t+ λi+1, λi+2, . . . , λn) dt

+

∫ λn

0

fn−1(λ1, . . . , λn−2, λn−1 + λn − t) dt.

Now, we wish to use this formula to calculate ∂c11 · · · ∂cnn fn. We use the “differentiation
under the integral” rule: For smooth functions u(x) and v(x, t), we have

d

dx

∫ u(x)

0

v(x, t) dt = u′(x)v(x, u(x)) +

∫ u(x)

0

∂

∂x
v(x, t) dt.

It follows that for 2 6 i 6 n− 1, we have(
∂

∂λi

)ci ∫ λi

0

fn−1(λ1, . . . , λi−1 + λi − t, t+ λi+1, . . . , λn) dt

=

ci−1∑
r=0

∂ri−1∂
ci−r−1
i fn−1(λ1, . . . , λi + λi+1, . . . , λn)

+

∫ λi

0

∂cii−1fn−1(λ1, . . . , λi−1 + λi − t, t+ λi+1, . . . , λn) dt (2)
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and hence(
∂

∂λ1

)c1
· · ·
(

∂

∂λn

)cn ∫ λi

0

fn−1(λ1, . . . , λi−1 + λi − t, t+ λi+1, . . . , λn) dt

=

ci−1∑
r=0

∂c11 · · · ∂
ci−1

i−1 ∂
r
i−1∂

ci−r−1
i ∂

ci+1

i · · · ∂cnn−1fn−1

=

ci−1∑
r=0

Ac1,...,ci−2,ci−1+r,ci−r−1+ci+1,ci+2,...,cn

=
∑
s∈Ci

A|Cs|

where C is a division with |C| = (c1, . . . , cn). Note that the final term of (2) vanishes
after differentiation because fn−1 is a polynomial of degree n− 1.

By similar (and simpler) calculations, we have(
∂

∂λ1

)c1
· · ·
(

∂

∂λn

)cn ∫ λ1

0

fn−1(t+ λ2, λ3, . . . , λn) dt = Ac1+c2−1,c3,...,cn

= A|C1|

and (
∂

∂λ1

)c1
· · ·
(

∂

∂λn

)cn ∫ λn

0

fn−1(λ1, . . . , λn−2, λn−1 + λn − t) dt = Ac1,...,cn−1+cn−1

= A|Cn|.

Combining these calculations with Proposition 3.9, we obtain

Ac1,...,cn = A|C1| +
n−1∑
i=2

∑
s∈Ci

A|Cs| + A|Cn|.

The desired result now follows by induction with the base case A1 = 1.

While C-permutations are defined recursively in general, there are certain cases where
more explicit descriptions can be given. This allows us to derive various formulas for
mixed Eulerian numbers, which we do in Section 4.

3.2 Index functions and superdiagonality

We will also associate each C-permutation with a function which we call an “index func-
tion”. For some applications, this function will be more useful to work with than the
permutation itself. This section will only be used in Sections 4.2 and 4.4 and can be
skipped until then.

Let C = (C1, . . . , Cn) be a division of S and let w = w1 . . . wn be a C-permutation. For
each 1 6 i 6 n, the index of wi in w with respect to C is the j such that wi ∈ Cw1w2...wi−1

j .
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In other words, j is the index of the set containing wi immediately before we delete wi.
Let ICw : S → N be the function which takes each s ∈ S to its index in w with respect
to C. Note that if s ∈ Ci, then ICw (s) ∈ {1, . . . , i}. We will call any function I : S → N
which maps Ci into {1, . . . , i} and index function of C.

Example 3.10. Let C = ({1}, ∅, {2, 3}, {4}, {5}) and w = 23154 as in Example 3.1.
Then ICw (2) = 3, ICw (3) = 3, ICw (1) = 1, ICw (5) = 2, and ICw (4) = 1.

Example 3.11. Let C = (∅k−1, {1, . . . , n}, ∅n−k) and let w be a C-permutation. By
Corollary 4.7, we can uniquely write w = w1 w2 . . . wk where each wi is an increasing
sequence and w is the concatenation of these sequences. Then by Proposition 4.8, if s is
a term in wi, then ICw (s) = k − i+ 1.

We introduce some final terminology. Call a division C superdiagonal if |C1| + · · · +
|Ci| > i for all i. Call a division subdiagonal if |Cn|+ |Cn−1|+ · · ·+ |Cn−i+1| > i for all i.
We make the following observation, which is easy to check.

Proposition 3.12. If C is a superdiagonal (resp., subdiagonal) division of S, then for
any admissible s ∈ S, Cs is also superdiagonl (resp., subdiagonal).

The following is the main result on index functions, which we prove in the next section.

Proposition 3.13. Let C = (C1, . . . , Cn) be a division of S. Then the map w 7→ ICw is
an injection from the set of C-permutations to the set of index functions of C. This map
is a bijection if and only if C is superdiagonal.

4 Properties of mixed Eulerian numbers

Our main application of C-permutations is to give simple combinatorial proofs of known
properties of mixed Eulerian numbers, as well as prove some properties which were un-
known before.

Using algebraic and geometric techniques, Postnikov proved the following facts about
mixed Eulerian numbers.

Theorem 4.1 (Postnikov [6]). The mixed Eulerian numbers have the following proper-
ties:

(a) The numbers Ac1,...,cn are positive integers defined for c1, . . . , cn > 0, c1+· · ·+cn = n.

(b) We have Ac1,...,cn = Acn,...,c1.

(c) For 1 6 k 6 n, the number A0k−1,n,0n−k equals the usual Eulerian number A(n, k).
Here, 0l denotes a sequence of l zeroes.

(d) We have
∑

1
c1!···cn!Ac1,...,cn = (n + 1)n−1, where the sum is over nonnegative integer

sequences c1, . . . , cn with c1 + · · ·+ cn = n.
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(e) We have
∑
Ac1,...,cn = n!Cn, where the sum is over nonnegative integer sequences

c1, . . . , cn with c1 + · · ·+ cn = n, and Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.

(f) For 2 6 k 6 n and 0 6 r 6 n, the number A0k−2,r,n−r,0n−k is equal to the number of
permutations w ∈ Sn+1 with k − 1 descents and w1 = r + 1.

(g) We have A1,...,1 = n!.

(h) We have Ak,0,...,0,n−k =
(
n
k

)
.

(i) We have Ac1,...,cn = 1c12c2 · · ·ncn is c1 + · · ·+ ci > i for all i.

Theorem 4.2 (Postnikov [6]). Let ∼ denote the equivalence relation on the set of nonneg-
ative integer sequences (c1, . . . , cn) with c1+· · ·+cn = n given by (c1, . . . , cn) ∼ (c′1, . . . , c

′
n)

whenever (c1, . . . , cn, 0) is a cyclic shift of (c′1, . . . , c
′
n, 0). Then for a fixed (c1, . . . , cn), we

have ∑
(c′1,...,c

′
n)∼(c1,...,cn)

Ac′1,...,c′n = n!.

Note: There are exactly Cn = 1
n+1

(
2n
n

)
equivalence classes.

We now show how these properties arise from the combinatorial interpretation of mixed
Eulerian numbers given by Theorem 3.6. We also give the following three additional
properties.

Theorem 4.3. We have Ac1,...,cn 6 1c12c2 · · ·ncn, with equality if and only if c1+· · ·+ci > i
for all i.

Theorem 4.4. Let c1, . . . , cn be nonnegative integers such that c1 + · · · + cn = n, and
suppose there exists some 0 6 r 6 n such that c1 + · · · + ci > i for all 1 6 i 6 r and
cn + cn−1 + · · ·+ cn−i+1 > i for all 1 6 i 6 n− r. Then

Ac1,...,cn =

(
n

c1 + · · ·+ cr

)
1c12c2 · · · rcr1cn2cn−1 · · · (n− r)cr+1 .

Theorem 4.5. We have

An−m,0k−3,r,m−r,0n−k =
n−m∑
i=0

(
m+ i

m

)
A(m, k − i; r)

where A(n, k; r) equals the number of permutations w ∈ Sn+1 with k − 1 descents and
w1 = r + 1. In particular,

An−m,0k−2,m,0n−k =
n−m∑
i=0

(
m+ i

m

)
A(m, k − i)

where A(n, k) is defined to be 0 if k 6 0 or k > n.

We do not have a combinatorial proof of Theorem 3.1(d), which was proven using the
volume of the permutohedron.

The following subsections are mostly independent from each other and can be read in
any order.
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4.1 Proofs of Theorem 4.1

Property (a) is clear.
Property (b) follows from the fact that if w is a (C1, . . . , Cn)-permutation, then w is

also a (Cn, . . . , C1)-permutation with the reverse ordering on C1 ∪ · · · ∪ Cn.
Property (f), which is a generalization of property (c), follows from the following

proposition.

Proposition 4.6. Let 2 6 k 6 n and 0 6 r 6 n. Let C be a division of S with
|C| = (0k−2, r, n− r, 0n−k). Let λ be an element not in S such that λ > s for all s ∈ Ck−1
and λ < s for all s ∈ Ck. Then a permutation w = w1 . . . wn of S is a C-permutation if
and only if the sequence λ, w1, . . . , wn has k − 1 descents.

Proof. We induct on n. The argument below will work for n = 2 without assuming the
inductive hypothesis, so we will have a base case. Assume without loss of generality that
S = {1, . . . , n}. Assume w = w1 . . . wn is a C-permutation. First suppose w1 6 r. If
k > 2, then |Cw1 | = (0k−3, w1−1, n−w1, 0

n−k). Since w2 . . . wn is a Cw1-permutation, the
inductive hypothesis then implies that the sequence w1, w2, . . . , wn has k− 2 descents. If
k = 2, then since w1 6 r and w1 is admissible with respect to C, we must have w1 = 1 and
|Cw1 | = (n − 1, 0n−2). Thus w2 . . . wn = 2 . . . n (see Example 3.2), so w1 . . . wn = 1 . . . n.
In either case, w1, . . . , wn has k− 2 descents. Since w1 6 r, it follows that λ, w1, . . . , wn
has k − 1 descents, as desired. The argument for w1 > r follows analogously, with k = n
being the special case instead of k = 2.

Conversely, suppose w = w1 . . . wn is a permutation of S such that λ, w1, . . . , wn has
k− 1 descents. First suppose w1 6 r. Hence w1, w2, . . . , wn has k− 2 descents. If k > 2,
then w1 is admissible with respect to C and |Cw1| = (0k−3, w1 − 1, n − w1, 0

n−k). The
inductive hypothesis then implies that w2 . . . wn is a Cw1-permutation. If k = 2, then w1,
. . . , wn has no descents, so w = 1 . . . n. It is easy to see that this is a C-permutation.
In either case, we have that w is a C-permutation. The argument for w1 > r follows
analogously.

Corollary 4.7. Let 1 6 k 6 n and let C = (∅k−1, {1, . . . , n}, ∅n−k). Then a permutation
w ∈ Sn is a C-permutation if and only if it has k − 1 descents.

Proof. Take r = 0 or n in the previous Proposition.

We can also consider descents of “unfinished” permutations which are admissible with
respect to C. The proof is similarly by induction; we omit it here.

Proposition 4.8. Let C be a division with |C| = (0k−1, n, 0n−k). Suppose that the se-
quence s1s2 . . . si is admissible with respect to C. Let j be the index such that si ∈ Cs1...si−1

j .
Then s1s2 . . . si has k − j descents.

Property (e) follows from Theorem 4.2, which is proven in section 4.3.
Property (g) follows from Example 3.3.
Property (h) follows from Example 3.4.
Property (i) is implied by Theorem 4.3, which we prove in the next section.
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4.2 Proof of Theorem 4.3

It suffices to prove Proposition 3.13.
We first prove injectivity. Let w = w1 . . . wn be a C-permutation, and set I = ICw . We

wish to show that w is determined by I. It suffices to show that w1 is determined by I.
Indeed, if we prove this, then since w2 . . . wn is a Cw1-permutation, the same argument
would imply that w2 is determined by IC

w1

w2...wn
, and this function is determined as the

restriction of I to S \ {w1}. The terms w3, w4, are determined similarly.
Let i1 be such that w1 ∈ Ci1 . Then I(w1) = i1. Let i be the largest number such that

there exists some s ∈ Ci with I(s) = i, and consider the smallest such s. By definition,
i1 6 i. If i1 < i, then after we delete w1 from C we have s ∈ Cw1

i−1. Hence I(s) 6 i − 1,
contradicting the definition of s. So i1 = i. Now if w1 > s, then after we delete w1 from
C we obtain s ∈ Cw1

i−1, again a contradiction. Hence w1 = s. Thus w1 is determined by I,
as desired.

We now prove surjectivity in the case where C is superdiagonal. We induct on n. The
case n = 1 is trivial. Suppose C is superdiagonal. Let I be an index function for C. We
wish to construct a C-permutation w such that Iw = I. First note that |C1| > 1, and any
element s ∈ C1 satisfies I(s) = 1. Thus we can let i be the largest number such that there
exists some s ∈ Ci with I(s) = i, and we consider the smallest such s. Since |Cn| 6 1, it
follows that s is admissible with respect to C. By Proposition 3.12, Cs is superdiagonal.

Let I ′ : S \ {s} → N be the restriction of I to S \ {s}. We claim that I ′ is an index
function of Cs. Indeed, let s′ ∈ S \ {s} and let i′ be such that s′ ∈ Cs

i′ . We wish to prove
I ′(s′) ∈ {1, . . . , i′}. We have either s′ ∈ Ci′ or s′ ∈ Ci′+1. In the first case, we are done
since I ′(s′) = I(s′) ∈ {1, . . . , i′}. In the second case, we must have either i′ + 1 > i or
i′ + 1 = i and s′ < s. By the definition of i and s, we must therefore have I(s′) 6= i′ + 1,
and hence I ′(s′) = I(s′) ∈ {1, . . . , i′}, as desired. Thus I ′ is an index function for Cs.

Since Cs is superdiagonal and I ′ is an index function for Cs, by the inductive hypothesis
there exists a Cs-permutation w′ such that IC

s

w′ = I ′. Letting w = sw′, we have that
ICw = I, as desired. This proves surjectivity.

Conversely, suppose C is not superdiagonal. The function I : S → N with I(s) = 1
for all s ∈ S is clearly an index function of C. Suppose there exists a C-permutation
w = s1 . . . , sn with Iw = I. Thus when we successively delete s1, . . . , sn from C, we
only ever delete from the first set in the current sequence. Hence we only ever delete the
smallest remaining element.

Let i be the largest number such that |C1| + · · · + |Ci| < i. Hence i < n and Ci+1

is nonempty. Let s be the smallest element of Ci+1. After deleting s1, . . . , s|C1|+···+|Ci|
from C, the smallest remaining element is s. But |C1|+ · · ·+ |Ci| < i, so after the above
deletions, s is not in the first set of the sequence. This contradicts I(s) = 1. So there is
no w such that Iw = I, as desired. This proves Proposition 3.13.

4.3 Proof of Theorem 4.2

Let n be a positive integer and let C = (C1, . . . , Cn) be a division of {1, . . . , n} with
|C| = (c1, . . . , cn). Set Cn+1 = ∅.
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We describe a process which is a cyclic version of the construction of C-permutations.
Arrange the numbers 1, . . . , n around a circle C clockwise in that order. We will define
n+ 1 “blocks” as follows: for each 1 6 i 6 n+ 1, block Bi initially contains the elements
of Ci. We view B1, . . . , Bn+1 as being arranged around C in that order, including the
empty blocks; i.e. Bi is viewed as being between Bi−1 and Bi+1 even if Bi is empty. For
any element s ∈ {1, . . . , n}, we define the deletion of s from C as follows. Suppose s ∈ Bi.
Let B−i be the set of elements in Bi which are to the left of (counterclockwise from) s,
and let B+

i be the set of elements in Bi which are to the right of (clockwise from) s. To
delete s, we remove s and the block Bi from C, put all the elements of B−i into the block
to the left of Bi, and put all the elements of B+

i into the block to the right of Bi. The
order of the undeleted elements remains unchanged. We can then delete another element,
and so on. After we delete all n elements, we are left with only one block, which is empty.
Since a nonempty block remains nonempty until it is deleted, this final empty block was
originally empty and remained so throughout the process.

Let w = w1 . . . wn ∈ Sn be a permutation. Let r(w) be the r such that Br is the
final block that remains when we successively delete w1, . . . , wn from C. It is not hard
to see that for each r with Cr = ∅, the set of w such that r(w) = r is precisely the set of
(Cr+1, Cr+2, . . . , Cr−1)-permutations, where the indices of the Ci are taken modulo n+ 1
and the elements {1, . . . , n} are ordered starting from the first element of Cr+1 and going
cyclically to the last element of Cr−1. There are Acr+1,...,cr−1 such permutations. Hence
we have

n! =
∑
cr=0

Acr+1,cr+2,...,cr−1

which is exactly what we wanted to prove.

4.4 Proof of Theorem 4.4

Note that the hypotheses on c1, . . . , cn imply that c1+· · ·+cr = r and cr+1+· · ·+cn = n−r.
Let C = (C1, . . . , Cn) be a division with |C| = (c1, . . . , cn). Let S− = C1 ∪ · · · ∪ Cr and
S+ = Cr+1∪· · ·∪Cn. Let C− = (C1, . . . , Cr) and C+ = (Cr+1, . . . , Cn). Hence C− and C+

are divisions of S− and S+, respectively, and C− is superdiagonal and C+ is subdiagonal.
We write C = (C−, C+) to indicate that C is the concatenation of the sequences C−, C+.

Suppose s ∈ S− is admissible with respect to C. We claim that s is admissible
respect to C− and Cs = ((C−)s, C+). Indeed, this is clearly true if s ∈ Ci for i < r,
and it is true if s ∈ Cr because |Cr| 6 1. Similarly, if s ∈ S+ is admissible with
respect to C, then s is admissible with respect to C+ and Cs = (C−, (C+)s). Moreover,
by Proposition 3.12, C− and C+ remain superdiagonal and subdiagonal, respectively,
after deleting elements. Hence, successively deleting elements from C is equivalent to
successively deleting elements from C− and C+. We can thus bijectively construct any
C-permutation s1 . . . sn by specifying a C−-permutation, specifying a C+-permutation,
and specifying the values of i for which si is an element of S−. There are

(
n

c1+···+cr

)
ways

to specify the values of i for which si is an element of S−, and by Theorems 4.1(i) and
(b), there are 1c12c2 · · · rcr C−-permutations and 1cn2cn−1 · · · (n− r)cr+1 C+-permutations.
This gives the desired result.
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4.5 Proof of Theorem 4.5

We will in fact prove a more general identity. Fix a division C of S such that

|C| = (n−m, 0k−3, r,m− r, 0n−k)

for some 0 6 r 6 m 6 n and 3 6 k 6 n. Suppose s1, s2, . . . is a sequence of elements,
not necessarily all in S. We call a term si of this sequence a C1-descent if either

• si ∈ C1, or

• there exists j > i such that sj /∈ C1, si > sj, and sk ∈ C1 for every i < k < j.

Note that if C1 is empty, then a C1-descent is just an ordinary descent.
We can now state the result.

Proposition 4.9. Let C be as above, and let w0 = λ be an element not in S such that
λ > s for all s ∈ Ck−1 and λ < s for all s ∈ Ck. Then a permutation w = w1 . . . wn of S
is a C-permutation if and only if the sequence w0, w1, w2, . . . , wn satisfies the following
properties:

(a) If i < j and wi, wj ∈ C1, then wi < wj.

(b) The sequence has at least k − 1 C1-descents.

(c) If wi is the (k−1)-th C1-descent, then wi+1, wi+2, . . . , wn is an increasing sequence.

Note that if C1 = ∅, this proposition becomes Proposition 4.6.

Proof of Proposition 4.9. The proof is similar to that of Proposition 4.6. We induct on n.
The below argument will work for n = 3 without the inductive hypothesis, so we will have a
base case. Call a sequence (t, T )-good if it satisfies properties (a)–(c) with k replaced with
t and C1 replaced with T . Without loss of generality, assume C1 = {1′, 2′, . . . , (n−m)′}
and Ck−1 ∪ Ck = {1, 2, . . . ,m}, with the obvious ordering on these two sets.

Suppose w is a C-permutation. First suppose w1 ∈ C1. Then w1 = 1′. If k > 3, then
|Cw1| = (n−m− 1, 0k−4, r,m− r, 0n−k). The inductive hypothesis then implies that the
sequence λ, w2, . . . , wn is (k − 1, C1 \ {1′})-good. It then follows that that λ, 1′, w2, . . . ,
wn is (k, C1)-good, as desired. If k = 3, then |Cw1| = (n −m + r − 1,m − r, 0n−3). By
Proposition 4.6, it follows that λ, w2, . . . , wn has 1 descent in the ordinary sense. It is
easy to check that this implies λ, 1′, w2, . . . , wn is (3, C1)-good.

Now suppose w1 ∈ Ck−1. If k > 3, then |Cw1| = (n −m, 0k−4, w1 − 1,m − w1, 0
n−k).

By the inductive hypothesis, the sequence w1, w2, . . . , wn is (k − 1, C1)-good. Since
λ > w1, it follows that λ, w1, . . . , wn is (k, C1)-good, as desired. If k = 3, then |Cw1| =
(n − m + w1 − 1,m − w1, 0

n−k). Proposition 4.6 then implies that w1, w2, . . . , wn has
1 descent in the ordinary sense. It is easy to check that this implies λ, w1, . . . , wn is
(3, C1)-good.
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Finally, suppose w1 ∈ Ck. If k < n, the argument works similarly as in the previous
paragraph. Suppose k = n. Then w1 = m and |Cw1| = (n − m, 0n−3,m − 1). By
Example 3.4, this implies that in the sequence w2, . . . , wn, the elements of {1′, . . . , (n−
m)′} appear in ascending order and the elements {1, . . . ,m − 1} appear in descending
order. Since w1 = m, the same can be said of the sequence w1, . . . , wn. This implies that
every term except the last term of this sequence is a C1-descent. Thus, the sequence is
(n,C1)-good. Since λ < w1, the sequence λ, w1, . . . , wn is also (n,C1)-good, as desired.

Conversely, suppose w is a permutation of S such that λ, w1, . . . , wn is (k, C1)-
good. First suppose w1 ∈ C1. By (a), we must have w1 = 1′. Hence λ, w2, . . . , wn
is (k − 1, C1 \ {1′})-good and w1 is C-admissible. If k > 3, then |Cw1| = (n − m −
1, 0k−4, r,m− r, 0n−k), so by the inductive hypothesis, w2 . . . wn is a Cw1-permutation. If
k = 3, then |Cw1| = (n −m + r − 1,m − r, 0n−3). Since λ, w2, . . . , wn is (2, C1 \ {1′})-
good, it has exactly 1 descent in the ordinary sense. So by Proposition 4.6, w2 . . . wn is a
Cw1-permutation. Either way, w is a C-permutation, as desired.

Now suppose w1 ∈ Ck−1. Then the sequence w1, . . . , wn is (k− 1, C1)-good, and w1 is
C-admissible. If k > 3, then |Cw1| = (n −m, 0k−4, w1 − 1,m − w1, 0

n−k). The inductive
hypothesis then implies w2 . . . wn is a Cw1-permutation. If k = 3, then w1, . . . , wn has
exactly one descent in the ordinary sense, and |Cw1| = (n −m + w1 − 1,m − w1, 0

n−k).
Proposition 4.6 then implies that w2 . . . wn is a Cw1-permutation. Either way, w is a
C-permutation.

Finally, suppose w1 ∈ Ck. If k < n, the argument works similarly as in the previous
paragraph. Suppose k = n. Then the sequence λ, w1, . . . , wn has n− 1 C1-descents. But
λ < w1, so in this sequence the terms w1, w2, . . . , wn−1 must all be C1-descents. This
implies that the elements of {1, . . . ,m} appear in this sequence in descending order. By
(a), the elements of {1′, . . . , (n−m)′} appear in ascending order. It is easy to check that
this implies w is a C-permutation, as desired.

We now want a way to enumerate the permutations from Proposition 4.9. Given a
set S, define a ?-permutation of S to be a finite sequence s1s2 . . . consisting of elements
of S and “?” symbols such that every element of S appears exactly once. A ?-descent of
a ?-permutation s1s2 . . . is an index i such that either si = ? or there exists some j > i
with si, sj ∈ S, si > sj, and sk = ? for every i < k < j.

Proposition 4.10. Let C be a division of S with |C| = (n−m, 0k−3, r,m− r, 0n−k), and
let λ be a number such that λ > s for all s ∈ Ck−1 and λ < s for all s ∈ Ck. Then the
C-permutations are in bijection with ?-permutations s1s2 . . . of Ck−1∪{λ}∪Ck for which

• s1 = λ

• The number of ?’s is at most n−m.

• The number of ?-descents is equal to k − 1.

Proof. Suppose s = s1s2 . . . is a ?-permutation of Ck−1 ∪ {λ} ∪ Ck satisfying the above
conditions. Let i be the (k − 1)-th ?-descent of s. We obtain a C-permutation from
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s as follows: Begin with the subsequence s2 . . . si, and replace the first ? with the first
element of C1, the second ? with the second element of C1, and so on, until all ?’s are
replaced. Call the new sequence w′ = w1 . . . wi−1. Append to the end of w′ the elements of
S \ {w1, . . . , wi−1} in ascending order. The result is a C-permutation by Proposition 4.9.

Now suppose w = w1 . . . wn is a C-permutation. Append λ to the beginning of this per-
mutation, and replace all wi for which wi ∈ C1 with ?’s. Call the resulting ?-permutation
s′. Now, delete any ?’s in s′ which occur after the (k − 1)-th ?-descent of s′. The result
is a ?-permutation of Ck−1 ∪ {λ} ∪ Ck satisfying the desired conditions.

Corollary 4.11. We have

An−m,0k−3,r,m−r,0n−k =
n−m∑
i=0

(
m+ i

m

)
A(m, k − i; r)

where A(n, k; r) equals the number of permutations w ∈ Sn+1 with k − 1 descents and
w1 = r + 1. In particular,

An−m,0k−2,m,0n−k =
n−m∑
i=0

(
m+ i

m

)
A(m, k − i)

where A(n, k) is defined to be 0 if k 6 0 or k > n.

5 Type B mixed Eulerian numbers

We now give an analogous combinatorial interpretation for the numbers Bc1,...,cn . Let
C = (C1, . . . , Cn) be a division of a set S. We say that an element s ∈ S is type B
admissible with respect to C if either s is the smallest element of C1 or s ∈ Ci for i 6= 1.
Given a type B admissible element s, we now define the type B deletion of s from C,
which by abuse of notation we denote by Cs. Let i be such that s ∈ Ci. If i 6= n, then we
define Cs to be the same as in the type A case. If i = n, then we define

Cs = (C1, . . . , Cn−2, Cn−1 ∪ (Cn \ {s})).

Given these definitions of admissibility and deletion, we define a type B C-permutation
analogously as in the type A case.

Recall that we defined

Bc1,...,cn = n! Vol(Γc11,n, . . . ,Γ
cn
n,n).

Theorem 5.1. Let C be a division. Then B|C| equals 2n times the number of type B
C-permutations.

Proof. Since the proof is analogous to the type A case, we will give an outline and leave
details to the reader. Define

fn(λ1, . . . , λn) = Vol(λ1Γ1,n + λ2Γ2,n + · · ·+ λnΓn,n)

=
∑

c1+···+cn=n

1

c1! · · · cn!
Bc1,...,cnλ

c1
1 · · ·λcnn
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so that
Bc1,...,cn = ∂c11 · · · ∂cnn fn.

We make the following observations, which are proven similarly to Proposition 3.7,
Corollary 3.8, and Proposition 3.9.

Proposition 5.2. Let y1 > · · · > yn > 0 be real numbers, and let SP = SP (y1, . . . , yn).
Fix a real number −y1 6 x 6 y1, and let SPx denote the cross section of SP with first
coordinate equal to x. Let 1 6 i 6 n be such that yi+1 6 |x| 6 yi, where we set yn+1 = 0.
Then SPx is equal to

{x} × SP (y1, . . . , yi−1, yi + yi+1 − |x| , yi+1, . . . , yn)

if i 6 n− 1, and
{x} × SP (y1, . . . , yn−1)

if i = n.

Corollary 5.3. Let λ1, . . . , λn be nonnegative real numbers. Fix a real number −(λ1 +
· · · + λn) 6 x 6 λ1 + · · · + λn, and let 1 6 i 6 n be such that λi+1 + · · · + λn 6 |x| 6
λi + · · · + λn (where 0 6 |x| 6 λn if i = n). Set t = λi + · · · + λn − |x|. Then the cross
section of

λ1Γ1,n + λ1Γ2,n + · · ·+ λnΓn,n

with first coordinate equal to x is equal to {x} × Q, where Q is the following polytope in
the following cases:

• If i = 1,
(t+ λ2)Γ1,n−1 + λ3Γ2,n−1 + · · ·+ λnΓn−1,n−1

• If 2 6 i 6 n− 1,

λ1Γ1,n−1 + · · ·+ λi−2Γi−2,n−1 + (λi−1 + λi − t)Γi−1,n−1
+ (t+ λi+1)Γi,n−1 + λi+2Γi+1,n−1 + · · ·+ λnΓn−1,

• If i = n,
λ1Γi,n−1 + · · ·+ λn−2Γn−2,n−1 + (λn−1 + λn)Γn−1,n−1.

Proposition 5.4. We have

fn(λ1, . . . , λn) = 2

∫ λ1

0

fn−1(t+ λ2, λ3, . . . , λn) dt

+ 2
n−1∑
i=2

∫ λi

0

fn−1(λ1, . . . , λi−2, λi−1 + λi − t, t+ λi+1, λi+2, . . . , λn) dt

+ 2

∫ λn

0

fn−1(λ1, . . . , λn−2, λn−1 + λn) dt.
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Differentiating this last equation, we obtain

Bc1,...,cn = 2

(
B|C1| +

n−1∑
i=2

∑
s∈Ci

B|Cs| +
∑
s∈Cn

B|Cs|

)

where C is a division with |C| = (c1, . . . , cn) and all deletions are type B deletions. The
desired result follows by induction with the base case B1 = 2.

Using Theorem 5.1, we obtain the following properties of type B mixed Eulerian
numbers. The proofs are similar to the type A case and we omit them here.

Theorem 5.5. The type B mixed Eulerian numbers have the following properties.

(a) We have 2nAc1,...,cn 6 Bc1,...,cn 6 2n1c12c2 · · ·ncn. Each inequality is equality if and
only if c1 + · · ·+ ci > i for all i.

(b) For 1 6 k 6 n, the number B0k−1,n,0n−k is equal to 2n times the number of permuta-
tions in Sn with at most k − 1 descents.

(c) For 1 6 k 6 n− 1 and 0 6 r 6 n, the number B0k−1,r,n−r,0n−k−1 is equal to 2n times
the number of permutations w ∈ Sn+1 with at most k descents and w1 = r + 1.

(d) We have B1,...,1 = 2nn!.

(e) We have Bk,0,...,0,n−k =
(
n
k

)
(n− k)!.

(f) We have Bc1,...,cn = 2n1c12c2 · · ·ncn if c1 + · · ·+ ci > i for all i.

(g) We have Bc1,...,cn = 2nn! if cn + cn−1 + · · ·+ cn−i+1 > i for all i.

(h) We have

Bc1,...,cn = 2n
(

n

c1 + · · ·+ cr

)
1c12c2 · · · rcr(cr+1 + · · ·+ cn)!

if there exists some 0 6 r 6 n such that c1 + · · · + ci > i for all 1 6 i 6 r and
cn + cn−1 + · · ·+ cn−i+1 > i for all 1 6 i 6 n− r.
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