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Abstract

The only remaining case of a well known conjecture of Vizing states that there
is no planar graph with maximum degree 6 and edge chromatic number 7. We
introduce parameters for planar graphs, based on the degrees of the faces, and
study the question whether there are upper bounds for these parameters for planar
edge-chromatic critical graphs. Our results provide upper bounds on these param-
eters for smallest counterexamples to Vizing’s conjecture, thus providing a partial
characterization of such graphs, if they exist.

For k 6 5 the results give insights into the structure of planar edge-chromatic
critical graphs.

Keywords: Vizing’s planar graph conjecture; planar graphs; critical graphs; edge
colorings

1 Introduction

We consider finite simple graphs G with vertex set V (G) and edge set E(G). The vertex-
degree of v ∈ V (G) is denoted by dG(v), and ∆(G) denotes the maximum vertex-degree
of G. If it is clear from the context, then ∆ is frequently used. The edge-chromatic-
number of G is denoted by χ′(G). Vizing [8] proved that χ′(G) ∈ {∆(G),∆(G) + 1}. If
χ′(G) = ∆(G), then G is a class 1 graph, otherwise it is a class 2 graph. A class 2 graph
G is critical, if χ′(H) < χ′(G) for every proper subgraph H of G. Critical graphs with
maximum vertex-degree ∆ are also called ∆-critical. It is easy to see that critical graphs
are 2-connected. A graph G is overfull if |V (G)| is odd and |E(G)| > ∆(G)b1

2
|V (G)|c+1.

Clearly, every overfull graph is class 2. A graph is planar if it can be embedded into the
Euclidean plane. A plane graph (G,Σ) is a planar graph G together with an embedding
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Σ of G into the Euclidean plane. That is, (G,Σ) is a particular drawing of G in the
Euclidean plane.

In 1964, Vizing [8] showed for each k ∈ {2, 3, 4, 5} that there is a planar class 2 graph
G with ∆(G) = k. He proved that every planar graph with maximum vertex-degree at
least 8 is a class 1 graph, and conjectured that every planar graph H with ∆(H) ∈ {6, 7}
is a class 1 graph. Vizing’s conjecture has been proved for planar graph with maximum
vertex-degree 7 by Grünewald [3], Sanders and Zhao [6], and Zhang [13] independently.

Zhou [14] proved for each k ∈ {3, 4, 5} that if G is a planar graph with ∆(G) = 6 and
G does not contain a circuit of length k, then G is a class 1 graph. Vizing’s conjecture
is confirmed for some other classes of planar graphs which do not contain some specific
(chordal) circuits [1, 10, 11].

v
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Figure 1: Graph G has two embeddings Σ, Σ′ such that F ((G,Σ)) 6= F ((G,Σ′)).

Let G be a 2-connected planar graph, Σ be an embedding of G in the Euclidean
plane and F (G) be the set of faces of (G,Σ). The degree d(G,Σ)(f) of a face f is the
length of its facial circuit. If there is no harm of confusion we also write dG(f) instead
of d(G,Σ)(f). Let F (G) = 1

|F (G)|
∑

f∈F (G) dG(f) be the average face-degree of G. Euler’s

formula |V (G)| − |E(G)|+ |F (G)| = 2 implies that F (G) = 2|E(G)|
|E(G)|−|V (G)|+2

.

Let v ∈ V (G). If dG(v) = k, then v is incident to k pairwise different faces f1, . . . , fk.
Let F(G,Σ)(v) = 1

k
(d(G,Σ)(f1) + · · · + d(G,Σ)(fk)) and F ((G,Σ)) = min{F(G,Σ)(v) : v ∈

V (G)}. Clearly, F ((G,Σ)) > 3 since every face has length at least 3. As Figure 1 shows,
F ((G,Σ)) depends on the embedding Σ. The local average face-degree of a 2-connected
planar graph G is

F ∗(G) = max{F ((G,Σ)) : (G,Σ) is a plane graph}.

This parameter is independent from the embeddings of G, and F ∗(G) > 3 for all planar
graphs. Let k be a positive integer. Let bk = sup{F (G) : G is a k-critical planar graph}
and b∗k = sup{F ∗(G) : G is a k-critical planar graph}. We call bk the the average face-
degree bound, and b∗k the local average face-degree bound for k-critical planar graphs. If
k = 1 or k > 7, then every planar graph with maximum vertex-degree k is a class 1
graph and therefore, {F (G) : G is a k-critical planar graph} = {F ∗(G) : G is a k-critical
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planar graph} = ∅. Hence, bk and b∗k do not exist in these cases. Therefore, we focus on
k ∈ {2, 3, 4, 5, 6} in this paper. The main results are the following two theorems.

Theorem 1. Let k > 2 be an integer.

• If k = 2, then bk =∞.

• If k = 3, then 6 6 bk 6 8.

• If k = 4, then 4 6 bk 6 4 + 4
5

• If k = 5, then 3 + 1
3
6 bk 6 3 + 3

4
.

• If k = 6 and bk exists, then bk 6 3 + 1
3
.

Theorem 2. Let k > 2 be an integer.

• If k ∈ {2, 3, 4}, then b∗k =∞.

• If k = 5, then 3 + 1
5
6 b∗k 6 7 + 1

2
.

• If k = 6 and b∗k exists, then b∗k 6 3 + 2
5
.

Vizing [9] proved that a class 2 graph contains k-critical subgraph for each k ∈
{2, . . . ,∆}. Hence a smallest counterexample to Vizing’s conjecture is critical and thus,
our results for k = 6 partially characterize smallest counterexamples to this conjecture.
For k 6 5, they provide insight into the structure of planar critical graphs. Seymour’s
exact conjecture [7] says that every critical planar graph is overfull. If this conjecture is
true for k ∈ {3, 4, 5}, then bk is equal to the lower bound given in Theorem 1.

It is not clear whether bk and b∗k or F (G) and F ∗(G) are related to each other, respec-
tively. Furthermore, the precise values of bk and b∗k are also unknown.

The next section states some properties of critical and of planar graphs. These results
are used for the proofs of Theorems 1 and 2 which are given in Section 3.

2 Preliminaries

Let G be a 2-connected graph. A vertex v is called a k-vertex, or a k+-vertex, or a k−-
vertex if dG(v) = k, or dG(v) > k, or dG(v) 6 k, respectively. Let N(v) be the set of
vertices which are adjacent to v, and N(S) =

⋃
v∈S N(v) for a set S ⊆ V (G). We write

N(v) and N(u, v) short for N({v}) and N({u, v}), respectively.
Let (G,Σ) be a plane graph. A face f is called k-face, or a k+-face, or a k−-face, if

d(G,Σ)(f) = k, or d(G,Σ)(f) > k, or d(G,Σ)(f) 6 k, respectively. We will use the following
well-known results on critical graphs.

Lemma 3. Let G be a critical graph and e ∈ E(G). If e = xy, then dG(x) > 2, and
dG(x) + dG(y) > ∆(G) + 2.
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Lemma 4 (Vizing’s Adjacency Lemma [8]). Let G be a critical graph. If e = xy ∈ E(G),
then at least ∆(G)− dG(y) + 1 vertices in N(x) \ {y} have degree ∆(G).

Lemma 5 ([13]). Let G be a critical graph and xy ∈ E(G). If d(x) + d(y) = ∆(G) + 2,
then

1. every vertex of N(x, y) \ {x, y} is a ∆(G)-vertex,

2. every vertex in N(N(x, y))\{x, y} has degree at least ∆(G)− 1,

3. if d(x) < ∆(G) and d(y) < ∆(G), then every vertex in N(N(x, y))\{x, y} has degree
∆(G).

Lemma 6 ([6]). No critical graph has pairwise distinct vertices x, y, z, such that x is
adjacent to y and z, d(z) < 2∆(G)− d(x)− d(y) + 2, and xz is in at least d(x) + d(y)−
∆(G)− 2 triangles not containing y.

We will use the following results on lower bounds for the number of edges in critical
graphs.

Theorem 7 ([4]). If G is a 3-critical graph, then |E(G)| > 4
3
|V (G)|.

Theorem 8 ([12]). Let G be a k-critical graph. If k = 4, then |E(G| > 12
7
|V (G)|, and if

k = 5, then |E(G)| > 15
7
|V (G)|.

Theorem 9 ([5]). If G is a 6-critical graph, then |E(G)| > 1
2
(5|V (G)|+ 3).

Lemma 10. Let t be a positive integer and ε > 0.

1. For k ∈ {2, 3, 4} there is a k-critical planar graph G and F ∗(G) > t.

2. There is a 2-critical planar graph G with F (G) > t.

3. There is a 3-critical planar graph G such that 6− ε < F (G) < 6.

4. There is a 4-critical planar graph G such that 4− ε < F (G) < 4.

5. There is a 5-critical planar graph G, such that 3 + 1
3
− ε < F (G) < 3 + 1

3
and

F ∗(G) > 3 + 1
5
.

Proof. The odd circuits are the only 2-critical graphs. Hence, the second statement and
the first statement for k = 2 are proved. Let X and Y be two circuits of length n > 3,
with V (X) = {xi : 0 6 i 6 n − 1}, V (Y ) = {yi : 0 6 i 6 n − 1} and edges xixi+1 and
yiyi+1, where the indices are added modulo n. Consider an embedding, where Y is inside
X. Add edges xiyi to obtain a planar cubic graph G with F ∗(G) = 1

3
(n+ 8). Add edges

xiyi+1 in G to obtain a 4-regular planar graph H with F ∗(H) = 1
4
(n + 9). Subdividing

one edge in G and one in H yields a critical planar graph Gn with ∆(Gn) = 3, and a
critical planar graph Hn with ∆(Hn) = 4. If n > 4t, then F ∗(Gn) > t and F ∗(Hn) > t.
The proof that Gn and Hn are critical will be given in the last paragraph.
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Figure 2: Examples for k ∈ {2, 3, 4}

Since |F (Gn)| = n+2, and
∑

f∈F (Gn) dGn(f) = 6n+2, it follows that F (Gn) = 6− 10
n+2

.

Analogously, we have |F (Hn)| = 2n + 2 and
∑

f∈F (Hn) dHn(f) = 8n + 2 and therefore,

F (Hn) = 4− 3
n+1

. Now, the statements for 3-critical and 4-critical graphs follow. Examples
of these graphs are given in Figure 2.

Let m > 4 be an integer. Let Ci = [ci,1ci,2 · · · ci,4] be a circuit of length 4 for i ∈ {1,m},
and Ci = [ci,1ci,2 · · · ci,8] be a circuit of length 8 for i ∈ {2, . . . ,m − 1}. Consider an
embedding, where Ci is inside Ci+1 for i ∈ {1, . . . ,m− 1}. Add edges c1,jc2,2j−1, c1,jc2,2j,
c1,jc2,2j+1 for j ∈ {1, . . . , 4}, edges ci,jci+1,j for i ∈ {2, . . . ,m−2} and j ∈ {1, . . . , 8}, edges
ci,jci+1,j+1 for i ∈ {2, . . . ,m−2} and j ∈ {2, 4, 6, 8}, and edges cm−1,2j−2cm,j, cm−1,2j−1cm,j

and cm−1,2jcm,j for j ∈ {1, . . . , 4} to obtain a 5-regular planar graph T (the indices are
added modulo 8). Subdividing the edge cm,1cm,2 in T yields a critical planar graph Tm
with ∆(Tm) = 5 (Figure 3 illustrates T6).

Figure 3: (T6,Σ6)

Since |F (Tm)| = 12m− 10 and
∑

f∈F (Tm) dTm(f) = 40m− 38, it follows that F (Tm) =
10
3
− 7

18m−15
. Furthermore, for the embedding Σm of Tm as indicated in Figure 3 (for

m = 6) we calculate that F ((Tm,Σm)) = 3 + 1
5

and therefore, F ∗(Tm) > 3 + 1
5
.

It remains to prove that Gn, Hn and Tm are critical. For Gn and Hn we proceed by
induction on n. It is easy to verify the truth for 3 6 n 6 6. We proceed to induction
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step. We argue first on Gn. Let u be the vertex of degree 2. Since n > 7, for any edge
e of Gn, there exists some k such that no vertex of the circuit C is incident with e or
adjacent to u, where C = [xk+1yk+1yk+2xk+2]. Reduce Gn to Gn−2 by removing the edges
xk+1yk+1 and xk+2yk+2 and suppressing their ends. Let G′ be the resulting graph and e′

be the resulting edge from e. By the induction hypothesis, G′ is critical. Hence, G′ − e′
has a 3-edge-coloring, say φ. Assign φ(xkxk+3) to xkxk+1 and xk+2xk+3, and φ(ykyk+3) to
ykyk+1 and yk+2yk+3, and consequently, the edges of C can be properly colored. Now a
3-edge-coloring of Gn − e is completed and so, Gn − e is class 1. Moreover, since Gn is
overfull, this graph is class 2. Therefore, Gn is critical. The argument on Hn is analogous.

For any Tm, recall that T is the graph obtained from Tm by suppressing the bivalent
vertex. Consider T . Since each circuit Ci has even length, their edges can be decomposed
into two perfect matchings M1 and M2, so that M1 contains ci,1ci,2 for i ∈ {1,m} and
ci,2ci,3 for 2 6 i 6 m − 1. Let M3 = {c1,jc2,2j+1 : 1 6 j 6 4} ∪ {ci,2jci+1,2j+1 : 2 6 i 6
m−2, 1 6 j 6 4}∪{cm−1,2j−2cm,j : 1 6 j 6 4}. Clearly, M3 is a perfect matching disjoint
with M1 and M2. We can see that E(G) \ (M1 ∪M2 ∪M3) induces even circuits and
hence, their edges can be decomposed into two perfect matchings M4 and M5, so that M4

contains c1,jc2,2j for 1 6 j 6 4. Clearly, M1, . . . ,M5 constitute a decomposition of E(T ).
Let ei = cm,icm,i+1 for 1 6 i 6 4. Let M ′

2 = M2 ∪ {e1, e3} \ {e2, e4}. Define A1 =
M1 ∪M3, A2 = M ′

2 ∪M4, A3 = M ′
2 ∪M5.

Let hm be an edge of Tm. Since Tm is overfull, to prove that Tm is critical, it suffices
to show that Tm − hm is a 5-edge-colorable.

Let h be the edge of T that corresponds to hm. We can see that A1∪A2∪A3 = E(T )\
{e2, e4} and e1 ∈ A1 ∩ A2 ∩ A3. Hence, if h /∈ {e2, e4} then there exists A ∈ {A1, A2, A3}
such that e1, h ∈ A. Note that e1 is the edge subdivided to get Tm from T , and that A
induces a circuit of T . It follows that this circuit corresponds to a path P of Tm − hm.
Moreover, note that the edges of T −A can be decomposed into 3 perfect matchings, and
thus the same to the edges of Tm − hm − E(P ). Therefore, Tm − hm is 5-edge-colorable.

If h ∈ {e2, e4} then Cm corresponds to a path of Tm−hm. Note that E(Cm) ⊆M1∪M2

and that M1, . . . ,M5 constitute a decomposition of E(T ). Similarly, we can argue that
Tm − hm is 5-edge-colorable in this case.

The following lemma is implied by Euler’s formula directly.

Lemma 11. If G is a planar graph, then |E(G)| = F (G)

F (G)−2
(|V (G)| − 2).

3 Proofs

3.1 Theorem 1

The statement for k = 2 and the lower bounds for bk if k ∈ {3, 4, 5} follow from Lemma
10. The other statements of Theorem 1 are implied by the following proposition.

Proposition 12. Let G be a k-critical planar graph.

1. If k = 3, then F (G) < 8.
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2. If k = 4, then F (G) < 4 + 4
5
.

3. If k = 5, then F (G) < 3 + 3
4
.

4. If k = 6, then F (G) < 3 + 1
3
.

Proof. Let k = 3 and suppose to the contrary that F (G) > 8. With Lemma 11 and
Theorem 7 we deduce 4

3
|V (G)| 6 |E(G)| 6 4

3
(|V (G)| − 2), a contradiction.

The other statements follow analogously from Lemma 11 and Theorem 8 (k ∈ {4, 5})
and Theorem 9 (k = 6).

3.2 Theorem 2

The statement for k ∈ {2, 3, 4} and the lower bound for b∗5 follow from Lemma 10. It
remains to prove the upper bounds for b∗5 and b∗6. The result for b∗5 is implied by the
following theorem.

Theorem 13. If G is a planar 5-critical graph, then F ∗(G) 6 7 + 1
2
.

Proof. Suppose to the contrary that F ∗(G) = r > 7 + 1
2
. Let Σ be an embedding of

G into the Euclidean plane such that F ∗(G) = F ((G,Σ)). Let V = V (G), E = E(G),
and F be the set of faces of (G,Σ). We proceed by a discharging argument in G and
eventually deduce a contradiction. Define the initial charge ch in G as ch(x) = dG(x)− 4
for x ∈ V ∪ F . Euler’s formula |V | − |E|+ |F | = 2 can be rewritten as:∑

x∈V ∪F

ch(x) =
∑

x∈V ∪F

(dG(x)− 4) = −8.

We define suitable discharging rules to change the initial charge function ch to the
final charge function ch∗ on V ∪ F such that

∑
x∈V ∪F

ch∗(x) > 0 for all x ∈ V ∪ F . Thus,

−8 =
∑

x∈V ∪F
ch(x) =

∑
x∈V ∪F

ch∗(x) > 0,

which is the desired contradiction.
Note that if a face f sends charge −1

3
to a vertex y, then this can also be considered

as f receives charge 1
3

from y. The discharging rules are defined as follows.

R1: Every 3+-face f sends dG(f)−4
dG(f)

to each incident vertex.
R2: Let y be a 5-vertex of G.

R2.1: If z is a 2-neighbor of y, then y sends 2
3

+ 2
d2re−3

to z.
R2.2: If z is a 3-neighbor of y, then y sends charge to z as follows:

R2.2.1: if z has a 4-neighbor, then y sends 1
3

+ 2
d3re−6

to z;

R2.2.2: if z has no 4-neighbor, then y sends 2
9

+ 4
3(d3re−6)

to z.

R2.3: If z is a 4-neighbor of y and z is adjacent to n 5-vertices (2 6 n 6 4), then y
sends 4

n(d4re−9)
to z.

R2.4: If y is adjacent to five 4+-vertices, then y sends 1
3
( 4
d5re−12

+ 2
d2re−3

) to each
5-neighbor which is adjacent to a 2-vertex.
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Claim 14. If u is a k-vertex, then u receives at least 4−k
3
− 4
drke−3k+3

in total from its
incident faces by R1. In particular, if u is incident with at most two triangles, then u
receives at least 1

3
− 4
drke−4k+6

in total from its incident faces.

Proof. Note that if a and b are integers and 2 6 a 6 b, then 1
a−1

+ 1
b+1

> 1
a

+ 1
b
. (⊗)

Let u be a k-vertex which is incident with faces f1, f2, · · · , fk. According to rule R1, u
totally receives charge S =

∑k
i=1

dG(fi)−4
dG(fi)

= k − 4
∑k

i=1
1

dG(fi)
from its incident faces. The

supposition r > 15
2

implies that not all of f1, . . . , fk are triangles. It follows by (⊗) that∑k
i=1

1
dG(fi)

reaches its maximum when all of f1, . . . , fk are triangles except one. Since∑k
i=1 dG(fi) > drke, we have S > k − 4(1

3
(k − 1) + 1

drke−3(k−1)
) = 4−k

3
− 4
drke−3k+3

. In

particular, if u is incident with at most two triangles, then we have S > k − 4(2
3

+ 1
4
(k −

3) + 1
drke−6−4(k−3)

) = 1
3
− 4
drke−4k+6

.

Claim 15. The charge that a 5-vertex sends to a 4-neighbor by R2.3 is smaller than or
equal to the charge that a 5-vertex sends to a 5-neighbor which is adjacent to a 2-vertex
by R2.4, that is, 4

n(d4re−9)
6 1

3
( 4
d5re−12

+ 2
d2re−3

).

Proof. Since 4
n(d4re−9)

6 2
d4re−9

6 2
4r−9

and 1
3
( 4

5r+1−12
+ 2

2r+1−3
) 6 1

3
( 4
d5re−12

+ 2
d2re−3

), we

only need to prove that 2
4r−9

6 1
3
( 4

5r+1−12
+ 2

2r+1−3
), which is equivalent to 2r2−15r+23 > 0

by simplification. Clearly, this inequality is true for every r > 5 + 2
5
.

It remains to check the final charge for all x ∈ V ∪ F .
Let f ∈ F , then ch∗(f) > dG(f)− 4− dG(f)dG(f)−4

dG(f)
= 0 by R1.

Let v ∈ V . If dG(v) = 2, then v receives at least 2
3
− 4
d2re−3

in total from its incident

faces by Claim 14. By Lemma 3, v has two 5-neighbors. Thus, v receives 2
3

+ 2
d2re−3

from

each of them by R2.1. So we have ch∗(v) > dG(v)− 4 + (2
3
− 4
d2re−3

) + 2(2
3

+ 2
d2re−3

) = 0.

If dG(v) = 3, then v receives at least 1
3
− 4
d3re−6

in total from its incident faces by Claim

14. By Lemmas 3 and 4, v has three 4+-neighbors, and two of them have degree 5. If v
has a 4-neighbor, then by R2.2.1, ch∗(v) > dG(v) − 4 + (1

3
− 4
d3re−6

) + 2(1
3

+ 2
d3re−6

) = 0.

Otherwise, by R2.2.2, ch∗(v) > dG(v)− 4 + (1
3
− 4
d3re−6

) + 3(2
9

+ 4
3(d3re−6)

) = 0.

If dG(v) = 4, then v receives at least − 4
d4re−9

in total from its incident faces by Claim
14. Say v has precisely n 5-neighbors. By Lemma 3, we have 2 6 n 6 4. By R2.3, each of
these 5-neighbors send 4

n(d4re−9)
to v. Therefore, ch∗(v) > dG(v)−4− 4

d4re−9
+n 4

n(d4re−9)
= 0.

If dG(v) = 5, then v receives at least −1
3
− 4
d5re−12

in total from its incident faces by
Claim 14. First assume v has a 2-neighbor, then by Lemma 5, v has four 5-neighbors
and at least three of them are adjacent to no 3−-vertex. Hence, by R2.1 and R2.4,
ch∗(v) > dG(v)− 4− (1

3
+ 4
d5re−12

)− (2
3

+ 2
d2re−3

) + 3(1
3
( 4
d5re−12

+ 2
d2re−3

)) = 0.
Next assume that v has a 3-neighbor u, then by Lemma 4, v has at least three 5-

neighbors. In this case, v sends nothing to each 5-neighbor. Let w be the remaining
neighbor of v. Then dG(w) ∈ {3, 4, 5}.

If dG(w) = 3, then uw /∈ E(G) by Lemma 3. Furthermore, Lemma 6 implies that
neither vw nor uv is contained in a triangle. It follows that v is incident with at most two
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triangles. Thus, by Claim 14, v receives a charge of at least 1
3
− 4
d5re−14

in total from its

incident faces. Moreover, both u and w have no 4−-neighbors. Suppose to the contrary
that t is a 4−-neighbor of u (analogously of w). By Lemma 3, we have dG(t) = 4. By
applying Lemma 5 to ut, we have dG(w) > 4, a contradiction. Hence, v sends 2

9
+ 4

3(d3re−6)

to each of u and w by rule R2.2.2, yielding ch∗(v) > dG(v) − 4 + (1
3
− 4
d5re−14

) − 2(2
9

+
4

3(d3re−6)
) = 8

9
− 4
d5re−14

− 8
3(d3re−6)

.

If dG(w) = 4, and if u is adjacent to w, then by Lemma 5, w has three 5-neighbors.
Hence, by R2.2 and R2.3, ch∗(v) > dG(v)− 4− (1

3
+ 4
d5re−12

)− (1
3

+ 2
d3re−6

)− 4
3(d4re−9)

=
1
3
− 2
d3re−6

− 4
3(d4re−9)

− 4
d5re−12

. If u is not adjacent to w, then for any neighbor t of u, we have

dG(t) > 4 by Lemma 3. If dG(t) = 4, then by applying Lemma 5 to ut we have dG(w) = 5, a
contradiction. Hence, dG(t) = 5. This means all neighbors of u are of degree 5. By R2.2.2,
ch∗(v) > dG(v)−4− (1

3
+ 4
d5re−12

)− (2
9

+ 4
3(d3re−6)

)− 2
d4re−9

= 4
9
− 4

3(d3re−6)
− 2
d4re−9

− 4
d5re−12

.

If dG(w) = 5, then v sends charge only to u. Hence, ch∗(v) > dG(v)−4−(1
3
+ 4
d5re−12

)−
(1

3
+ 2
d3re−6

) = 1
3
− 2
d3re−6

− 4
d5re−12

.

It remains to consider the case when v has five 4+-neighbors. In this case it follows
with Claim 15 that ch∗(v) > dG(v) − 4 − (1

3
+ 4
d5re−12

) − 5(1
3
( 4
d5re−12

+ 2
d2re−3

)) = 2
3
−

32
3(d5re−12)

− 10
3(d2re−3)

.

Since r > 7 + 1
2

it follows that ch∗(x) > 0 for all x ∈ V ∪ F .

The result for k = 6 in Theorem 2 is implied by the following theorem.

Theorem 16. If G is a planar 6-critical graph, then F ∗(G) 6 3 + 2
5
.

Proof. Suppose to the contrary that F ∗(G) > 3 + 2
5
. Let Σ be an embedding of G into

the Euclidean plane and F ∗(G) = F ((G,Σ)). We have∑
f∈F (G)

(2dG(f)− 6) = 4|E(G)| − 6|F (G)|

= 4|E(G)| − 6(|E(G)|+ 2− |V (G)|) (by Euler’s formula)

= 6|V (G)| − 2|E(G)| − 12

6 |V (G)| − 15 (by Theorem 9)

and therefore, −|V (G)|+
∑

f∈F (G)(2dG(f)− 6) 6 −15. (∗)
Define the initial charge ch(x) for each x ∈ V (G) ∪ F (G) as follows: ch(v) = −1 for

every v ∈ V (G) and ch(f) = 2dG(f) − 6 for every f ∈ F (G). It follows from inequality
(∗) that

∑
x∈V (G)∪F (G) ch(x) 6 −15.

A vertex v is called heavy if dG(v) ∈ {5, 6} and v is incident with a face of length 4 or
5. A vertex v is called light if 2 6 dG(v) 6 4 and v is incident with no 6+-face and with
at most one 4+-face. We say a light vertex v is bad-light if v has a neighbor u such that
dG(u) + dG(v) = 8, and good-light otherwise.

Discharge the elements of V (G) ∪ F (G) according to following rules.

R1: every 4+-face f sends 2dG(f)−6
dG(f)

to each incident vertex.
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R2: every heavy vertex sends 3
10

to each bad-light neighbor, and 1
10

to each good-light
neighbor.

Let ch∗(x) denote the final charge of each x ∈ V (G) ∪ F (G) after discharging. On
one hand, the sum of charge over all elements of V (G) ∪ F (G) is unchanged. Hence, we
have

∑
x∈V (G)∪F (G) ch

∗(x) 6 −15. On the other hand, we show that ch∗(x) > 0 for every

x ∈ V (G) ∪ F (G) and hence, this obvious contradiction completes the proof.
It remains to show that ch∗(x) > 0 for every x ∈ V (G) ∪ F (G).
Let f ∈ F (G). If dG(f) = 3, then no rule is applied for f . Thus, ch∗(f) = ch(f) = 0.

If dG(f) > 4, then by R1 we have ch∗(f) = ch(f)− dG(f)2dG(f)−6
dG(f)

= 0.

Let v ∈ V (G). First we consider the case when v is heavy. On one hand, since
F ((G,Σ)) > 3 + 2

5
, it follows that either v is incident with a 5+-face and another 4+-face

or v is incident with at least three 4-faces. In both cases, v receives at least 13
10

in total
from its incident faces by R1. On the other hand, we claim that v sends at most 3

10
out in

total. If v is adjacent to a bad-light vertex u, then all other neighbors of v have degree at
least 5 by Lemma 5. Hence, v sends 3

10
to u by R2 and nothing else to its other neighbors.

If v is adjacent to no bad-light vertex, then v has at most three good-light neighbors by
Lemma 4. Hence, v sends 1

10
to each good-light neighbor by R2 and nothing else to its

other neighbors. Therefore, ch∗(v) > ch(v) + 13
10
− 3

10
= 0.

Second we consider the case when v is not heavy. In this case, v sends no charge out.
If v is incident with a 6+-face, then v receives at least 1 from this 6+-face by R1. This
gives ch∗(v) = ch(v) + 1 = 0. If v is incident with at least two 4+-faces, then v receives at
least 1

2
from each of them by R1. This gives ch∗(v) = ch(v) + 1

2
+ 1

2
= 0. We are done in

both cases above. Hence, we may assume that v is incident with no 6+-face and with at
most one 4+-face. From F ((G,Σ)) > 3 + 2

5
it follows that v is incident to a face fv such

that dG(fv) ∈ {4, 5}. Since v is not heavy, 2 6 d(v) 6 4. Hence, v is light by definition.
We distinguish two cases by the length of fv.

If dG(fv) = 4, then by the fact that F ∗(G) > 3 + 2
5
, we have dG(v) = 2. By Lemma 3,

both neighbors of v are heavy and v is bad-light. Thus, v receives 1
2

from fv by R1 and
3
10

from each neighbor by R2, yielding ch∗(v) = ch(v) + 1
2

+ 3
10

+ 3
10
> 0.

If dG(fv) = 5, then v receives 4
5

from fv. If v is not a bad-light 4-vertex, then Lemma
3 implies that each neighbor of v has degree 5 or 6. Hence, both of the two neighbors
of v contained in fv are heavy. By R2, each of them sends charge at least 1

10
to v, and

therefore, ch∗(v) > ch(v) + 4
5

+ 1
10

+ 1
10

= 0. If v is a bad-light 4-vertex, then Lemma 4
implies that at least one of the two neighbors of v contained in fv is heavy. Thus, this
heavy neighbor sends charge 3

10
to v, and therefore, ch∗(v) > ch(v) + 4

5
+ 3

10
> 0.

4 Concluding remarks

Recently, Cranston and Rabern [2] improved Jakobsen’s result (Theorem 7) on the lower
bound on the number of edges in a 3-critical graph. They gave a computer-aided proof
of the following statement.

Theorem 17 ([2]). Every 3-critical graph G, other than the Petersen graph with a vertex
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deleted, has |E(G)| > 50
37
|V (G)|.

Hence, |E(G)| > 50
37
|V (G)| for every planar 3-critical graph. By a similar argument as

in the proof of Proposition 12, this result improves the bound of b3 from 6 6 b3 < 8 to
6 6 b3 <

100
13
. However, the precise values of these parameters are unclear.

Problem 18. What are the precise values of bk and b∗k?

By Proposition 12, F (G) has an upper bound for every critical planar graph G. How-
ever, this is not always true for class 2 planar graphs. Similarly, Theorems 13 and 16 can
not be generalized to class 2 planar graphs.
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[3] S. Grünewald. Chromatic Index Critical Graphs and Multigraphs, Dissertation,
Fakultät für Mathematik, Universität Bielefeld, 2000.

[4] I. T. Jakobsen. On critical graphs with chromatic index 4, Discrete Math. 9:265–276,
1974.

[5] R. Luo, L. Miao, and Y. Zhao. The size of edge chromatic critical graphs with
maximum degree 6, J. Graph Theory 60:149–171, 2009.

[6] D. P. Sanders and Y. Zhao. Planar graphs of maximum degree seven are class 1, J.
Combin. Theory Ser. B 83:201–212, 2001.

[7] M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt. Edge Graph Coloring: Vizing’s
Theorem and Goldberg’s Conjecture, John Wiley & Sons, Inc., Hoboken, NJ, 2012.

[8] V. G. Vizing. On an estimate of the chromatic index of a p-graph, Metody Diskret.
Analiz 3:25–30, 1964. (in Russian, an English translation can be found in [7])

[9] V. G. Vizing. Critical graphs with given chromatic index, Metody Diskret. Analiz
5:9–17, 1965. (in Russian, an English translation can be found in [7])

[10] W. Wang and Y. Chen. A sufficient condition for a planar graph to be class 1,
Theoret. Comput. Sci. 385:71–77, 2007.

[11] Y. Wang and L. Xu. A sufficent condition for a plane graph with maximum degree
6 to be class 1, Discrete Applied Math. 161:307–310, 2013.

[12] D. R. Woodall. The average degree of an edge-chromatic critical graph, Discrete
Math. 308:803–819, 2008.

[13] L. Zhang. Every graph with maximum degree 7 is of class 1, Graphs Combin.
16:467–495, 2000.

[14] G. Zhou. A note on graphs of class 1, Discrete Math. 263:339–345, 2003.

the electronic journal of combinatorics 23(3) (2016), #P3.21 11

http://arxiv.org/abs/1506.04225

	Introduction
	Preliminaries
	Proofs
	Theorem 1
	Theorem 2

	Concluding remarks

