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Abstract

We show that Jn, the Stanley-Reisner ideal of the n-cycle, has a free resolution
supported on the (n−3)-dimensional simplicial associahedron An. This resolution is
not minimal for n > 6; in this case the Betti numbers of Jn are strictly smaller than
the f -vector of An. We show that in fact the Betti numbers βd of Jn are in bijection
with the number of standard Young tableaux of shape (d + 1, 2, 1n−d−3). This
complements the fact that the number of (d− 1)-dimensional faces of An are given
by the number of standard Young tableaux of (super)shape (d+ 1, d+ 1, 1n−d−3); a
bijective proof of this result was first provided by Stanley. An application of discrete
Morse theory yields a cellular resolution of Jn that we show is minimal at the first
syzygy. We furthermore exhibit a simple involution on the set of associahedron
tableaux with fixed points given by the Betti tableaux, suggesting a Morse matching
and in particular a poset structure on these objects.

1 Introduction

In this paper we study some intriguing connections between basic objects from commu-
tative algebra and combinatorics. For K an arbitrary field we let R = K[x1, x2, . . . , xn]
denote the polynomial ring in n variables. We let Jn denote the edge ideal of the comple-
ment of the n-cycle Cn. By definition, Jn is the ideal generated by the degree 2 monomials
corresponding to the diagonals of Cn. One can also realize Jn as the Stanley-Reisner ideal
of the cycle Cn (now thought of as a one-dimensional simplicial complex).

The ideals Jn are of course very simple algebraic objects and their homological prop-
erties are well-understood. One can verify that R/Jn is a Gorenstein ring, the dimension
of R/Jn is 2, and (hence) the projective dimension of R/Jn is n − 2. In fact a minimal
free resolution can be described explicitly, and cellular realizations have been provided by
Biermann [3] and more recently by Sturgeon [20].
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Figure 1: J6 = 〈x1x3, x1x4, x1x5, x2x4, x2x5, x2x6, x3x5, x3x6, x4x6〉.

We wish to further investigate the combinatorics involved in the resolutions of Jn.
Our original interest in cellular resolutions of Jn came from the fact that the ideal Jn
has an ‘almost linear’ resolution, in the sense that the nonzero entries in the differentials
of its minimal resolution are linear forms from R, except at the last syzygy where the
nonzero entries are all degree 2. Recent work in combinatorial commutative algebra has
seen considerable interest in cellular resolutions of monomial and binomial ideals (see for
example [2], [4], [8], [9], [12], [13], [15], [17]), but in almost all cases the ideals under
consideration have linear resolutions. Here we seek to extend some of these constructions.

In the construction of any cellular resolution, one must construct a CW -complex with
faces labeled by monomials that generate the ideal. In the case of Jn there is a well
known geometric object whose vertices are labeled by the diagonals of an n-gon, namely
the (simplicial) associahedron An. By definition, An is the simplicial complex with vertex
set given by diagonals of an n-gon, with faces given by collections of diagonals that are
non-crossing. The facets of An are triangulations of the n-gon, of which there are a
Catalan number many. It is well known that An is spherical, and in fact can be realized
as the boundary of a convex polytope. In addition there is a natural way to associate a
monomial to each face of An, and in the first part of the paper we show that this labeled
facial structure of An (considered as a polytope with a single interior cell) encodes the
syzygies of Jn.

Theorem 3. With its natural monomial labeling, the complex An supports a free resolution
of the ideal Jn.

The resolution of Jn supported on the associahedron An is not minimal for n > 5,
and in particular in this case we have faces F ( G with the same monomial labeling.
The f -vector of An is completely understood (a closed form can be written down), and
in fact the number of (d− 1)-dimensional faces of An is equal to the number of standard
Young tableaux of shape (d+ 1, d+ 1, 1n−d−3); a bijective proof of this was first provided
by Stanley [19].

Since a resolution of Jn is supported on An we know that the f -vector of An provides
an upper bound on the Betti numbers βd(R/Jn), with equality in the case of β1(R/Jn) =
f0(An). In the second part of the paper we show that the Betti numbers βd of R/Jn
are given by standard Young tableaux on a set of subpartitions involved in the Stanley
bijection.
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Theorem 6. The total Betti numbers βd of the module R/Jn are given by the number of
standard Young tableaux of shape (d+ 1, 2, 1n−d−3).

This bijection along with an application of the hook formula leads to a closed form
expression for the Betti numbers of R/Jn. In addition, the fact that the partition (d +
1, 2, 1n−d−3) is conjugate to (n−d−1, 2, 1d+1) provides a nice combinatorial interpretation
of the palindromic property βd = βn−d−2 for the Betti numbers of the Gorenstein ring
R/Jn.

The fact that we can (in theory) identify the Betti numbers of R/Jn with certain faces
of An suggests that it may be possible to collapse away faces of An to obtain a minimal
resolution of Jn, employing an algebraic version of Morse theory due to Batzies and Welker
([1]). Indeed certain geometric properties of any subdivision of an n-gon (along with the
almost linearity of Jn) imply that certain faces must be matched away. For d = 2 we
are able to write down a Morse matching involving the edges and 2-faces of An such that
the number of unmatched (critical) cells is precisely β2 (corresponding to the first syzygy
module of R/Jn), see Proposition 12. This leads to minimal resolutions of Jn for the cases
n 6 7.

In addition, our identification of both the Betti numbers of R/Jn and the faces of
An with standard Young tableaux leads us to consider a partial matching on the set
of associahedron tableaux such that the unmatched elements correspond to the Betti
numbers. The hope would be to import a poset structure from the face poset of An to
extend this matching to a Morse matching. The trouble with this last step is that the
Stanley bijection does not give us an explicit labeling of the faces of An by standard
Young tableaux; there are choices involved and the bijection itself is recursively defined.
However, we can define a very simple partial matching on the set of standard Young
tableaux of shape (d + 1, d + 1, 1n−d−3) such that the unmatched elements can naturally
be thought of as standard Young tableaux of shape (d + 1, 2, 1n−d−3) (by deleting the
largest entries); see Proposition 16. This suggests a poset structure on the set of standard
Young tableax that extends this covering relation.

The rest of the paper is organized as follows. We begin in Section 2 with some
basics regarding the commutative algebra involved in our study. In Section 3 we discuss
associahedra and their role in resolutions of Jn. We turn to standard Young tableaux in
Section 4 and here establish our results regarding the Betti numbers of R/Jn. In Section
5 we discuss our applications of discrete Morse theory and related matchings of stand
Young tableaux. We end with some open questions.

2 Some commutative algebra

As above we let Jn denote the Stanley-Reisner ideal of the n-cycle, by definition the ideal
in R = K[x1, x2, . . . , xn] generated by degree 2 monomials corresponding to the diagonals.
We are interested in combinatorial interpretations of certain homological invariants of Jn,
and in particular the combinatorial structure of its minimal free resolution. Recall that a
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free resolution of an R-module M is an exact sequence of R-modules

0←M ← F1 ← F2 ← · · · ← Fp ← 0,

where each Fd ' ⊕jR(−j)βd,j is free and the differential maps are graded. The resolution
is minimal if each of the βd,j are minimum among all resolutions, in which case the βd,j
are called the (graded) Betti numbers of M . Also in this case the number p (length of
the minimal resolution) is called the projective dimension of M .

Our main tool in calculating Betti numbers will be Hochster’s formula (see for example
[14]), which gives a formula for the Betti numbers of the Stanley-Reisner ring R/I∆

associated to a simplicial complex ∆.

Theorem 1 (Hochster’s formula). For a simplicial complex ∆ on vertex set [n] we let
R/I∆ denote its Stanley-Reisner ring. Then for d > 1 the Betti numbers βd,j of R/I∆ are
given by

βd,j(∆) =
∑

W∈([n]
j )

dimk H̃j−d−1(∆[W ]; k). (1)

Here ∆[W ] denotes the simplicial complex induced on the vertex set W .

A cellular resolution of M is a CW-complex X with a monomial labeling of its faces,
such that the algebraic chain complex computing the cellular homology of X ‘supports’
a resolution of M . We refer to Section 3 for details and more precise definitions.

We next collect some easy observations regarding the Betti numbers of Jn. Since Jn
is the Stanley-Reisner ideal of a triangulated 1-dimensional sphere, we see that R/Jn is
Gorenstein and has (Krull) dimension 2. The Auslander-Buchsbaum formula then implies
that the projective dimension of R/Jn is n−2, which says that βd,j = 0 whenever d > n−2.
An easy application of Hochster’s formula also implies that a minimal resolution of Jn is
linear until the last nonzero term, by which we mean if 0 6 d < n − 2, then βd,j = 0 for
all j 6= d+ 1. Also, we have βn−2,n = 1 and βn−2,j = 0 for j 6= n. In this sense the ideals
Jn have an ‘almost linear’ resolution, as mentioned in the introduction.

Convention: Since for any d we have βd,j 6= 0 for at most one value of j, we we will
(without loss of generality) sometimes drop the j and use βd = βd,j to denote the Betti
numbers of Jn.

3 Associahedra

For each n, we let An denote the (dual) associahedron, the (n− 4)-dimensional simplicial
complex whose vertices are given by diagonals of a labeled regular n-gon, with facets
given by triangulations (collections of diagonals that do not intersect in their interior).
It is well known that An is homeomorphic to a sphere and in fact is polytopal, and
several embeddings (most often of the dual simple polytope) are described throughout
the literature (see [6] for a good account of the history). From here on we will use An to
denote the (n− 3)-dimensional simplicial polytope (i.e., including the interior).
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We wish to describe a monomial labeling of the faces of An. Recall that each vertex of
An corresponds to some diagonal {i, j} of an n-gon, so we simply label that vertex with
the monomial xixj. We label the higher-dimensional faces of An with the least common
multiple of the vertices contained in that face. We wish to show that, with this simple
labeling, the associahedron An supports a resolution of Jn.

x1x3

x1x4

x2x4

x4x6

x2x5

x1x5

x2x6

x3x6

x3x5

x1x2x4x5
x1x3x51 2

3

45

6

Figure 2: The complex A6 with its monomial labeling (partially indicated).

Let us first clarify our terms. To simplify notation we will associate to any monomial
xi11 x

i2
2 · · ·xinn ∈ R the vector (i1, i2, . . . , in) ∈ Nn and will freely move between notations.

We define a labeled polyhedral complex to be a polyhedral complex X together with an
assignment aF ∈ Nn to each face F ∈ X such that for all i = 1, 2, . . . , n we have

(aF )i = max{(aG)i : G ⊂ F}.

If X is a labeled polyhedral complex we can consider the idealM = MX ⊂ K[x1, x2, . . . , xn]
generated by the monomials corresponding to its vertices (as usual we identify an element
α ∈ Nn as the exponent vector of a monomial). The topological space underlying X
(with a chosen orientation) has an associated chain complex FX of k-vector spaces that
computes cellular homology. Since X has monomial labels on each of its cells, we can
homogenize the differentials with respect to this basis and in this way FX becomes a
complex of free modules over the polynomial ring R = K[x1, x2, . . . , xn]. We say that the
polyhedral complex X supports a resolution of the ideal M if FX is in fact a graded free
resolution of M . For more details and examples of cellular resolutions we refer to [14].

For any σ ∈ Nn we let X6σ denote the subcomplex of X consisting of faces F for which
aF 6 σ componentwise. We then have the following criteria, also from [14].
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Lemma 2. Let X be a labeled polyhedral complex and let M = MX ⊂ K[x1, . . . , xn]
denote the associated monomial ideal generated by the vertices. Then X supports a cellular
resolution of M if and only if the complex X6σ is K-acyclic (or empty) for all σ ∈ Nn.
Futhermore, the resolution is minimal if and only if aF 6= aG for any pair of faces F ( G.

With this criteria in place we can establish the following.

Theorem 3. For each n > 4 the associahedron An, with the monomial labeling described
above, supports a cellular resolution of the edge ideal Jn.

Proof. Let An denote the n-dimensional simplicial associahedron with this monomial la-
beling. By construction, the vertices of An correspond to the generators of Jn. To show
that An supports a resolution of Jn, according to Lemma 2 it is enough to show that for
any σ ∈ Nn we have that the subcomplex (An)6σ is K-acyclic.

Let σ ∈ Nn and let (An)6σ denote the subcomplex of An consisting of all faces with a
monomial labeling that divides σ (as usual, thinking of σ as the exponent vector of the
monomial xσ11 x

σ2
2 · · ·xσnn ). In particular, a face F ∈ An is an element of (An)6σ if and

only if for every diagonal xixj ∈ F we have σi > 0 and σj > 0. We claim that (An)6σ is
contractible (and hence K-acyclic).

Note that since Jn is squarefree we may assume σ has 0/1 entries, and hence we can
identify σ with a subset of [n]. Also, if σi = 1 for all i (so that σ = [n]) then we have
(An)6σ = An, which is a convex polytope and hence contractible. If σ has fewer than 2
nonzero entries then (An)6σ is empty. Without loss of generality, we may then assume
that σ1 = 1 and σn = 0. Let j be the largest integer such that j > 2 and σj = 1.

Now, since j < n and {1, j} ⊂ σ we see that the diagonal (1, j) is a vertex of the
simplicial complex (An)6σ. In fact, (1, j) is an element of every facet of (An)6σ since no
other diagonal picked up by the elements of σ intersects (1, j). We conclude that (An)6σ
is a cone and hence contractible.

For n = 5 one can check that this resolution is in fact minimal, but for n > 6 this is
no longer the case. In particular for n > 6 we have faces F ( G in An with the same
monomial label.

4 Standard Young Tableaux

It turns out that the number of i-dimensional faces of the associahedron An (the entries
of the face vector of An) are given by the number of standard Young tableau (SYT) of
certain shapes. Recall that if λ = (λ1, λ2, . . . , λk) is a partition of n, a standard Young
tableaux of shape λ is a filling of the Young diagram of λ with distinct entries {1, 2, . . . , n}
such that rows and columns are increasing (see Example 5).

For 0 6 d 6 n−3, we let f(n, d) denote the number of ways to choose d diagonals in a
convex n-gon such that no two diagonals intersect in their interior. We see that f(n, d) is
precisely the number of (d− 1)-dimensional faces of the polytope An. A result attributed
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to Cayley (according to [19]) asserts that

f(n, d) =
1

n+ d

(
n+ d

d+ 1

)(
n− 3

d

)
. (2)

Using the hook length formula one can see that this number is also the number of
standard Young tableaux of shape

(d+ 1, d+ 1, 1n−d−3),

where as usual
1n−d−3 = 1, . . . , 1︸ ︷︷ ︸

(n−d−3)-times

denotes a sequence of n − d − 3 entries with value 1. This fact was apparently first
observed by O’Hara and Zelevinsky (unpublished), and a simple bijection was given by
Stanley [19].

Example 4. If we take d = n− 3 we obtain

f(n, n− 3) =
1

2n− 3

(
2n− 3

n− 2

)(
n− 3

n− 3

)
=

1

(n− 2) + 1

(
2(n− 2)

n− 2

)
,

the (n− 2)nd Catalan number.

Example 5. If n = 5 and d = 1 the f(5, 1) = 1
6

(
6
2

)(
2
1

)
= 5 standard Young tableaux of

shape λ = (2, 2, 1) are given by

1 2
3 4
5

1 2
3 5
4

1 3
2 4
5

1 3
2 5
4

1 4
2 5
3

These correspond to the 5 diagonals of a 5-gon.

It turns out the Betti numbers of the rings R/Jn are also counted by the number
of standard Young tableaux of certain related (sub)shapes. To establish this result we
will employ Hochster’s formula (Theorem 1 from above). Recall that the ring R/Jn can
be recovered as the Stanley-Reisner ring of the n-cycle, thought of as a 1-dimensional
simplicial complex. Note that when |W | < n the only nonzero contribution to Equation
(1) comes from 0-dimensional reduced homology, i.e. the number of connected components
of the induced complex on W (minus one).

For n > 4, let βnd,j denote the Betti numbers of the ring R/Jn. Equation (1) implies
that for d > 1 we have βnd,j = 0 unless d = n − 2 and j = n, or 1 6 d < n − 2 and

j = d + 1. Another application of Equation (1) gives βn1,2 =
(
n
2

)
− n and βnn−2,n = 1. For

the remaining cases we have the following result.
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Theorem 6. For all n > 5 and 1 6 d 6 n− 3 the Betti numbers of R/Jn are given by

βnd = βnd,d+1 = the number of standard Young tableau of shape (d+ 1, 2, 1n−d−3). (3)

Proof. We will establish the equality in Equation (3) by showing that for n > 6 and
1 < d < n− 4 both sides of the equation satisfy the recursion

F (n, d) = F (n− 1, d− 1) + F (n− 1, d) +

(
n− 2

d+ 1

)
. (4)

For the Betti numbers (the left hand side), we use Hochster’s formula. For each d, the
computation of βnd,d+1 via Equation (1) involves subcomplexes given by subsets W of [n]
of size d + 1. First suppose we have chosen W ⊂ [n] with n ∈ W . Then we recover the
contribution to Equation (1) from the homology of induced subsets of size d in the cycle
on the vertices [n − 1], namely βn−1

d−1,d. However, if 1 and n − 1 are both not in W then

we get an additional contribution given by the isolated point n. There are
(
n−3
d

)
such

instances.
Next suppose n /∈ W . Then again we recover contribution from the homology of

induced subsets of size d+ 1 in the cycle [n− 1]; this quantity is given by βn−1
d,d+1. In this

case we have an additional contribution coming from the subsets W including both 1 and
n− 1, since as subsets of the n-cycle these will be disconnected. There are

(
n−3
d−1

)
of these.

Putting this together, we have

βnd,d+1 = βn−1
d−1,d + βn−1

d,d+1 +

(
n− 3

d

)
+

(
n− 3

d− 1

)
= βn−1

d−1,d + βn−1
d,d+1 +

(
n− 2

d

)
,

recovering Equation (4).
We next consider the right hand side of Equation (3), namely the number of standard

Young tableaux of shape (d+ 1, 2, 1n−d−3). Recall that the fillings involve picking entries
one each from the set {1, 2, . . . , n}. If n is an entry in the first row (necessarily in the last
column) then we recover all such fillings from standard Young tableaux of shape

(d, 2, 1n−d−3) = ((d− 1) + 1, 2, 1(n−1)−(d−1)−3).

If n is the (only) entry in the last row, then we recover all such fillings from standard
Young tableaux of shape (d + 1, 2, 1n−d−4) = (d + 1, 2, 1(n−1)−d−3). With these counts
we miss the standard tableaux with n as the entry in the second row (necessarily in the
second column). In this case we must have 1 as the entry in the first row, first column,
but are free to choose any increasing sequence of length d to fill the remaining entries
of the first row (with the rest of the entries determined). There are

(
n−2
d

)
such choices.

Adding these three counts gives us the desired recursion from Equation (4).
We next check the initial conditions. For n = 5 Hochster’s formula again gives us

β5
1,2 = β5

2,3 = 5. One can check (see Example 5) that there are precisely 5 standard Young
tableau of shape (2, 2, 1) and of its conjugate shape (3, 2).

For arbitrary n and d = 1 we have βn1,2 =
(
n
2

)
− n, given by the number of generators

of Jn. On the other hand, in a standard Young tableau of shape (2, 2, 1n−4) we can have
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any pair (i, j) with i < j occupy the second row except (1, 2), (1, 3), . . . , (1, n), or (2, 3).
Hence the number of such fillings is also given by

(
n
2

)
− n.

Similarly, for arbitrary n and d = n − 3, Hochster’s formula implies that the Betti
numbers βnn−3,n−2 are given by all choices of n− 2 vertices of the n-gon corresponding to
complements of diagonals (since these remaining pair of vertices with be disconnected).
Hence again βnn−3,n−2 =

(
n
2

)
− n (this also follows from the fact that the ring R/Jn is

Gorenstein and therefore has a palindromic sequence of Betti numbers). In terms of
tableaux, we see that the shape (n − 2, 2) is conjugate to (2, 2, 1n−4) and hence both
shapes have the same number of fillings.

Remark 7. An application of the hook length formula gives an explicit value for the Betti
numbers of R/Jn:

βnd,d+1 =

(
n

d+ 1

)
d(n− d− 2)

n− 1
(5)

After a version this paper was posted on the ArXiv it was pointed out to the author
that this formula had previously been established in [5], with a combinatorial proof given
in [7].

Remark 8. As we have seen, the rings R/Jn are Gorenstein and hence the Betti numbers
of R/Jn are palindromic in the sense that

βnd = βnn−d−2.

The realization of the Betti numbers of R/Jn in terms of standard Young tableaux
(Theorem 6) provides a nice combinatorial interpretation of this property. The parti-
tion (d + 1, 2, 1n−d−3) is conjugate to the partition ((n − d − 2) + 1, 2, 1n−(n−d−2)−3) =
(n− d− 1, 2, 1d−1) and hence they have the same number of fillings.

Example 9. For n = 6 the resolution of R/J6 can be represented as

0 ← R ← ← ← ← R ← 0.

In each homological degree we have a basis for the free module given by all standard
Young tableaux of the indicated shape. Note that (2, 2, 1, 1) is conjugate to (4, 2).

5 Discrete Morse theory and matchings

As we have seen, the associahedron An (with the monomial labeling described above)
supports a resolution of the ideal Jn. We have also seen that the resolution is not minimal,
and in particular the labeling of An produces distinct faces F ( G with the same monomial
labeling. In fact as n increases the resolution becomes further and further from minimal
in the sense that the number of facets of An (a Catalan number, on the order of 4n

n3/2 )
dominates the dimension of the second highest syzygy module of R/Jn (which is on the
order of n2).
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Example 10. Face numbers versus Betti numbers for n = 6, 7, 8, 9 are indicated below.
Here f(n, j) refers to the number of j-dimensional faces in the Associahedron An.

d=0 1 2 3 4
β6
d 1 9 16 9 1

f(6, d− 1) 1 9 21 14 1

d=0 1 2 3 4 5
β7
d 1 14 35 35 14 1

f(7, d− 1) 1 14 56 84 42 1

d=0 1 2 3 4 5 6
β8
d 1 20 64 90 64 20 1

f(8, d− 1) 1 20 120 300 330 132 1

d=0 1 2 3 4 5 6 7
β9
d 1 27 105 189 189 105 27 1

f(9, d− 1) 1 27 225 825 1485 1287 429 1

5.1 Morse matchings and first syzygies

Batzies and Welker and others (see [1] and [18]) have developed a theory of algebraic
Morse theory that allows one to match faces of a labeled complex in order to produce
resolutions that become closer to minimal. In the usual combinatorial description of this
theory, one must match elements in the face poset of the labeled complex that have the
same monomial labeling. The matching must also satisfy a certain acyclic condition,
described below. We refer to [1] for further details.

A closer analysis of our monomial labeling of An reveals certain faces that must be
matched away in any minimal resolution, in the sense that the associated monomial has
the wrong degree. In particular, since we know that R/Jn has an ‘almost’ linear resolution
(as described above) it must be the case that in any minimal cellular resolution X , each
j-dimensional face of X is labeled by a monomial of degree j + 2 (for j < n − 3). Our
labeling of An has the property that the monomial m associated to a face F is given
by the product of the variables involved in the choice of diagonals, and in particular
a ‘properly’ labeled j-dimensional face corresponds to a subdivision of Cn with j + 1
diagonals involving precisely j + 2 vertices. This motivates the following.

Definition 11. Suppose S is a subdivision of the n-gon Cn, by which we mean a collection
of d non-crossing diagonals. We will say that S is proper if the set of endpoints of the
diagonals has exactly d+ 1 elements (as vertices of Cn). We will say that S is superproper
if uses more than d+ 1 vertices and subproper if it uses less.

In fact we can explicitly describe a (partial) Morse matching on the monomial-labeled
face poset of An that is ‘perfect’ for rank d = 2. A superproper subdivision of an n-cycle
with d = 2 is simply a pair of disjoint diagonals, say E = {ij, k`} with i < j, k < `, and
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Figure 3: For n = 6, the three superproper subdivisions with d = 2 and the two subproper
subdivisions with d = 3. All other subdivisions of the 6-gon are proper.

i < k. In the face poset of An we match this 2-face with the 3-face F , where

F =

{
{ij, k`, j`} if j < k
{ij, k`, i`} otherwise.

A subproper subdivision with d = 3 is an inscribed triangle, say with diagonals
{ij, ik, jk}, i < j < k. We match this face with the (proper) 1-face {ij, jk}. Recall
that the Hasse diagram of the face poset of An is a graph with vertices given by all faces
of An, and with edges given by all cover relations X ≺ Y . It is easy to that our association
is a matching of the Hasse diagram of the face poset of An, and it is clearly ‘algebraic’ in
the sense that matched faces have the same monomial labeling.

As is typical we think of the Hasse diagram as a directed graph with the orientation
on a matched edge pointing up (increasing dimension), and with all unmatched edges
pointing down. The collection of faces not involved in the matching are called the ‘critical
cells’, they form a subposet of the original poset. The main theorem of (algebraic) discrete
Morse theory [1] says that if we have an acyclic (algebraic) matching on the Hasse diagram
of a cellular resolution, then the critical cells form a monomial-labeled CW-complex that
also supports a cellular resolution. In this way one can obtains a resolution that is closer
to being minimal. In our case we have the following result.

Proposition 12. For all n > 6, the matching on the monomial labeled face poset of An
described above is acyclic. Furthermore, the number of unmatched (critical) edges is given
by βn2 .

Proof. We first make the simple observation that if F is any 2-face of An corresponding
to a subproper subdivision (in other words an inscribed triangle), there for any 1-face E
with E ≺ F we must have that E is a path of length 2 (a proper subdivision with d = 2).
Similarly, if E is a path of length 2 and E ≺ F is an upward oriented edge then it must
be the case that F is an inscribed triangle with the same vertex set as E. This implies
that there cannot be any cycles in the oriented face poset involving proper subdivisions
with d = 2 (paths of length 2).

Next suppose E ≺ F is an upward oriented edge in the face poset of An where E
consists of two disjoint diagonals (a superproper subdivision with d = 2). Then according
to our matching it must be the case that F is a path of length 3. To form a cycle in
the face poset there must be some downward edge from F to E ′ with E ′ ≺ F . But then
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according to our matching it must be the case that E ′ is a path of length 2. Hence our
observation from the previous paragraph implies that no cycles exist. We conclude that
the matching is acyclic.

We next count the unmatched edges. First observe that the number of proper sub-
divisions of an n-gon with 2 diagonals is given by n(n−3)(n−4)

2
. To see this, note that the

diagonals involved in such a subdivision must form a path of length 3. Once we desig-
nate the middle vertex in this path (of which there are n choices) we have

(
n−3

2

)
choices

for the remaining two vertices. Next we claim that the the number of subproper subdi-
visions of an n-gon with d = 3 diagonals (necessarily forming an inscribed triangle) is

given by n(n−4)(n−5)
6

. To see this, we first count inscribed triangles with ordered vertex set
(v1, v2, v3). We are free to choose the first vertex v1 from among the n nodes of the cycle.
For the second vertex we have two cases. If we choose v2 from among the two vertices
that are distance 2 from v1, we are left with (n− 5) choices for v3. If we choose v2 from
among the vertices more than distance 2 from v1 (of which there are n − 5 choices), we
are then left with n− 6 choices for v3. In total there are

n(2(n− 5) + (n− 5)(n− 6)) = n(n− 4)(n− 5)

inscribed triangles with the ordered vertex set. Dividing out by 6 to forget the ordering
gives us the desired count. As described above, we match each of the d = 2 superproper
subdivisions with a d = 3 proper subdivision, and we match each of the d = 3 subproper
subdivisions with a d = 2 proper subdivision. Hence after matching the number of critical
edges is given by

n(n− 3)(n− 4)

2
− n(n− 4)(n− 5)

6
=

(
n

3

)
2(n− 4)

n− 1
,

which is precisely βn2 (see Remark 7). This completes the proof.

Hence our simple matching leaves precisely the number of critical 1-cells that we
require. The rank of the first free module in the resulting cellular resolution will be equal
to the rank of the first syzygy module of R/Jn.

Example 13. For n = 6 this matching in fact leads to a minimal resolution of J6. In
this case we have three superproper subdivisions with d = 2 (namely {13, 46}, {15, 24},
and {26, 35}), and two subproper subdivisions with d = 3 (namely {13, 15, 35} and
{24, 26, 46}).

We remark that the procedure described above can be extended to the case n = 7.
We leave the details to the reader but point out that in this case we have:

• 14 superproper subdivisions with d = 2 (pairs of disjoint diagonals), corresponding
to 14 edges of A7 that we match with 2-faces,

• 7 subproper subdivisions with d = 3 (inscribed triangles in a 7-gon), corresponding
to seven 2-faces that each get matched with an edge,
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x1x3

x1x4

x2x4

x4x6

x2x5

x1x5

x2x6

x3x6

x3x5

Figure 4: The monomial labeled A6 with five pairs of faces matched (the shaded faces
are the improper subdivisions). The resulting complex on the right supports a minimal
resolution of J6.

• 14 superproper subdivisions with d = 3 (forests consisting of three edges and two
components), corresponding to seven 2-faces that get matched to a 3-face,

• 14 subproper subdivisions with d = 4 (inscribed triangles with a pendant edge),
corresponding to fourteen 3-faces that get matched down to a 2-face.

The resulting CW-complex has 56−14−7 = 35 edges, 84−14−7−14−14 = 35 two-
dimensional faces, and 42 − 28 = 14 three-dimensional faces, as desired. Unfortunately
we do not know how to extend this matching procedure in general; see the next Section
for some comments regarding this.

5.2 An involution of the associahedron tableaux

Recall that the faces of the associahedron An are counted by standard Young tableaux of
certain shapes, while the Betti numbers of Jn are counted by standard Young tableaux of
certain subshapes. Again motivated by discrete Morse theory this leads to ask whether
we can find a matching on the set of associahedron tableaux such that the unmatched
elements correspond to the Betti numbers of Jn. This matching should have the property
that two matched tableaux differ in cardinality by one. Let us emphasize that since we
do not have a poset structure on these elements we are not at this pointing searching for
a M orse matching. Let us first fix some notation.

Definition 14. For fixed n > 4 and 1 6 d 6 n − 3, we call the collection of standard
Young tableaux of shape (d+1, d+1, 1n−d−3) the associahedron tableaux (denoted by An),
and the standard Young tableaux of shape (d+ 1, 2, 1n−d−3) the syzygy tableaux (denoted
by Sn). Let A =

⋃
An and S =

⋃
Sn.
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Note that an element of An has n + d − 1 boxes, whereas an element of Sn has n
boxes. If X ∈ An is an associahedron tableux with largest entries in the second row in
the positions (∗, ∗, n+ 1, n+ 2, . . . , n+ d− 1) then it naturally becomes a syzygy tableau
by just removing those boxes. In particular we say that these particular associahedron
tableau restrict to syzygy tableaux, and in this way we have a natural inclusion Sn ⊂ An.

Example 15. The associahedron tableau on the left restricts to a syzygy tableau, whereas
the associahedron tableau on the right does not. Here n = 7 and d = 3.

∗ ∗ ∗ ∗
∗ ∗ 8 9
∗ →

∗ ∗ ∗ ∗
∗ ∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗ 8
9

We next describe an involution on the set A such that the fixed elements are precisely
the elements that restrict to S. If X is a standard young tableau we use |X| to denote
the number of boxes in the underlying partition.

Proposition 16. There exists an involution σ on the set A such that the fixed point set
of σ is precisely the set of tableaux in A that restrict to S. Furthermore, if X ∈ A such
that σ(X) 6= X, we have |σ(X)| = |X| ± 1.

Proof. Suppose X ∈ An is an associahedron tableau. If X restricts to a syzygy tableau
we set σ(X) = X. Otherwise some element of {n + 1, n + 2, . . . , n + d− 1} is not in the
second row of X; let i be the largest element with this property. Then i must be the last
element of the first row, or else the bottom element in the first column.

In the latter case (i is the bottom most element of first column) we bring that element
i to the first row, and add the element n + d to the end of the second row. This defines
σ(X). In the former case (i is the last element of the first row) we obtain σ(X) by bringing
that element down to the bottom of the first column and deleting the last element of the
second row (which must be n+ d− 1). It is clear that σ(σ(X)) = X.

Example 17. An example of the involution matching an associahedron tableau of shape
(3, 3, 1, 1) with one of shape (4, 4, 1) is given by the following.

∗ ∗ ∗
∗ ∗ ∗
∗
8 ↔

∗ ∗ ∗ 8
∗ ∗ ∗ 9
∗

6 Further questions

We end with a number of questions that arise from our study. As we have seen in
Section 4, the number f(n, d) of dissections of an n-gon using d (non-crossing) diagonals
is well understood, and is given by the number of standard Young tableaux of shape
(d+ 1, d+ 1, 1n−d−3). In the context of enumerating the Betti numbers of the ideal Jn we
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were interested in subdivisions that involved a fixed number of vertices. Define f(n, d, j)
to be the number of ways to choose d non-crossing diagonals in a convex n-gon such that
the set of endpoints consists of precisely j vertices of the n-gon.

Question 18. Is there a nice formula for f(n, d, j)? Can it be related to the standard
Young tableaux of shape (d+ 1, d+ 1, 1n−d−3)?

We note that if we take d = n−3 then varying j gives a refinement of the Catalan numbers
which (as far as we know) has not appeared elsewhere. The first few refinements are

14 = 2 + 12, 42 = 14 + 28, 132 = 4 + 64 + 64, . . .

A related question would be to consider those subdivisions for which the collection of
diagonals forms a (connected) tree, since this is likely the more relevant property in the
context of syzygies. For n 6 7 it so happens that the proper subdivisions correspond to
those collections of diagonals that form a tree. However, for n = 8 there exist proper
subdivisions that are not trees: for example if d = 4 we can take 3 diagonals to form a
triangle with vertices {1, 3, 5} along with one disconnected diagonal {6, 8}, in total using
5 vertices of the 8-gon.

Question 19. How many dissections of an n-gon with d diagonals have the property that
the set of diagonals forms a tree?

In our quest for a Morse matching on the monomial labeled face poset of the associa-
hedron An we were unable to employ Stanley’s bijection between faces of An and standard
Young tableaux. As mentioned above, the difficulty arises as the bijection given in [19]
is recursively defined and involves certain choices. However, the fact that the face poset
of An is labeled by standard Young tableaux suggests that there might be a meaningful
poset structure on the set of all standard Young tableaux (or at least the set of Associa-
hedron tableaux). The hope would be that this poset structure extends the partial order
given by the involution on A described in the proof of Proposition 16. Hence the poset
should be graded by the number of boxes in the underlying partition, but will not restrict
to Young’s lattice if one forgets the fillings. We refer to Example 17 for a example of a
cover relation between two standard Young tableaux such that the underlying partitions
are not related in Young’s lattice.

Question 20. Does there exist a meaningful poset structure on the set of standard Young
tableaux, consistent with the conditions described above?

Finally, we see in Figure 4 that a minimal resolution of J6 is supported on a 3-
dimensional polytope. As we mentioned the construction there was a bit ad hoc but
it does lead us to following:

Question 21. Does the ideal Jn have a minimal cellular resolution supported on a (nec-
essarily (n− 3)-dimensional) polytope?

Work in this direction (along with some further generalizations) is currently being
pursued by Engström and Linusson [10].
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