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Abstract

Burr, Erdős, Faudree, Rousseau and Schelp initiated the study of Ramsey num-
bers of trees versus odd cycles, proving that R(Tn, Cm) = 2n− 1 for all odd m > 3
and n > 756m10, where Tn is a tree with n vertices and Cm is an odd cycle of
length m. They proposed to study the minimum positive integer n0(m) such that
this result holds for all n > n0(m), as a function of m. In this paper, we show that
n0(m) is at most linear. In particular, we prove that R(Tn, Cm) = 2n−1 for all odd
m > 3 and n > 25m. Combining this with a result of Faudree, Lawrence, Parsons
and Schelp yields n0(m) is bounded between two linear functions, thus identifying
n0(m) up to a constant factor.

1 Introduction

The generalized Ramsey number R(H,K) is the smallest positive integer N such for any
graph G with at least N vertices either G contains H as a subgraph or its complement
G contains K as a subgraph, where H and K are any two given graphs. When H and K
are complete graphs with m and n vertices respectively, R(H,K) is the classical Ramsey
number R(m,n). Classical Ramsey numbers are notoriously difficult to determine. The
exact values of many small classical Ramsey numbers including R(5, 5) remain unknown.
Because of this, Chvátal and Harary proposed to study generalized Ramsey numbers of
graphs that are not complete in a series of papers in the early 1970’s [6, 7, 8].

Generalized Ramsey numbers have since been well studied for a variety of graphs,
including trees and odd cycles. Let Tn be a tree with n vertices and Cm denote a cycle of
length m. Bondy and Erdős showed that R(Cn, Cn) = 2n−1 for odd n and R(Cn, C2r−1) =
2n−1 if n > r(2r−1) [1]. Chvátal identified the Ramsey numbers of trees versus complete
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graphs, showing that R(Tn, Km) = (n−1)(m−1)+1 for all positive integers m and n [5].
Faudree, Lawrence, Parsons and Schelp identified the Ramsey numbers of paths versus
odd cycles. If Pn denotes a path on n vertices, they showed that R(Pn, Cm) = 2n − 1
for n > m > 3 and R(Pn, Cm) = max{2n − 1,m + bn/2c − 1} for m > n > 2 where
m is odd [10]. Faudree, Schelp and Simonovits showed several bounds and exact results
on the Ramsey numbers R(Tn, C>m) where C>m denotes the family of cycles of length at
least m in [11]. These results include that R(Tn, C>m) 6 2m + 2n − 7 for all m,n > 3,
R(Tn, C>m) 6 m + n − 2 if either m > n or n > 432m6 − m2, and R(Tn, C>m) =
n+ bm/2c − 1 if Tn is a tree with maximum degree less than n− 3m2 and n > 432m6. A
survey of results about generalized Ramsey numbers can be found in [12].

There have also been lower bounds shown to hold for generalized Ramsey numbers of
all graphs. In 1981, Burr showed a lower bound for R(H,K) in terms of the chromatic
number χ(K) of a graph K and its chromatic surplus s(K) – the minimum number of
vertices in a color class over all proper vertex colorings of K using χ(K) colors.

Theorem 1 (Burr [3]). If s(K) is the chromatic surplus of the graph K, then for all
connected graphs H with n > s(K) vertices we have

R(H,K) > (n− 1)(χ(K)− 1) + s(K).

In the case of several of the Ramsey numbers mentioned above, Burr’s lower bound is
tight. For K = Cm, Burr’s lower bound yields that R(H,Cm) > 2n−1 where n = |V (H)|
since χ(Cm) = 3 and s(Cm) = 1. In 1982, Burr, Erdős, Faudree, Rousseau and Schelp
showed that for sufficiently large n and small ε, Burr’s lower bound on the Ramsey
numbers of sparse connected graphs G with at most (1 + ε)n edges versus odd cycles Cm

is tight. Specifically, they proved the following theorem.

Theorem 2 (Burr et al. [4]). If G is a connected graph with n vertices and at most
n(1 + 1/42m5) edges where m > 3 is odd and n > 756m10, then R(G,Cm) = 2n− 1.

This theorem implies the following corollary identifying the Ramsey number of trees
versus odd cycles for n very large relative to m.

Corollary 3 (Burr et al. [4]). R(Tn, Cm) = 2n−1 for all odd integers m > 3 and integers
n > 756m10.

Burr, Erdős, Faudree, Rousseau and Schelp asked what the minimum positive integer
n0(m) such that this result holds for all n > n0(m) is as a function of m. Their corollary
shows that n0(m) is at most a tenth-degree polynomial in m. We provide a new approach
to examining the Ramsey numbers of trees versus odd cycles and improve this bound,
showing that n0(m) is at most linear in m. In particular, we prove the following theorem.

Theorem 4. R(Tn, Cm) = 2n− 1 for all odd integers m > 3 and integers n > 25m.

The result of Faudree, Lawrence, Parsons and Schelp that R(Pn, Cm) = max{2n −
1,m+bn/2c−1} for m > n > 2 where m is odd shows n0(m) > 2m/3−1 [10]. Combining
this with Theorem 3 yields that n0(m) is bounded between two linear functions.
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In the next two sections, we prove Theorem 4. We first provide the key lemmas that we
use in our proof and then present the proof through a sequence of claims. An important
remark is that Burr’s lower bound in the case of trees versus odd cycles can be shown
by considering the complete bipartite graph Kn−1,n−1. Because it is bipartite, it does not
contain the odd cycle Cm as a subgraph. Furthermore, Kn−1,n−1 consists of two connected
components of size n− 1 and therefore does not contain Tn as a subgraph. This extremal
graph Kn−1,n−1 will be useful in motivating our proof of Theorem 4, the last steps of
which are devoted to showing that any graph that is any counterexample to Theorem 4
would necessarily have a similar structure to Kn−1,n−1.

2 Preliminaries and Lemmas

We first provide the notation we will adopt on proving Theorem 4. Given a graph G,
dX(v) denotes the degree of a vertex v in a set X ⊆ V (G) in G and dX(v) denotes
the degree of v in X in G, the complement graph of G. We similarly let NX(v) and
NX(v) denote the sets of neighbors of v in the set X in G and G, respectively. Note that
dX(v) + dX(v) = |X|, dX(v) = |NX(v)| and dX(v) = |NX(v)| for any set X ⊆ V (G) with
v 6∈ X. When the set X is omitted, X is implicitly V (G) where G is the graph in which
the vertex v lies. We denote the maximum and minimum degrees of a graph H by ∆(H)
and δ(H), respectively. Given a subset S ⊆ V (G), we denote the subgraph of G induced
by the set S by G[S].

We now present several lemmas that will be used throughout the proof of Theorem 4.
The first two lemmas are extensions of classical results.

Lemma 5. Let F be a forest with k connected components. Let w1, w2, . . . , wk ∈ V (F ) be
vertices from distinct connected components of F . Let H be a graph with δ(H) > |V (F )|−1
and u1, u2, . . . , uk be distinct vertices in V (H). Then F can be embedded in H such that
wi is mapped to ui for all 1 6 i 6 k.

Proof. Begin by mapping wi to ui for all 1 6 i 6 k. Greedily extend this embedding as
follows: if x ∈ V (F ) has not been embedded to H but a neighbor y ∈ NF (x) has been
embedded to z ∈ V (H) then map x to a vertex in NH(z) that has not been embedded
to, if such a vertex exists. Since initially a vertex from each connected component of F is
mapped to H, if all of F has not yet been embedded to H then there must be such a vertex
x adjacent to a vertex y that has already been embedded. For the described embedding
to fail, there must be a point in this procedure when at most |V (F )| − 1 vertices have
been embedded to and the embedding cannot be extended. Therefore all of NH(z) ∪ {z}
has been embedded to for some z ∈ V (H). However |NH(z)∪ {z}| > δ(H) + 1 > |V (F )|,
which is a contradiction. Therefore the embedding succeeds, proving the lemma.

The next lemma is also included in our simultaneous work on Ramsey numbers of
trees and unicyclic graphs versus fans in [2], where it appears as Lemma 2.

Lemma 6. Given a tree T with |V (T )| > 3, there exists a vertex v ∈ V (T ) satisfying that
the vertices of the forest T − v can be partitioned into two disjoint sets K and H such
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that there are no edges between K and H and

1

3
(|V (T )| − 1) 6 |K|, |H| 6 2

3
(|V (T )| − 1).

Proof. Note that for any vertex v ∈ V (T ), the forest T − v has dT (v) connected compo-
nents. Now consider the following procedure. Set v initially to be an arbitrary leaf of T .
At each step, if T − v has a connected component C with |C| > |V (T )|/2, set v to the
unique neighbor u of v in C. If no such connected component C exists, terminate the
procedure. Observe that T − u has a connected component of size |V (T )| − |C| and one
or more connected components with the sum of their sizes equal to |C| − 1. Therefore
either |C| = |V (T )|/2 or the size of the largest connected component of T − v decreases
on setting v to u. This implies that either the procedure leads to a vertex v such that
T − v has a connected component C of size |C| = |V (T )|/2 or terminates at a vertex v
such that all connected components of T − v are strictly smaller than |V (T )|/2.

If v satisfies that T − v has a connected component C of size |C| = |V (T )|/2, then
let K = C and H = V (T − v) − C. We have that |H| = |V (T )|/2 − 1 and |K| = |C| =
|V (T )|/2, which implies the lemma since |V (T )| must be even and hence |V (T )| > 4. Note
dT (v) = 1 is impossible because of the condition on v and since |V (T )| > 3. If dT (v) = 2,
then T − v has two connected components K and H with |K|+ |H| = |V (T )| − 1. Since
|K|, |H| < |V (T )|/2, it holds that |K| = |H| = (|V (T )| − 1)/2, in which case the lemma
is also true.

Now consider the case in which dT (v) = d > 3. Let the connected components of T −v
be C1, C2, . . . , Cd. Here, it must hold that |V (T )| > 4. Without loss of generality assume
that |C1| 6 |C2| 6 · · · 6 |Cd| < |V (T )|/2. Since d > 3 and |C1| + |C2| + · · · + |Cd| =
|V (T )| − 1, we have that |C1| 6 (|V (T )| − 1)/3. Let t be the largest integer such that
|C1|+ |C2|+ · · ·+ |Ct| 6 (|V (T )| − 1)/3 holds. If t = d− 1, then |Cd| > 2(|V (T )| − 1)/3
which is impossible because |Cd| < |V (T )|/2. This implies that t 6 d− 2. By definition,
|C1|+|C2|+· · ·+|Ct+1| > (|V (T )|−1)/3. If |C1|+|C2|+· · ·+|Ct+1| 6 2(|V (T )|−1)/3, then
letting K = C1∪C2∪· · ·∪Ct+1 and H = Ct+2∪Ct+3∪· · ·∪Cd yields valid sets K and H.
If |C1|+ |C2|+ · · ·+ |Ct+1| > 2(|V (T )| − 1)/3, then (|V (T )| − 1)/3 < |Ct+1| < |V (T )|/2 6
2(|V (T )| − 1)/3. In this case, letting K = Ct+1 and H = C1 ∪ · · · ∪ Ct ∪ Ct+2 ∪ · · · ∪ Cd

yields the desired sets K and H. This proves the lemma.

Given a graph G and positive integer n, let ex(n,G) be the maximum number of edges
that a graph on n vertices can have without containing G as a subgraph. This last lemma
by Erdos and Galliai determines ex(n, Pk), where Pk is a path with k edges and k + 1
vertices. It can be found in [9] as Theorem 2.6.

Lemma 7 (Erdos and Gallai [9]). For all positive integers n and k,

ex(n, Pk) 6
n(k − 1)

2

where equality holds if and only if k divides n, in which case the only graph achieving
equality is a union of n

k
disjoint copies of Kk.
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3 Proof of Theorem 4

Let G be a graph with 2n−1 vertices and assume for contradiction that G does not contain
Cm as a subgraph and G does not contain Tn as a subgraph, where n > 25m. The result
R(Tn, Km) = (n− 1)(m− 1) + 1 in [5] applied with m = 3 yields that R(Tn, C3) = 2n− 1
for all n. Therefore, it suffices to prove the result in the case when m > 5.

Our proof of Theorem 4 uses the following key ideas. The lack of a tree in G guarantees
a large degree vertex in G. The absence of an m-cycle in G along with this high degree
vertex implies there is no path with m− 1 vertices among its neighbors, which is highly
restrictive. The resulting constraints along with two methods for embedding trees yield
that there are two large sets S1 and S2 of vertices in G with a large fraction of the edges
between them present. The remainder of the proof is devoted to showing that G must
have a similar structure to the extremal graph Kn−1,n−1. The lack of a length m cycle
alternating between these two sets shows that S1 ∪ S2 induces a bipartite subgraph of
G and imposes significant constraints on vertices not in S1 and S2, which are enough to
yield a contradiction.

We now proceed to present the proof of Theorem 4 through a series of claims. The
first claim bounds the number of edges in a set of neighbors of a vertex. The second claim
uses this bound to guarantee that a set of neighbors of a vertex contains a large subset
that induces a subgraph with high minimum degree.

Claim 8. For any vertex v ∈ V (G) and set X ⊆ V (G), the number of edges in the induced
subgraph G[NX(v)] is at most 1

2
(m− 3)dX(v).

Proof. Assume for contradiction that the number of edges in G[NX(v)] is greater than
1
2
(m− 3)dX(v). By Lemma 7, there is a path P in G[NX(v)] with m− 2 edges and m− 1

vertices. Since v is adjacent to all vertices of P , the vertices {v}∪P form a cycle of length
m, which is a contradiction. The claim follows.

Claim 9. For any vertex v ∈ V (G), subset X ⊆ V (G) and positive real number D, there
is a subset S ⊆ NX(v) such that

|S| >
(

1− (m− 3)

2D

)
dX(v) and δ(G[S]) > |S| −D.

Proof. Consider the following procedure. Begin by setting R = NX(v). At each step, if
there is a vertex u ∈ R such that dR(u) > D, then set R = R\{u}, otherwise terminate
the procedure. At each step, it follows that the number of edges in G[R] decreases by at
least D. Let S denote the set R obtained once the procedure has terminated. By Claim
8, the number of edges in G[R] begins no greater than 1

2
(m − 3)dX(v). Therefore the

number of steps t of the procedure satisfies that t 6 (m − 3)dX(v)/2D. Since t vertices
are removed in this procedure, we have that S has size

|S| = dX(v)− t >
(

1− (m− 3)

2D

)
dX(v).
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Furthermore, for this procedure to terminate it must follow that ∆(G[S]) 6 D − 1. This
implies that

δ(G[S]) = |S| − 1−∆(G[S]) > |S| −D.

Therefore S has the desired properties, completing the proof of the claim.

If δ(G) > n−1 then by Lemma 5, Tn can be embedded into G. Therefore δ(G) 6 n−2
which implies that ∆(G) = 2n− 2− δ(G) > n. Let v ∈ V (G) a maximum degree vertex

of G with d(v) = ∆(G) > n. Applying Claim 9 with D =
√

1
2
(m− 3)n yields that there

is a subset S1 ⊆ N(v) such that

|S1| >
(

1− (m− 3)

2D

)
d(v) > n−

√
1

2
(m− 3)n.

Furthermore it follows that

δ(G[S1]) > |S1| −D > n−
√

2(m− 3)n.

Note that the choice D =
√

1
2
(m− 3)n maximizes this lower bound on δ(G[S1]). Let

O1 = V (G)\S1. The next claim is the key ingredient to show that there is another large
set S2 analogous to S1 and disjoint from S1 in G. The proof of this claim applies a method
to greedily embed trees used in the proof of Claim 3.3 in [2].

Claim 10. There is a vertex u ∈ V (G) such that

dO1(u) > n−
√

1

2
(m− 3)n+ 1.

Proof. By Lemma 5, any sub-forest of Tn of size at most δ(G[S1]) + 1 can be embedded in
G[S1]. Since G does not contain Tn as a subgraph, it must follow that δ(G[S1]) 6 n− 2.
Note that Tn has a connected subtree H on δ(G[S1]) + 1 vertices. For instance, such a
subtree is obtained by removing a leaf of Tn and repeatedly removing a leaf of the resulting
tree until exactly δ(G[S1])+1 vertices remain. By Lemma 5, H can be embedded to G[S1].
Let R ⊆ S1 denote the set of vertices that V (H) is mapped to under this embedding.

We now define a procedure to greedily extend this embedding of H to an embedding
of Tn in G. At any point in this procedure, let K denote the subgraph of G induced by the
set of vertices that have so far been embedded to. Initially, V (K) = R and, throughout
the procedure, R ⊆ V (K) remains true. Now extend this embedding by repeating the
following: if w1, w3 ∈ V (Tn) and w2 ∈ V (G) satisfy that (1) w1 ∈ V (Tn) has been mapped
to w2 ∈ V (K), (2) w3 ∈ V (Tn) has not been embedded to G and (3) w3 is adjacent to
w1 in Tn, then map w3 to some vertex in NV (G)\V (K)(w2) if it is non-empty. Since Tn
contains no cycles and K remains connected throughout this procedure, each w3 ∈ V (Tn)
that has not yet been embedded to K has at most one neighbor among the vertices V (Tn)
that have been embedded to K. Furthermore, since Tn is connected, if not all of Tn has
been embedded to G then some such w3 ∈ V (Tn) satisfying (1)−(3) must exist. Thus
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this embedding only fails if NV (G)\V (K)(w2) is empty for some w2 ∈ V (K) at some point
in the procedure.

Since G does not contain Tn as a subgraph, this embedding procedure must fail.
Therefore NV (G)\V (K)(w2) = ∅ for some w2 ∈ V (K) where |V (K)| 6 n− 1 at some point
during the procedure. Since R ⊆ V (K), it follows that V (G)\V (K) ⊆ V (G)\R and
therefore

dV (G)\R(w2) > dV (G)\V (K)(w2) > |V (G)\V (K)| > n.

Now note that Claim 9 guarantees that

|S1\R| 6 |S1| − δ(G[S1])− 1 6 D − 1 =

√
1

2
(m− 3)n− 1.

Combining this bound with the previous inequality yields that

dO1(w2) > dV (G)\R(w2)− |S1\R| > n−
√

1

2
(m− 3)n+ 1.

Therefore w2 is a vertex with the desired properties, proving the claim.

From this point forward in the proof, let d = dO1(u) where u is the vertex guaranteed

by Claim 10 and d > n−
√

1
2
(m− 3)n+1. Now applying Claim 9 with D =

√
1
2
(m− 3)d

yields that there is a subset S2 ⊆ NO1(u) such that

|S2| >
(

1− (m− 3)

2D

)
d = d−

√
1

2
(m− 3)d.

Furthermore it follows that

δ(G[S2]) > |S2| −D > d−
√

2(m− 3)d.

Note that since S2 ⊆ NO1(u) ⊆ O1, it necessarily follows that S1 and S2 are disjoint.
We remark that S1 and S2 are symmetric other than the fact that the lower bounds on
|S2| and δ(G[S2]) are weaker than those on |S1| and δ(G[S1]). In order to obtain the
bound n > 25m, we do not treat S1 and S2 completely symmetrically, which would entail
discarding the better lower bounds for S1. The next claim shows that a large fraction of
the edges are present between S1 and S2.

Claim 11. Each w ∈ S1 satisfies that dS2(w) < n−δ(G[S1])−1 and each w ∈ S2 satisfies
that dS1(w) < n− δ(G[S2])− 1.

Proof. Before proving this claim, we first show the two inequalities

(n− 1)/2 6 δ(G[S2]) and 2(n− 1)/3 6 δ(G[S1]).
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Here we apply the lower bound on n in terms of m. In particular, if n > 18m, we have
the following inequalities

δ(G[S1]) > n−
√

2(m− 3)n > 2n/3 > 2(n− 1)/3, and

d > n−
√

1

2
(m− 3)n+ 1 > 5n/6.

Applying d > 5n/6 > 15m to the lower bound on δ(G[S2]) yields that

δ(G[S2]) > d−
√

2(m− 3)d >

(
1− 2√

30

)
d

>
5

6

(
1− 2√

30

)
n > (n− 1)/2

since 5
6

(
1− 2√

30

)
≈ 0.53. We now proceed to the proof of the claim.

We first show that each w ∈ S2 satisfies that dS1(w) < n− δ(G[S2])− 1. Assume for
contradiction that some w ∈ S2 satisfies that dS1(w) > n − δ(G[S2]) − 1. By Lemma 6,
there is some vertex x ∈ V (Tn) such that there is a partition K ∪ H of the vertices of
the forest Tn − x such that there are no edges between K and H in Tn and (n− 1)/3 6
|K|, |H| 6 2(n− 1)/3. Without loss of generality assume that |H| 6 (n− 1)/2 6 |K|.

First suppose that dK(x) 6 dS1(w). Consider the following embedding of Tn into G.
Note that since K and H are unions of connected components of Tn − x, it follows that
H ∪ {x} is a subtree of Tn. Since

|H ∪ {x}| 6 1 + (n− 1)/2 6 δ(G[S2]) + 1,

by Lemma 5 we have that H ∪ {x} can be embedded in G[S2] such that x is mapped
to w. Furthermore, note that K is the union of connected components of Tn − x, K is
a sub-forest of Tn and NK(x) consists of exactly one vertex from each of the connected
components of K. Now note that since

|K| 6 2(n− 1)/3 6 δ(G[S1]) + 1,

by Lemma 5 we have that K can be embedded to G[S1] such that NK(x) is mapped to
k = dK(x) distinct vertices y1, y2, . . . , yk in NS1(w). Note this is possible since dK(x) 6
dS1(w). This yields a successful embedding of Tn in G, which is a contradiction since G
does not contain Tn as a subgraph.

Now suppose that dK(x) > dS1(w) > n − δ(G[S2]) − 1. Observe that K is the union
of dK(x) connected components of Tn− x. Let C be the union of dK(x)− dS1(w) of these
connected components. Let K ′ = K\C and H ′ = H ∪ C. Note that dK′(x) = dS1(w) >
n− δ(G[S2])− 1 and that

n− δ(G[S2])− 1 6 dK′(x) 6 |K ′| 6 2(n− 1)/3 < δ(G[S1]) + 1.
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The lower bound on |K ′| implies that

|H ′ ∪ {x}| = n− |K ′| 6 δ(G[S2]) + 1.

Now applying the embedding described above to K ′ and H ′ in place of K and H yields
the same contradiction.

The same method shows that each w ∈ S1 satisfies that dS2(w) < n − δ(G[S1]) − 1.
Specifically, if dS2(w) > n − δ(G[S1]) − 1 for some w ∈ S1, embedding the tree K ∪ {x}
to G[S1] with x mapped to w and embedding the forest H to G[S2] as in the argument
above yields a contradiction. This proves the claim.

From this point forward in the proof of Theorem 4, let m = 2`+1. The next two claims
together complete the proof that the sets S1 and S2 induce a nearly complete bipartite
subgraph of G, further showing that the structure of G is close to that of the extremal
graph Kn−1,n−1.

Claim 12. If the vertices x, y ∈ S1, then |NS2(x) ∩ NS2(y)| > ` and, if x, y ∈ S2, then
|NS1(x) ∩NS1(y)| > `.

Proof. If x, y ∈ S1, then since dS2(x), dS2(y) < n− δ(G[S1])− 1 we have that

|NS2(x) ∩NS2(y)| > |S2| − dS2(x)− dS2(y)

> |S2| − 2(n− δ(G[S1])− 1).

Similarly, if x, y ∈ S2, then since dS1(x), dS1(y) < n− δ(G[S2])− 1 we have that

|NS1(x) ∩NS1(y)| > |S1| − dS1(x)− dS1(y)

> |S1| − 2(n− δ(G[S2])− 1).

We will show that both of these lower bounds are at least ` = (m− 1)/2 when n > 25m.
Assume that n > 1

2
c2m and note the following inequalities

|S1| > n−
√

1

2
(m− 3)n >

(
1− 1

c

)
n,

δ(G[S1]) > n−
√

2(m− 3)n >

(
1− 2

c

)
n,

d > n−
√

1

2
(m− 3)n+ 1 >

(
1− 1

c

)
n >

1

2
c(c− 1)m,

|S2| > d−
√

1

2
(m− 3)d >

(
1− 1√

c(c− 1)

)
d

>

(
1− 1

c
−
√
c− 1

c
√
c

)
n, and

δ(G[S2]) > d−
√

2(m− 3)d >

(
1− 1

c
− 2
√
c− 1

c
√
c

)
n.
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These inequalities imply that

|S2| − 2(n− δ(G[S1])− 1) >

(
1− 5

c
−
√
c− 1

c
√
c

)
n >

n

2c2
>
m

2
> ` and

|S1| − 2(n− δ(G[S2])− 1) >

(
1− 3

c
− 4
√
c− 1

c
√
c

)
n >

n

2c2
>
m

2
> `

as long as we have the inequalities

1− 5

c
−
√
c− 1

c
√
c

>
1

2c2
and

1− 3

c
− 4
√
c− 1

c
√
c

>
1

2c2
.

Since
√
c− 1 <

√
c, rearranging yields that these inequalities hold if 2c(c− 7) > 1, which

is true when c2 = 50. The claim follows.

Claim 13. There are no edges in G[S1] and G[S2].

Proof. Now assume for contradiction that there is an edge xy in G[S1]. Let z1, z2, . . . , z`+1

be any distinct vertices of S1 such that z1 = x and z`+1 = y. By Claim 12, there are at
least ` vertices of S2 adjacent to both zi and zi+1 for each 1 6 i 6 `. Therefore we may
choose distinct vertices w1, w2, . . . , w` in S2 such that wi is adjacent to both zi and zi+1

for all 1 6 i 6 `. Now note that the vertices z1, w1, z2, w2, . . . , z`, w`, z`+1 form a cycle
of length 2` + 1 = m in G, which is a contradiction. A symmetric argument shows that
there are no edges in G[S2]. This completes the proof of the claim.

Now let U = V (G)\(S1 ∪ S2). The next claim is the final ingredient necessary to
construct a successful embedding of Tn to G.

Claim 14. Each w ∈ U is adjacent to vertices in at most one of S1 and S2.

Proof. Assume for contradiction that some vertex w ∈ U is adjacent to x ∈ S1 and y ∈ S2.
Since dS1(y) = |NS1(y)| > ` > 2 by Claim 12, y has a neighbor z ∈ S1 where z 6= x. Now
let z1, z2, . . . , z` be any distinct vertices of S1 such that z1 = z and z` = x. By Claim
12, it follows that there are at least ` vertices of S2 adjacent to both zi and zi+1 for each
1 6 i 6 `− 1. Therefore we may choose distinct vertices w1, w2, . . . , w`−1 in S2 such that
wi is adjacent to both zi and zi+1 and wi 6= y for all 1 6 i 6 ` − 1. Now note that the
vertices w, y, z1, w1, z2, w2, . . . , z`−1, w`−1, z` forms a cycle of length 2 + 2(` − 1) + 1 = m
in G, which is a contradiction. This proves the claim.

By Claim 14, there are sets U1 and U2 such that U = U1 ∪ U2 and no vertex in Ui is
adjacent to a vertex of Si for i = 1, 2. It follows that |S1∪U1|+|S2∪U2| > |V (G)| = 2n−1
and therefore either |S1 ∪ U1| > n or |S2 ∪ U2| > n.

First suppose that |S1 ∪ U1| > n. Since Tn is a tree, it is bipartite and admits
a bipartition V (Tn) = A ∪ B where |A| > |B| and thus |A| > n/2. Now consider the

the electronic journal of combinatorics 23(3) (2016), #P3.2 10



following embedding of Tn to G[S1 ∪ U1]. If |S1| > n then map the vertices of Tn arbitrarily
to distinct vertices in S1. Otherwise, map n− |S1| vertices in A to distinct vertices in U1

and the remaining |S1| vertices of Tn to distinct vertices in S1. Note that this is possible

since n − |S1| 6
√

1
2
(m− 3)n 6 n/2 6 |A| since n > 2m − 6. Since each vertex in S1

is not adjacent to all other vertices in S1 ∪ U1 and A is an independent set of Tn, this is
a valid embedding. This contradicts the fact that G does not contain Tn as a subgraph.
We arrive at a symmetric contradiction when |S2 ∪ U2| > n. This proves Theorem 4.

4 Conclusions and Future Work

The primary direction for further work is to determine exactly the number n0(m). Our
work and the path-odd cycle result of Faudree, Lawrence, Parsons and Schelp in [10] show
that 2m/3− 1 6 n0(m) 6 25m [10]. Another possible direction for future work would be
to extend the methods shown here to families of sparse graphs other than trees, such as
unicyclic graphs.
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