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Abstract

Let H be an n-generated numerical semigroup such that its tangent cone grmK[H]
is defined by quadratic relations. We show that if n < 5 then grmK[H] is Cohen-
Macaulay, and for n = 5 we explicitly describe the semigroups H such that grmK[H]
is not Cohen-Macaulay. As an application we show that if the field K is algebraically
closed and of characteristic different from two, and n 6 5 then grmK[H] is Koszul if
and only if (possibly after a change of coordinates) its defining ideal has a quadratic
Gröbner basis.

Keywords: numerical semigroup ring, tangent cone, Cohen-Macaulay,
Koszul, G-quadratic, h-vector

Introduction

A numerical semigroup H is a subset of N containing 0 and which is closed under addition
such that the gcd of all elements in H is 1, or equivalently, such that |N \H| < ∞. We
denote Gen(H) its unique minimal generating set. The embedding dimension of H is
defined as emb dim(H) = |Gen(H)| and the multiplicity of H is e(H) = minGen(H).

∗Supported by a grant of the Romanian Ministry of Education, CNCS–UEFISCDI, project number
PN-II-RU-PD-2012-3–0656.
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Let K be an infinite field. The additive relations among the generators of H are
captured by the defining ideal IH of the semigroup ring K[H] = K[th : h ∈ H] ⊂ K[t].
Namely, if Gen(H) = {a1, . . . , an} and we let S = K[x1, . . . , xn], then IH = Kerφ, where
φ : S → K[H] is the K-algebra map with φ(xi) = tai , for 1 6 i 6 n.

Another algebra that is associated to H is its tangent cone

grmK[H] = ⊕i>0m
i/mi+1,

which is the associated graded ring of K[H] with respect to the maximal ideal m = (th :
h ∈ H). The defining ideal of grmK[H] is I∗H , the ideal of initial forms in IH , see [13,
§15.10.3] and [15, §3.4].

It is a classical topic to study algebraic properties of grmK[H] like being Cohen-
Macaulay or complete intersection (CI for short) in terms of the arithmetic of H, see [18],
[22], [3], [10].

Algebras defined by quadratic relations occur naturally in algebraic geometry from
varieties cut out by quadrics and they have been the initial framework for formulating
several strong conjectures, e.g. what is currently known as the Eisenbud-Green-Harris
conjecture introduced in [14, Section 4].

In recent work ([19]), J. Herzog and the author gave effective bounds for the multiplic-
ity of a numerical semigroup H such that grmK[H] is defined by quadrics. The motivation
for the current paper came from the puzzling observation that all such numerical semi-
groups that we had obtained by blind computer search have the property that grmK[H]
is Cohen-Macaulay.

Koszul algebras are an important class of quadratic algebras. Recall that a graded
K-algebra R = ⊕i>0Ri is called Koszul if K has a graded R-linear resolution. R is called
G-quadratic if there exists a graded isomorphism R ∼= K[x1, . . . , xn]/I where I has a
quadratic Gröbner basis with respect to some term order. It is well known that if R is
G-quadratic, then it is Koszul. We refer to [7] and [15] for proofs and related results on
Koszul algebras.

For brevity, we say that a numerical semigroup H is quadratic, Koszul, or G-quadratic,
if grmK[H] has the respective property. Note that the quadratic property for grmK[H]
depends on H alone (see [21, Theorem 6.8]), however the other two might depend on
the field K. It will be clear from the context, mainly in Section 2, which are our extra
assumptions on K.

Let H be a quadratic numerical semigroup. Using a criterion obtained independently
by J. Herzog ([18]) and A. Garcia ([17]), and also our results from [19], we show in
Proposition 5 that if emb dim(H) < 5, then grmK[H] is Cohen-Macaulay. It requires
a bit more work to prove in Theorem 8 that if emb dim(H) = 5, then grmK[H] is not
Cohen-Macaulay precisely when H is generated as

〈8, 4u′, 4u+ 2u′, 4u′′ + 2u+ u′, 6u+ 7u′ + 4u′′ − 8〉, or

〈8, 4u′, 4u+ 2u′, 4u′′ + 2u+ 3u′, 6u+ 9u′ + 4u′′ − 8〉,

with u, u′, u′′ positive integers and u′ > 1 is odd. Extending these exemples, in Proposition
7 for any n > 5 we construct infinitely many G-quadratic numerical semigroups H with
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emb dim(H) = n and grmK[H] not Cohen-Macaulay. It would be interesting to figure
out if such constructions cover all the cases when grmK[H] is quadratic and not Cohen-
Macaulay.

In the terminology introduced by Rossi and Valla in [23], for H in the above families
the ideals IH provide first examples of 2-isomultiple ideals such that grm S/IH is not
Cohen-Macaulay. Their existence was also questioned in [23, Remark 2.3].

For a standard graded K-algebra R = ⊕i>0Ri its h-polynomial h(z) =
∑

i>0 hiz
i is

the numerator of the Hilbert series HR(z) =
∑

i>0 dimK Riz
i when we write HR(z) =

h(z)/(1− z)d with h(1) 6= 0. The h-vector of R is the vector of coefficients (h0, h1, . . . ) of
the h-polynomial. Also, the (Hilbert-Samuel) multiplicity of R is defined as e(R) = h(1).
It is known that for a numerical semigroup H its multiplicity equals the multiplicity of
the tangent cone grmK[H].

By work of Backelin, Conca and others, small values of h2 imply the Koszul or the
G-quadratic property of R, see [1], [4], [6], [9] and Lemma 10. If R is Cohen-Macaulay
and the field K is infinite, we can mod out by a regular sequence of linear forms and
the h-vector and the multiplicity are preserved. In case H is a numerical semigroup and
R = grmK[H] is Cohen-Macaulay, we may use te(H) as a regular element.

As an application, in Section 2 we show that if emb dim(H) < 5, then H is quadratic if
and only if it is G-quadratic. The first examples of quadratic and non-Koszul semigroups
occur in embedding dimension 5 having multiplicity 9, e.g. H = 〈9, 17, 20, 23, 25〉.

In a similar way, in [24] Roos and Sturmfels considered the Koszul property for
quadratic projective monomial curves. Namely, given the relatively prime integers 0 =
a1 < a1 < · · · < an, let R = K[tai1 t

an−ai
2 : 1 6 i 6 n] ⊂ K[t1, t2]. According to Table 1 in

[24] obtained by a computer search, the first time when R is quadratic and not Koszul is
for n = 6, and for n = 8 occurs the first example where R is Koszul and the associated
toric ideal has no quadratic Gröbner basis.

Under the assumption that the field K is algebraically closed and of characteristic
6= 2, we show in Theorem 12 that if emb dim(H) = 5, then H is Koszul if and only if it is
G-quadratic. The proof works on the possible h-vectors of grmK[H] when H is quadratic,
employing a result of Eisenbud, Green, and Harris in [14]. The assumptions on the field
K are due to Conca’s results on the G-quadratic property for quadratic algebras with
h2 6 3, see [4] and [6]. Screening the possible ideals J = I∗H modx1 we found only two
possible situations without a quadratic Gröbner basis, described in Remark 15. However,
experimentally we found no quadratic semigroup H producing such ideals.

We summarize our findings in Table 1 in Section 2 where we give a maximal list of
12 possible h-vectors of quadratic 5-generated numerical semigroups. Note that experi-
mentally we could not obtain the h-vectors (1, 4, 3, 1) and (1, 4, 5). Nevertheless, we can
conclude that if H is quadratic and emb dim(H) 6 5, the Hilbert function of grmK[H] is
non-decreasing. This topic has been recently considered by D’Anna, Di Marca and Micale
in [11] and by Oneto, Strazzanti and Tamone in [20].
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1 The Cohen-Macaulay condition

In this section we study the Cohen-Macaulay property for the tangent cone of a quadratic
numerical semigroup.

For further reference we first recall from our joint work with J. Herzog [19] some
restrictions that we found on the multiplicity of a quadratic numerical semigroup.

Theorem 1. ([19, 1.1, 1.9, 1.12]) Let H be a quadratic numerical semigroup minimally
generated by n > 1 elements and K[H] its semigroup ring. Then

(i) n 6 e(H) 6 2n−1;

(ii) e(H) = n⇐⇒ I∗H has a linear resolution;

(iii) e(H) = 2n−1 ⇐⇒ I∗H is a CI ideal⇐⇒ IH is a CI ideal;

(iv) if grmK[H] is Cohen-Macaulay and e(H) < 2n−1, then e(H) 6 2n−1 − 2n−3.

Moreover, if we are in any of the situations from (ii), (iii) or if grmK[H] is Cohen-
Macaulay and e(H) = 2n−1 − 2n−3 then H is G-quadratic, hence Koszul.

Remark 2. With notation as above, if e(H) = n, then grmK[H] has minimal multiplicity
and by Sally’s [25, Theorem 2] we get that grmK[H] is Cohen-Macaulay. We refer to the
proof of Proposition 1.3 in [19] for related properties.

The following arithmetic result appeared in [19].

Lemma 3. ([19, Lemma 1.6]) Let H be a numerical semigroup minimally generated by
a1 < a2 < · · · < an with n > 1. If H is quadratic, then

(i) there exist k, ` > 2 such that a1|ak + a`.

(ii) 2ai ∈ 〈a1, . . . ai−1, ai+1, . . . an〉, for all 2 6 i 6 n.

For the numerical semigroup H minimally generated by a1 < · · · < an we denote

ci = min{k > 0 : kai ∈ 〈Gen(H) \ {ai}〉}, for i = 1, . . . , n.

With this notation one has the following characterization proved independently by Herzog
([18]) and Garcia ([17]).

Proposition 4. (Herzog [18, pp.189-190], Garcia [17, Theorem 24]) The tangent cone
grmK[H] is Cohen-Macaulay if and only if for all integers 0 6 νi < ci and 2 6 i 6 n such
that

n∑
i=2

νiai ∈ a1 +H,

there exist integers µ1 > 0, µ2 > 0, . . . , µn > 0 such that

n∑
i=2

νiai =
n∑

i=1

µiai and
n∑

i=2

νi 6
n∑

i=1

µi.
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If H is quadratic, by Lemma 3(ii) we have ci = 2 for i = 2, . . . , n. This observation,
together with Proposition 4, gives the next result.

Proposition 5. If H is a quadratic semigroup and emb dim(H) < 5 then grmK[H] is
Cohen-Macaulay.

Proof. If emb dim(H) = 2 thenH = 〈2, `〉 with ` > 1 odd. Hence grmK[H] ∼= K[x1, x2]/(x
2
2)

which is Cohen-Macaulay.
If emb dim(H) = 3, by Theorem 1(i) we have 3 6 e(H) 6 4, and by (ii) and (iii) in

loc.cit. grmK[H] is Cohen-Macaulay.
If emb dim(H) = 4 let

ν2a2 + ν3a3 + ν4a4 = µ1a1 + µ2a2 + µ3a3 + µ4a4

for some µ1 > 0, µ2, µ3, µ4 > 0 and ν2, ν3, ν4 ∈ {0, 1}. It is enough to consider the case
when not both of ν2 and µ2, of ν3 and µ3, and of ν4 and µ4 are positive. Note that since
emb dim(H) = 4 at least two of the νi’s need to be positive.

If ν2 = ν3 = 1 and ν4 = 0 then in the equation a2 + a3 = µ1a1 + µ4a4 we have either
µ4 > 0, hence µ1 + µ4 > 2 = ν2 + ν3, or µ4 = 0, hence a2 + a3 = µ1a1 with µ1 > 2. The
cases ν3 = ν4 = 1, ν2 = 0 and ν2 = ν4 = 1, ν3 = 0 are treated similarly.

If ν2 = ν3 = ν4 = 1 then in the equation a2 + a3 + a4 = µ1a1 we have µ1 > 3.
By Proposition 4 it follows that grmK[H] is Cohen-Macaulay.

Example 6. The statement of Proposition 5 is no longer true when emb dim(H) is at
least 5. We can check with Singular ([16]) that for H = 〈8, 12, 13, 18, 35〉 the ideal I∗H has a
quadratic Gröbner basis with respect to revlex, however grmK[H] is not Cohen-Macaulay.

Indeed, the toric ideal IH is minimally generated by

IH = (x23 − x1x4, x2x24 − x3x5, x2x3x4 − x1x5, x32 − x24,
x31 − x22, x21x3x4 − x2x5, x21x34 − x25, x21x22x3 − x4x5).

A revlex Gröbner basis for I∗H is given by

I∗H = (x25, x4x5, x3x5, x2x5, x1x5, x
2
4, x

2
3 − x1x4, x22),

and (I∗H : x5) = (x1, x2, x3, x4, x5), hence depthmK[H] = 0.

This is not an isolated example. For any given embedding dimension n > 4 we
construct infinitely many G-quadratic numerical semigroups whose tangent cone is not
Cohen-Macaulay. But first we recall a useful construction.

Let L be a numerical semigroup, ` an odd integer in L and H = 〈2L, `〉. By [19,
Definition 2.2], the semigroup H is called a quadratic gluing of L. It is proved in [19,
Corollary 2.7] that L and H are quadratic, Koszul, respectively G-quadratic, at the same
time. It is also known by Delorme’s work [12] that if L is a complete intersection (CI),
then so is H. We refer to Section 2 in [19] for more details about the CI property for
quadratic numerical semigroups.
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Proposition 7. Given n > 3 and the positive integers ui, i = 1, . . . , n+ 1, where u1 > 3
is odd, let

a1 = 2n,

a2 = 2n−1u1,

a3 = 2n−1u2 + 2n−2u1,

. . .

an+1 = 2n−1un + 2n−2un−1 + · · ·+ u1,

an+2 = a2 + · · ·+ an+1 − a1.
The semigroup H = 〈a1, . . . , an+2〉 is a G-quadratic numerical semigroup of embedding
dimension n+ 2 and grmK[H] is not Cohen-Macaulay.

Letting n = 3, u1 = u2 = 3 and u3 = 1 in the construction above, we obtain the
quadratic semigroup H = 〈8, 12, 18, 13, 35〉 from Example 6. Note that in Proposition 7
the listed generators ai are not necessarily in increasing order, however we always have
a1 < ai < an+2 for 2 6 i 6 n+ 1.

Proof. Denote Hi = 〈a1, . . . , ai〉 for 1 6 i 6 n+ 2. It is easy to see that gcd(a1, . . . , ai) =
2n−i+1 for i = 1, . . . , n+1, hence Hn+1 and H are numerical semigroups. From the defining
relations we infer that

2ai+1 = 2nui + ai for 2 6 i 6 n, (1)

hence the (not necessarily numerical) semigroups H1, . . . , Hn+1 are obtained by quadratic
gluings, are CI and G-quadratic. Also, from the equations (1) we see that

IHi
= (x22 − x

u1
1 ) + (x2j+1 − x

uj

1 xj : 2 6 j < i) for 2 6 i 6 n+ 1.

Next we compute IH and I∗H . We note that an+2 +a1 = a2 + · · ·+an+1. For 2 6 i 6 n+ 1
using (1) repeatedly we get

an+2 + ai =a2 + · · ·+ ai−1 + 2ai +
n+1∑

j=i+1

aj − 2n

=a2 + · · ·+ ai−1 + (ai−1 + 2nui−1) +
n+1∑

j=i+1

aj − 2n

=a2 + · · ·+ ai−2 + (ai−2 + 2nui−2) + 2nui−1 +
n+1∑

j=i+1

aj − 2n

. . .

=2n(ui−1 + · · ·+ u1 − 1) +
n+1∑

j=i+1

aj

=(ui−1 + · · ·+ u1 − 1)a1 +
n+1∑

j=i+1

aj.
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Arguing similarly we obtain

2an+2 = (u1 + · · ·+ un − 2)a1 +
n∑

i=2

ai.

Each of these relations produces a binomial in IH :

f1 = x1xn+2 −
n+1∏
j=2

xj,

fi = xixn+2 − x
(
∑i−1

j=1 uj)−1
1

n+1∏
j=i+1

xj, for 2 6 i 6 n+ 1, and

fn+2 = x2n+2 − x
(
∑n

j=1 uj)−2
1

n∏
j=2

xj.

By inspecting these relations we remark that we can always choose a generating set for IH
consisting of binomials such that in each monomial in the support, different from x2n+2,
the variable xn+2 has degree at most one. Therefore, IH = (IHn+1 , f1, . . . , fn+2).

Since n > 3 and u1 > 3 it is easy to see that f ∗i = xixn+2 for i = 1, . . . , n+ 2. Arguing
as above we derive

I∗H = I∗Hn+1
+ xn+2(x1, . . . , xn+2).

This gives I∗H : xn+2 = (x1, . . . , xn+2) and depth grmK[H] = 0, hence R = grmK[H] is not
Cohen-Macaulay.

Since xn+2R1 = 0, by Conca’s [4, Lemma 4.(1)] we have that R is G-quadratic if and
only if

R/(tan+2) ∼= K[x1, . . . , xn+2]/(I
∗
H , xn+2) ∼= K[x1, . . . , xn+1]/I

∗
Hn+1

∼= grmK[Hn+1]

is G-quadratic, which is true since Hn+1 is a quadratic CI, see Theorem 1.

Our next goal is to identify the quadratic numerical semigroups H of embedding
dimension 5 and grmK[H] not Cohen-Macaulay.

Theorem 8. Let H be a quadratic numerical semigroup with emb dim(H) = 5. Then
grmK[H] is not Cohen-Macaulay if and only if H is of any of the following forms:

(i) H = 〈8, 4u′, 4u+ 2u′, 4u′′+ 2u+u′, 6u+ 7u′+ 4u′′−8〉 with u, u′, u′′ positive integers
and u′ > 1 is odd, or

(ii) H = 〈8, 4u′, 4u+2u′, 4u′′+2u+3u′, 6u+9u′+4u′′−8〉 with u, u′, u′′ positive integers
and u′ > 1 is odd.

Whenever H is in any of these two families, it is also G-quadratic.
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Proof. We first assume H is in any of the specified families and we show that grmK[H]
is not Cohen-Macaulay. We label a1, . . . , a5 the generators of H in the given ordering.

For (i) we are in the situation described in Proposition 7 for n = 3, u1 = u′, u2 = u
and u3 = u′′, hence the conclusion follows.

For (ii) we note that the semigroup L = 〈a1, a2, a3, a4〉 = 〈2〈4, 2u′, 2u + u′〉, a4〉 is
obtained by a quadratic gluing since a4 = u′′ · 4 + (2u + u′) + (2u′) is odd. By [19,
Proposition 3.6] the semigroup 〈4, 2u′, 2u + u′〉 is a quadratic complete intersection, and
the same holds for L by Delorme’s [12, Proposition 9] and by [19, Corollary 2.7].

It is straightforward to check that

a5 + a1 = a2 + a3 + a4,

a5 + a2 = (u′ − 1)a1 + a3 + a4,

a5 + a3 = (u+ u′ − 1)a1 + a4,

a5 + a4 = (u+ u′′ − 1)a1 + 3a2,

2a5 = (u+ 2u′ + u′′ − 2)a1 + a3,

hence I∗H : x5 = (x1, . . . , x5) and grmK[H] is not Cohen-Macaulay. Arguing as in the
proof of Proposition 7 we get that H is G-quadratic.

The direct implication is proved separately in Section 3.

2 Koszul and G-quadraticity

As an application of Theorem 8, under some restrictions on the field K, we prove that if
H is a numerical semigroup and emb dim(H) 6 5, then H is Koszul if and only if it is
G-quadratic. We wonder if this statement holds for arbitrary embedding dimension.

Let R = ⊕i>0Ri be a standard graded K-algebra. A Koszul filtration for R is a family
F of ideals of R generated by linear forms such that 0 and the maximal homogeneous
ideal of R belong to F and for every I ∈ F different from 0, there exists J ∈ F such that
J ⊂ I, I/J is cyclic and J : I ∈ F . A Koszul filtration that is totally ordered with respect
to inclusion is called a Gröbner flag. It is known that if R has a Koszul filtration, then it
is Koszul. Also, by [5, Theorem 2.4], if R has a Gröbner flag, then R is G-quadratic. We
refer to the original papers [8], [5] and to the recent survey [7] of Conca et al. for more
properties.

For easier reference we group in the following lemma some known results about lifting
Koszul-like properties modulo a linear form.

Lemma 9. Let R be a standard graded K-algebra and x a linear form that is regular on
R. If R/(x) has property (P), then so does R, where P stands for Koszul, G-quadratic,
admits a Koszul filtration, or a Gröbner flag.

Proof. The statements for Koszul and G–quadraticity are due to Backelin and Fröberg in
[2, Lemma 2], respectively to Conca in [4, Lemma 4.(2)].

That any Gröbner flag may be lifted from R/(x) to R is proved in [5, Lemma 2.11.(a)].
Using the same idea one can produce a Koszul filtration for R from a Koszul filtration of
R/(x).
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For R as above its h-polyonomial is defined as the numerator h(t) in the writing of the
Hilbert series HR(t) = Σi>0 dimK Rit

i = h(t)/(1 − t)d with h(1) 6= 0. If h(t) = Σi>0hit
i,

the sequence of coefficients (h0, h1, . . . ) is called the h-vector of R.
It is clear that if x is a linear form which is regular on R, the h-polynomial and the

h-vector of R and R/(x) are the same. In this context, the Cohen-Macaulay property for
R facilitates the computation of the h-vector of R by reduction to the artinian case.

For a quadratic (artinian)K-algebra the Koszul property or the existence of a quadratic
Gröbner basis, or of a Gröbner flag may sometimes be deduced by inspecting the h-vector.
We collect some results on this topic that we will use later on.

Lemma 10. Let R = ⊕i>0Ri be a quadratic standard graded K-algebra.

(i) (Conca, Rossi, Valla, [5, Proposition 2.12]) If HR(t) = 1 + nt+ t2 with n > 1, then
R has a Gröbner flag.

(ii) (Backelin, [1, Theorem 4.8]) If dimK R2 6 2, then R is Koszul.

Assume the field K is algebraically closed and of characteristic 6= 2.

(iii) (Conca, [4, Theorem 1]) If dimK R2 6 2, then R is G-quadratic if and only if it is
not graded isomorphic to the K-algebra K[x, y, z]/(x2, xy, y2 − xz, yz) or its trivial
fiber extentions.

(iv) (Conca, [6, Theorem 1.1]) If R is artinian and dimK R2 = 3, then R is Koszul.
Moreover, R is G-quadratic if and only if it is not a trivial fiber extension of
K[x, y, z]/I, where I is a complete intersection of three quadrics not containing
the square of a linear form.

It is now easier to prove the announced statement for the case when emb dim(H) is
less than 5.

Theorem 11. Let H be a numerical semigroup. If emb dim(H) < 5, then H is quadratic
if and only if H is G-quadratic.

Proof. Denote n = emb dim(H) and R = grmK[H]. Assume H is quadratic. If n = 2
then R is a hypersurface ring, and we are done. If n = 3, then e(H) ∈ {3, 4} and the
result follows from Theorem 1.

Assume n = 4 and then R is Cohen-Macaulay by Proposition 5. Denote R̄ = R/(x1).
Using Theorem 1 we get that e(H) ∈ {4, 5, 6, 8}. If e(H) 6= 5, then we are in one of the
cases covered by Theorem 1 and the conclusion follows. If e(H) = 5, then `(R̄) = e(H)
and R̄ has the h-vector (1, 3, 1). By Lemma 10(i) we obtain that R̄ has a Gröbner flag
which by Lemma 9 produces a Gröbner flag for R. Hence R is G-quadratic.

For a 5-generated quadratic numerical semigroup there are more possible multiplicities
for which the Koszul property does not follow easily from Theorem 1. Our analysis
depends on the possible h-polynomial of R = grmK[H] when H is quadratic. We combine
the results listed in Lemma 10 and Theorem 8 with computer testing in Singular ([16])
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for the remaining situations. Before giving the main result, we describe our screening
strategy performed on the computer.

Working under the assumption that x1 is regular on R, we analysed the possible
quadratic ideals J = I∗H mod(x1) in K[x2, x3, x4, x5] generated by monomials and binomi-
als and subject to some restrictions due to our setup. Choose G any minimal generating
set for IH consisting of binomials. If we denote G∗ the collection of their initial forms, by
[19, Lemma 1.5] G∗ generates I∗H minimally. Since x1 is regular on R, the set H obtained
by letting x1 = 0 in G∗ is a minimal generating set for J consisting of quadratic monomials
and possibly of binomials.

Since the variables correspond to the generators of H taken in increasing order, there
is only a short list of possible binomials in H:

p0 = x2x5 − x3x4, p1 = x23 − x2x4, p2 = x23 − x2x5,
p3 = x24 − x2x5, p4 = x24 − x3x5.

Clearly p1 and p2 can not occur at the same time inH, otherwise p1−p2 = x2(x4−x5) ∈ IH ,
hence x4 − x5 ∈ IH , which is false. Similarly, p3 and p4 may not both occur H. Hence at
most 3 binomials may occur simultaneously in H.

On the other hand, if p0 and p1 occur in H, these occur in IH , too. Hence a2 + a5 =
a3 +a4 and 2a3 = a2 +a4. Adding these equations we get a3 +a5 = 2a4, therefore p4 ∈ IH .
We get that either p4 ∈ H, or that the monomials in its support are in H.

Arguing similarly we see that if any two of p0, p1 and p4 occur inH, then the remaining
one is in IH and in J .

By Lemma 3 we see that x22, x
2
5 ∈ H. Also, if x23 /∈ H then either p1 or p2 is in H.

Similarly, if x24 /∈ H, then either p3 or p4 is in H.

Theorem 12. Let H be a numerical semigroup with emb dim(H) = 5.
If the field K is algebraically closed and of characteristic 6= 2, then H is Koszul if and

only if it is G-quadratic.

Proof. By Theorem 8, if R = S/I∗H
∼= grmK[H] is not Cohen-Macaulay then it is G-

quadratic. So it is enough to consider the case when x1 is a nonzero divisor on R. For
i = 2, . . . , 5, there exist distinct polynomials in I∗H of the form fi = x2i − gi, where gi is
either zero or a quadratic monomial which is not a pure power. Denoting by an overbar¯
the image in R̄ = R/(x1) and < the revlex term order induced by x5 > x4 > . . . , we have
in<(f̄i) = x2i for 2 6 i 6 5. Therefore the Hilbert series of the artinian graded algebras
R̄ and K[x2, . . . , x5]/ in<(J) coincide and moreover in<(J) contains the squares of all the
variables.

In this situation, as noted by Eisenbud, Green and Harris in [14, Section 4], for any
m, if hm = dimK R̄m has the binomial decomposition

hm =

(
bm
m

)
+

(
bm−1
m− 1

)
+ · · ·+

(
b1
1

)
with bm > bm−1 > · · · > b1 > 0, then

hm+1 6

(
bm

m+ 1

)
+

(
bm−1
m

)
+ · · ·+

(
b1
2

)
. (2)
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The h-vector of R̄ is (1, 4, h2, h3, h4). By (2) we have 0 6 h2 6
(
4
2

)
= 6. Our analysis

depends on the possible values for h2.

• If h2 = 0, then `(R̄) = e(H) = 5, and by Theorem 1, H is G-quadratic.

• If h2 = 1, then by (2) we get h3 = 0, hence the h-vector of R̄ is (1, 4, 1). By
Lemma 10(i) and Lemma 9 we get that R̄ and R have a Gröbner flag, hence they
are G-quadratic.

• If h2 = 2 =
(
2
2

)
+
(
1
1

)
, from (2) we deduce that h3 = 0. Since J is artinian and the

field K is algebraically closed of characteristic 6= 2, by Lemma 10(iii) we get that
R̄, hence also R, are G-quadratic.

Testing with Singular ([16]) the possible candidates for J , it is easy to check that all
of them have a quadratic Gröbner basis with respect to revlex (usually induced by
x2 > x3 > x4 > x5). All of them possess a Koszul filtration and in all but one situ-
ation presented in Remark 14 there exists a Gröbner flag with basis {x2, x3, x4, x5}.

• If h2 = 3 =
(
3
2

)
, then h3 6 1 and h4 = 0. Note that J has at least two linearly

independent squares of linear forms, namely x22 and x25. Under the assumption that
K is algebraically closed and of characteristic 6= 2, by Lemma 10(iv) we infer that
R̄, hence also R, is G-quadratic.

Scanning the possible candidates for J by the method described above it turns out
that there always exists a Koszul filtration for R̄, without any restriction on the field
K. In most cases this filtration is a Gröbner flag and the ideal J has a quadratic
Gröbner basis with respect to revlex (usually induced by x2 > x3 > x4 > x5). There
are though, up to a permutation of the variables, a couple of candidates for J which
do not admit a quadratic Gröbner basis with respect to any term order. We present
these exceptions in Remark 15.

• If h2 = 4 =
(
3
2

)
+
(
1
1

)
, then h3 6 1 and h4 = 0. We scanned the possible candidates

for J and we eliminated those ideals where the resolution of K over R̄ (computed
with Singular [16]) is becoming nonlinear after at most 5 steps. All the other
candidates had a quadratic Gröbner bases with respect to revlex (usually induced
by x2 > x3 > x4 > x5) and even a Gröbner flag. All the non-Koszul ideals were
among those with h3 = 0, hence with e(H) = 9.

• If h2 = 5 =
(
3
2

)
+
(
2
1

)
, then by (2) we get h3 6 2 and h4 = 0. It is well known

and easy to see that if R̄ is Koszul, then its Poincaré series equals 1/H(−t). It is
routine to check that if h3 = 0 then 1/H(−t) = 1 + 4t + · · · − 29x6 + · · · , and if
h3 = 1 then 1/H(−t) = 1 + 4t+ · · ·− 174x8 + · · · . Therefore, in either case R is not
Koszul. However, if h3 = 2 then e(H) = 12 = 24 − 22 and we may apply Theorem
1 to conclude that H is G-quadratic.

• If h2 = 6, then I∗H is a complete intersection, hence H is G-quadratic.

This finishes the proof of the theorem.
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Corollary 13. Let H be a numerical semigroup with emb dim(H) = 5 and e(H) different
from 9, 10 and 11. Then H is quadratic if and only if it is G-quadratic.

We next present the situations of Koszul ideals without Gröbner flags that occurred
when discussing the cases h2 = 2 and h2 = 3 in the proof of Theorem 12.

Remark 14. The ideal J1 has a quadratic Gröbner basis with respect to revlex induced
by x2 > x3 > x4 > x5 and the h-vector of R̄ = K[x2, x3, x4, x5]/J1 is (1, 4, 2):

J1 = (x22, x
2
5, p1 = x23 − x2x4, x24, x2x3, x2x5, x3x4, x4x5).

The following computations show that

J1 = {0, (x2), (x2, x3), (x2, x3, x5), (x2, x4, x5), (x2, x3, x4, x5)}

is a Koszul filtration for R̄:

0 : (x2) = (x2, x3, x5), (x2) : (x2, x5) = (x2, x4, x5),

(x2, x5) : (x2, x3, x5) = (x2, x5) : (x2, x4, x5) = (x2, x3, x4, x5),

(x2, x3, x5) : (x2, x3, x4, x5) = (x2, x4, x5) : (x2, x3, x4, x5) = (x2, x3, x4, x5).

All the computations in these equations are made in R̄. We hope there is no risk of
confusion. It is also easy to check that there is no Gröbner flag for R̄ with basis (the
residue classes of) x2, x3, x4, x5.

Remark 15. The quotient of S̄ = K[x2, . . . , x5] modulo either one of the following two
ideals has h-vector (1, 4, 3):

J2 = (x22, x
2
5, p1 = x23 − x2x4, p3 = x24 − x2x5, x2x3, x3x4, x3x5),
J3 = (x22, x

2
5, p1 = x23 − x2x4, x24, x2x3, x3x4, x3x5).

We claim that none of them has a quadratic Gröbner basis with respect to any term
order <.

Indeed, regarding J2: if in<(p1) = x2x4 then the S-polynomial S(p1, x2x3) = x33. Else,
in case in<(p3) = x24 we obtain S(p1, x3x5) = x2x4x5 and in case in<(p3) = x2x5 we
compute S(p1, x3x4) = x2x

2
4.

Regarding J3: if in<(p1) = x23, then S(p1, x3x5) = x2x4x5. Similarly, if in<(p1) = x2x4
then S(p1, x2x3) = x33. It is easy to observe that in any of these cases the computed
S-polynomial does not reduce to zero using the remaining quadrics that generate J2,
respectively J3. Therefore J2 and J3 do not have a quadratic Gröbner basis with respect
to any term order.

The following computations performed in R̄ = S̄/J2, respectively in R̄ = S̄/J3, show
that

J = {0, (x5), (x3, x5), (x2, x5), (x2, x4, x5), (x2, x3, x5), (x2, x3, x4, x5)}
is a Koszul filtration for R̄:

0 : (x5) = (x3, x5), (x5) : (x3, x5) = (x2, x4, x5), (x5) : (x2, x5) = (x2, x3, x5),

(x3, x5) : (x2, x3, x5) = (x2, x5) : (x2, x4, x5) = (x2, x3, x4, x5),

(x2, x3, x5) : (x2, x3, x4, x5) = (x2, x4, x5) : (x2, x3, x4, x5) = (x2, x3, x4, x5).
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Remark 16. In practice, we were not able to find quadratic numerical semigroups produc-
ing the ideals J1, J2, J3 in Remarks 14 and 15. If such semigroups do not exist, we could
drop the restrictions on the field K in Theorem 12.

Based on the proof of Theorem 12 and on the numerical experiments detailed before
the proof, in Table 1 we summarize with examples our knowledge of the possible h-vectors
of grmK[H], grouped by the multiplicity, when H is a 5-generated quadratic numerical
semigroup. For two of these h-vectors we could not find examples of semigroups, hence
we ask if this list should be further reduced. The abbreviation quad GB indicates that
I∗H has a quadratic Gröbner basis.

Table 1: h-vectors for quadratic 5-semigroups

e(H) h-vector Remarks on I∗H Example

5 (1, 4) quad GB 〈5, 6, 7, 8, 9〉
6 (1, 4, 1) quad GB 〈6, 7, 8, 9, 10〉
7 (1, 4, 2) quad GB 〈7, 8, 9, 10, 11〉
8 (1, 4, 2, 1) not CM, quad GB 〈8, 12, 13, 18, 55〉

(1, 4, 3) quad GB 〈8, 9, 10, 11, 12〉
9 (1, 4, 3, 1) quad GB ?

(1, 4, 4) quad GB 〈9, 10, 11, 12, 15〉
not Koszul 〈9, 17, 20, 23, 25〉

10 (1, 4, 4, 1) quad GB 〈10, 16, 19, 22, 25〉
(1, 4, 5) not Koszul ?

11 (1, 4, 5, 1) not Koszul 〈11, 13, 14, 15, 19〉
12 (1, 4, 5, 2) quad GB 〈12, 14, 16, 18, 27〉
16 (1, 4, 6, 4, 1) quad GB 〈16, 17, 18, 20, 24〉

Remark 17. In recent work ([11]) D’Anna et al. study the numerical semigroups H for
which the Hilbert function of grmK[H] is non-decreasing. We observe that this is also
the case when H is quadratic and emb dim(H) 6 5.

Indeed, by Proposition 5 and the Table 1 we have that the h-vector of grmK[H] has
nonnegative entries, hence the Hilbert function of grmK[H] is non-decreasing.

3 A long proof

In this section we prove the direct implication of Theorem 8.
Let H be a quadratic numerical semigroup minimally generated by a1 < · · · < a5.

Assume that grmK[H] is not Cohen-Macaulay.
By Theorem 1 we see that

4 < a1 < 16. (3)
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By Proposition 4 and Lemma 3 the lack of the Cohen-Macaulay property is equivalent to
say that there exist νi ∈ {0, 1}, i = 2, . . . , 5, such that

∑5
i=2 νiai ∈ a1 +H and whenever

5∑
i=2

νiai =
5∑

i=1

µiai, with integers µ1 > 0, µ2, . . . , µ5 > 0, (4)

one has
∑5

i=2 νi >
∑5

i=1 µi.
Without loss of generality we may assume that in any equation like (4) one has νiµi = 0

for all i > 1. Since emb dim(H) = 5, at least two of the νi’s are positive. If exactly two of
the νi’s are equal to 1, then

∑5
i=1 µi = 1, µ1 = 1, and a1 ∈ 〈a2, . . . , a5〉, which is false. If

all νi are positive, then a2 + · · ·+a5 = µ1a1 and since a1 = e(H) we get µ1 > 4 =
∑5

i=2 νi,
which contradicts the failure of the Cohen-Macaulay property.

Hence we have to consider only expressions where exactly one νi is zero. If ν2 = 0,
then (4) is of the form a3 + a4 + a5 = a1 + a2 or a3 + a4 + a5 = 2a1. If ν3 = 0, then
a2 + a4 + a5 = a1 + a3 or a2 + a4 + a5 = 2a1. If ν4 = 0, then a2 + a3 + a5 = a1 + a4 or
a2 + a3 + a5 = 2a1. If ν5 = 0, then a2 + a3 + a4 = a1 + a5 or a2 + a3 + a4 = 2a1. Since
a1 < a2 < · · · < a5, the only possibility for (4) is

a2 + a3 + a4 = a1 + a5. (5)

By Lemma 3(ii)

2a2 = ua1 + va3 + wa4 + λa5, (6)

2a3 = u′a1 + v′a2 + w′a4 + λ′a5, (7)

2a4 = u′′a1 + v′′a2 + w′′a3 + λ′′a5, (8)

for u, v, w, λ, u′, . . . , λ′′ nonnegative integers. Moreover, since all ai > 0 we may assume,
without loss of generality, that v, w, λ, v′, w′, λ′, v′′, w′′, λ′′ ∈ {0, 1}. We later refer to these
equations as normalized expressions for 2a2, 2a3 and 2a4, respectively.

We observe that due to the ordering of the ai’s and to (5) we have a5 > a3 + a4 >
2a3 > 2a2, hence λ = λ′ = 0. Also, (5) implies u′′λ′′ = 0, otherwise a4 ∈ 〈a1, a2, a3〉, which
is false. Similarly, v + w < 2.

The rest of the proof treats the remaining two possibilities: 2a2 = ua1 + a3, or 2a2 =
ua1+a4, where we must have u > 1. The rather long discussion depends on the coefficients
that occur in the normalized expressions (7) and (8). We identify six situations when the
tangent cone grmK[H] is not Cohen-Macaulay, but, after reordering, all of them fit into
the two families (i) and (ii) in the text of the theorem.

3.1 Case (A)

Assume
2a2 = ua1 + a3 with u > 1. (9)
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3.1.1 Case w′ = 0

Then
2a3 = u′a1 + v′a2 with v′ ∈ {0, 1}. (10)

If v′ = 1, then 2a3 = u′a1 + a2, with u′ > 1. Adding to this the equation (9), after
obvious simplifications we obtain a2 + a3 = (u+ u′)a1, hence

a5 = (a2 + a3 + a4)− a1 = (u+ u′ − 1)a1 + a4 ∈ 〈a1, a4〉,

which is false.
Thus v′ = 0 and 2a3 = u′a1 where u′ > 1 need to be odd and a1 even. Together with

(9) this gives 2(2a2 − ua1) = u′a1, i.e.

4a2 = (u′ + 2u) · a1.

Since u′ is odd we get 4|a1, hence a1 ∈ {8, 12}.

1. If a1 = 8, then

a2 = 2(u′ + 2u),
a3 = 2a2 − ua1 = 4u′.

Consider the normalized expression (8):

2a4 = u′′a1 + v′′a2 + w′′a3 + λ′′a5.

If λ′′ = 1, since a1, a2, a3 are even, then a5 is even. Using (5) we infer that a4 is even,
which is false.

Therefore λ′′ = 0 and
2a4 = u′′a1 + v′′a2 + w′′a3.

Since a2, a3 < a4 we should have u′′ > 0. Because 4|a1 and 4|a3, we can not have
v′′ = 0, otherwise a4 is even, and by (5) also a5 is even, which gives a contradiction.
Hence v′′ = 1. We distinguish two situations.

1.1. If w′′ = 1, then 2a4 = u′′a1 + a2 + a3. This gives

a1 = 8,

a3 = 4u′,

a2 = 4u+ 2u′, (11)

a4 = 4u′′ + 2u+ 3u′,

a5 = 9u′ + 6u+ 4u′′ − 8,

which is of the desired form.
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1.2. If w′′ = 0, then 2a4 = u′′a1 + a2. This gives

a1 = 8,

a3 = 4u′,

a2 = 4u+ 2u′, (12)

a4 = 4u′′ + 2u+ u′,

a5 = 7u′ + 6u+ 4u′′ − 8,

which is of the desired form.

2. If a1 = 12, then

a2 = 3u′ + 6u,

a3 = 6u′.

In the normalized expression

2a4 = u′′a1 + v′′a2 + w′′a3 + λ′′a5

we add a4 + (1− v′′)a2 + (1− w′′)a3 to both sides and using (5) we get

3a4 + (1− v′′)a2 + (1− w′′)a3 = (1 + u′′)a1 + (1 + λ′′)a5,

hence 3|a5, and by (5) also 3|a4, hence gcd(a1, . . . , a5) > 1, a contradiction.

3.1.2 Case w′ = 1

Then
2a3 = u′a1 + v′a2 + a4 with v′ ∈ {0, 1}.

If v′ = 1, then 2a1 + 2a5 = 2a2 + 2a3 + 2a4 = (ua1 + a3) + (u′a1 + a2 + a4) + 2a4 =
(u′ + u)a1 + (a2 + a3 + a4) + 2a4. This gives a5 = (u′ + u− 1)a1 + 2a4, which is false.
Therefore v′ = 0 and

2a3 = u′a1 + a4 with u′ > 0. (13)

Consider the normalized expression (8)

2a4 = u′′a1 + v′′a2 + w′′a3 + λ′′a5.

If λ′′ = 1, since u′′λ′′ = 0, we get u′′ = 0. Equation (8) becomes

2a4 = v′′a2 + w′′a3 + a5.

To this we add (13) and 2a2 = ua1 + a3 from (9) and after using (5) we get that

a5 = (u′ + u− 2)a1 + v′′a2 + (w′′ + 1)a3 + a4 ∈ 〈a1, a2, a3, a4〉,

which is false.
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Thus λ′′ = 0 and 2a4 = u′′a1 + v′′a2 +w′′a3. To this we add (13) and 2a2 = ua1 + a3 and,
after using (5), we see that

2a5 = (u′′ + u′ + u− 2)a1 + v′′a2 + (w′′ + 1)a3 + a4.

If v′′ > 0, by (5) we get a5 ∈ 〈a1, a2, a3, a4〉, which is false.
Hence v′′ = 0 and (8) becomes

2a4 = u′′a1 + w′′a3 = u′′a1 + w′′(2a2 − ua1) = (u′′ − w′′u)a1 + 2w′′a2 with w′′ ∈ {0, 1}.
From (13) we extract

a4 = 2a3 − u′a1 = 2(2a2 − ua1)− u′a1 = 4a2 − (2u+ u′)a1

which we replace in the previous equation for 2a4. Routine manipulation gives

(8− 2w′′)a2 = ((4− w′′)u+ 2u′ + u′′)a1. (14)

1. If w′′ = 0, the equations (14), (9) and (8) together with (5) yield

a2 =
4u+ 2u′ + u′′

8
· a1,

a3 =
2u′ + u′′

4
· a1,

a4 =
u′′

2
· a1,

a5 =
4u+ 6u′ + 7u′′ − 8

8
· a1.

From here we infer that u′′ is odd (otherwise a1 divides a4, which is false) and conse-
quently 8|a1. Hence a1 = 8 and the generators of the semigroup are

a1 = 8,

a4 = 4u′′,

a3 = 2u′′ + 4u′, (15)

a2 = u′′ + 2u′ + 4u,

a5 = 4u+ 6u′ + 7u′′ − 8,

as desired.

2. If w′′ = 1, equation (14) together with (9), (8) and (5) give after routine computations

a2 =
3u+ 2u′ + u′′

6
· a1,

a3 =
2u′ + u′′

3
· a1,

a4 =
u′ + 2u′′

3
· a1,

a5 =
3u+ 8u′ + 7u′′ − 6

6
· a1.

We note that a5 = a2 + (u′ + u′′ − 1)a1 ∈ 〈a1, a2〉, which is false.
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3.2 Case (B)

Assume
2a2 = ua1 + a4, with u > 1. (16)

If in the normalized expression

2a4 = u′′a1 + v′′a2 + w′′a3 + λ′′a5 with v′′, w′′, λ′′ ∈ {0, 1}

we had λ′′ = 1, then u′′ = 0. Combined with (16), we get

2a2 + a4 = ua1 + 2a4 = ua1 + v′′a2 + w′′a3 + a5.

Using (5) and the latter equation we obtain

(1− v′′)a2 = (u− 1)a1 + (w′′ + 1)a3 > 0,

which is a contradiction since v′′ 6 1. Therefore λ′′ = 0.

3.2.1 Case w′ = v′ = 0

Then u′ > 0 and (7) becomes
2a3 = u′a1. (17)

From this and (16) we get a3 = u′a1/2, a4 = 2a2 − ua1 and that a1 is even and u′ is odd.
We substitute in the normalized expression above the values for a3 and a4 in terms of

a1 and a2 and we get

(4− v′′) · a2 =

(
2u+ u′′ + w′′

u′

2

)
· a1.

1. If v′′ = 1, the previous equation becomes

3a2 =

(
2u+ u′′ + w′′

u′

2

)
· a1.

We consider the possible even values of a1.

1.1. If a1 = 6 we obtain the other generators

a2 = 4u+ 2u′′ + w′′u′,

a3 = 3u′,

a4 = 2u+ 4u′′ + 2w′′u′,

a5 = 6u+ 6u′′ + (3w′′ + 3)u′ − 6.

Note that a5 = (u+ u′′ − 1)a1 + (w′′ + 1)a3 ∈ 〈a1, a3〉, which is false.

1.2. If a1 = 8 or 12, then a2, a3, a4 are even, hence a5 is even as well, a contradiction.

1.3. If a1 = 10, then it easy to see that a2, a3, a4, a5 are divisible by 5, which is false.
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1.4. If a1 = 14, then all the generators are divisible by 7, which is false.

2. If v′′ = 0, then

4a2 =

(
2u+ u′′ + w′′

u′

2

)
· a1,

which forces a1 to be even.

2.1. If w′′ = 0 we get 2a4 = u′′a1 and 4a2 = (2u + u′′)a1. Therefore u′′ is odd, a1 is
divisible by 4, hence a1 ∈ {4, 8}, and the other generators are

a2 =
2u+ u′′

4
· a1,

a3 =
u′

2
· a1,

a5 =
3u′′ + 2u+ 2u′ − 4

4
· a1.

It is immediate to note that if a1 = 8 all generators are even, while if a1 = 12 all of
them are divisible by 3. None of these situations may hold.

2.2. If w′′ = 1 we obtain
8a2 = (4u+ 2u′′ + u′) · a1.

Since u′ is odd we get a1 = 8. From the other equations we compute the other
generators

a3 = 4u′,

a4 = 4u′′ + 2u′,

a2 = 4u+ 2u′′ + u′, (18)

a5 = 4u+ 6u′′ + 7u′ − 8,

which turn out to be of the desired form.

3.2.2 Case w′ = 0 and v′ = 1

Then 2a3 = u′a1 + a2 with u′ > 0.
Using (16) and the normalized equation (8) we get

2a1 + 2a5 = 2a2 + 2a3 + 2a4 = (u′ + u′′ + u)a1 + (v′′ + 1)a2 + w′′a3 + a4,

hence w′′ = 0.

1. If v′′ = 1, by adding the equations 2a2 = ua1 +a4 and 2a4 = u′′a1 +a2 we get a2 +a4 =
(u+ u′′)a1. Therefore a5 = (a2 + a4) + a3 − a1 = (u+ u′′ − 1)a1 + a3, which is false.

the electronic journal of combinatorics 23(3) (2016), #P3.20 19



2. If v′′ = 0, then 2a4 = u′′a1 with u′′ odd and a1 even. Since 2a2 = ua1 + a4 we get
4a2 = (2u+ u′′) · a1. This implies that 4|a1, hence a1 ∈ {8, 12}.
If a1 = 12, then a2 = 3(2u + u′′). Since 2a3 = u′a1 + a2 and a4 = ua1 − 2a2 we derive
that a3 and a4 are divisible by 3, hence also 3|a5, which is false.

If a1 = 8, the rest of the generators are

a4 = 4u′′,

a2 = 4u+ 2u′′,

a3 = 2u+ u′′ + 4u′, (19)

a5 = 6u+ 7u′′ + 4u′ − 8,

which are of the desired format.

3.2.3 Case w′ = 1

Then
2a3 = u′a1 + v′a2 + a4. (20)

Since in the normalized expression (8) we have λ′′ = 0 and v′′, w′′ 6 1, then u′′ > 0. By
(16) and (20) we may write

2a5 = 2a2 + 2a3 + 2a4 − 2a1

= (ua1 + a4) + (u′a1 + v′a2 + a4) + (u′′a1 + v′′a2 + w′′a3)− 2a1

= (u+ u′ + u′′ − 2)a1 + (v′ + v′′)a2 + w′′a3 + 2a4.

1. If w′′ = 1 and v′ + v′′ > 0, we get a5 ∈ 〈a1, a2, a3, a4〉, which is false.

2. If w′′ = 1 and v′ = v′′ = 0, summing the equations

2a4 = u′′a1 + a3

2a3 = u′a1 + a4

we obtain that a3 + a4 = (u′ + u′′)a1, which, together with (5) yields a5 = (u′ + u′′ −
1)a1 + a2 ∈ 〈a1, a2〉, a contradiction.

3. If w′′ = 0, then 2a4 = u′′a1 + v′′a2, and after substituting in here a4 = 2a2 − ua1 (from
(16)) we get

(4− v′′)a2 = (2u+ u′′)a1.

3.1. If v′′ = 0, then a4 = u′′a1/2 and u′′ is odd. Other generators are obtained immedi-
ately:

a2 =
2u+ u′′

4
· a1,

a3 =
4u′ + 2u′′ + v′(2u+ u′′)

8
· a1.
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Since u′′ is odd we deduce that 4|a1, hence a1 ∈ {8, 12}.
If a1 = 12, because the denominators of a2, a3 and a4 are powers of 2 we see that
a2, a3, a4 are divisible by 3, and the same holds for a5, a contradiction.
Assume a1 = 8. If v′ = 0 then we note that a2, a3, a4 are even, hence a5 is even, too.
This is false. Hence v′ = 1, and the generators of the semigroup are

a1 = 8,

a4 = 4u′′,

a2 = 4u+ 2u′′, (21)

a3 = 4u′ + 2u+ 3u′′,

a5 = 4u′ + 6u+ 9u′′ − 8,

which is on our list.

3.2. If v′′ = 1, then 3a2 = (2u+ u′′)a1 which implies 3 - 2u+ u′′ and 3|a1. We get

a2 =
2u+ u′′

3
· a1, a4 = 2a2 − u =

2u′′ + u

3
· a1.

By (5) we see that a5 = a2 + a3 + a4 − a1 = (u+ u′′ − 1)a1 + a3, which is false.

The proof of Theorem 8 is now complete. �
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[6] A. Conca, Gröbner bases for spaces of quadrics of codimension 3, J. Pure and Applied
Algebra 213 (2009), 1564–1568.

the electronic journal of combinatorics 23(3) (2016), #P3.20 21



[7] A. Conca, E. De Negri, M.E. Rossi, Koszul algebras and regularity, Commutative
algebra, 285–315, Springer, New York, 2013.

[8] A. Conca, N.V. Trung, G. Valla, Koszul property for points in projective spaces,
Math. Scand. 89 (2001) no. 2, 201–216.

[9] A. D’Al̀ı, The Koszul property for spaces of quadrics of codimension three, 2016,
preprint 26 pp. arXiv:1605.09145.

[10] M. D’Anna, V. Micale, A. Sammartano, When the associated graded ring of a semi-
group ring is Complete Intersection, J. Pure and Applied Algebra 217 (2013), 1007–
1017.

[11] M. D’Anna, M. Di Marca, V. Micale, On the Hilbert function of the tangent cone of
a monomial curve, Semigroup Forum 91 (2015), 718–730.
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