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Abstract

Let [n] = {1, 2, . . . , n} and Bn = {A : A ⊆ [n]}. A family A ⊆ Bn is a Sperner
family if A * B and B * A for distinct A,B ∈ A . Sperner’s theorem states that
the density of the largest Sperner family in Bn is

(
n
dn/2e

)
/2n. The objective of this

note is to show that the same holds if Bn is replaced by compressed ideals over [n].
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1 Introduction

Let Bn be the poset of subsets of [n] = {1, 2, . . . , n} ordered by inclusion. A family
A ⊆ Bn is a Sperner family if A * B and B * A for distinct A,B ∈ A . A famous
result due to Sperner [5] states that the density of the largest Sperner family in Bn is(

n
dn/2e

)
/2n. Sperner’s theorem is one of the central results in extremal finite set theory

and it has many generalizations and extensions (see [1, 2] for instance).
For P ⊆ Bn, we say that P is a convex family if A,B ∈ P and A ⊆ C ⊆ B imply

that C ∈P. A family I ⊆ Bn is an ideal if A ∈ I and B ⊆ A imply B ∈ I . Clearly,
an ideal is a convex family. In [3, Conjecture 1.3], Frankl conjectured that the density of
the largest Sperner family in any convex subfamily of Bn is at least

(
n
dn/2e

)
/2n.

Conjecture 1. For every convex family P over the set [n], there exists a Sperner family
A ⊆P such that

|A |/|P| >
(

n

dn/2e

)
/2n.
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The conjecture seems difficult to prove and no progress was made in more than 30
years. Since no progress for the general case was made, it is quite natural to consider
the special case of ideals. Here, we will restrict our research to the compressed ideals of
Bn. On Bn we consider the reverse lexicographic order �, which is defined by A � A′

if max{(A ∪ A′)\(A ∩ A′)} ∈ A′ or A = A′ for A,A′ ∈ Bn. For example, we have
{3, 4} � {1, 3, 5} and {3, 5} � {1, 3, 5}. Let C(m,Bn) be the family of the first m
minimal elements of Bn with respect to �. The family C(m,Bn) is called compressed and
the operation of exchanging an m-element family of Bn by C(m,Bn) is called compression.

Denote by B(k)
n the collection of all k-subsets of Bn. Similarly, we define C(F ), where

F ⊆ B(k)
n , to be the first |F | elements of B(k)

n with respect to �. Here, we use the
compress notation from [1, Ch. 7.5] and [2, p. 41]. An ideal I is called a compressed ideal

if C(I ∩B(k)
n ) = I ∩B(k)

n for all 0 6 k 6 n. Clearly, Bn is a compressed ideal. In this
paper, we will prove the following result.

Theorem 2. Let I be a compressed ideal in Bn and A the largest Sperner family in I .
Then

|A |/|I | >
(

n

dn/2e

)
/2n. (1)

2 Proof of Theorem 2

Let A ⊆ B(k)
n where k < n. Call

∆A = {B ∈ B(k−1)
n : ∃A ∈ A , B ⊂ A}

the shadow of A and

∇A = {B ∈ B(k+1)
n : ∃A ∈ A , A ⊂ B}

the shade of A .
As usual, we let (

x

k

)
=

x(x− 1) · · · (x− k + 1)

k!
,

for x ∈ R+ and k ∈ Z+.
To prove Theorem 2, we need two lemmas.

Lemma 3. [1] Let F ⊆ B(k)
n . Then |∆F | > |F | if k > dn/2e and |∇F | > |F | if

k < bn/2c.

Lemma 4. [4] Let F ⊆ B(k)
n . Then there is an x > k such that |F | =

(
x
k

)
and

|∆F | >
(

x
k−1

)
.

Proof of Theorem 2. To simplify the notation, let us write

T (n) =

(
n

dn/2e

)
/2n.
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It can be verified that T (2n − 1) = T (2n) and T (2n)/T (2n + 1) = (2n + 2)/(2n + 1).
Hence we have

T (1) = T (2) > T (3) = T (4) > · · · > T (2m− 1) = T (2m) > · · · .

We use induction on n. The case n = 1 is trivial. So we proceed to the induction step.
Let I be a compressed ideal in Bn. Then I = I1 ∪I2, where I1 = {A ∈ I : n /∈ A}
and I2 = {A ∈ I : n ∈ I }. Denote by I2(n̄) the collection of all sets A \ {n}, with
A ∈ I2. Clearly, I1 and I2(n̄) are compressed ideals in Bn−1. We therefore use the
induction hypothesis for Bn−1, assuming that there exists the largest Sperner families
A1 ⊆ I1 and A2(n̄) ⊆ I2(n̄) such that

|A1|
|I1|

> T (n− 1),
|A2(n̄)|
|I2(n̄)|

> T (n− 1). (2)

Let A2 = {A ∪ {n} : A ∈ A2(n̄)}. Then A2 is the largest Sperner family in I2 and

|A2|
|I2|

=
|A2(n̄)|
|I2(n̄)|

> T (n− 1) > T (n). (3)

Denote by I (k)
i the collection of all sets Ii which occur in B(k)

n , and A (k)
i the collection

of all sets Ai which occur in I (k)
i for i = 1, 2. Let s = min{k : A (k)

1 6= ∅} and r =

max{k : A (k)
2 6= ∅}. Then we have I (r)

1 = B(r)
n−1 by the definition of compressed ideal.

Hence I1 can be written as

I1 =
r⋃

k=0

B(k)
n−1 ∪

⋃
k>r

I (k)
1 . (4)

We now prove that r 6 dn/2e. Note that A (r)
2 ⊆ B(r)

n and then A
(r)
2 (n̄) ⊆ B(r−1)

n−1 .
Hence by Lemma 3, if r − 1 > d(n− 1)/2e, then∣∣∣∆(A (r)

2 (n̄))
∣∣∣ > ∣∣∣A (r)

2 (n̄)
∣∣∣ .

Replacing A (r)
2 (n̄) by ∆(A (r)

2 (n̄)), we obtain a larger Sperner family than A2(n̄) in I2(n̄).
Thus r − 1 6 d(n− 1)/2e, i.e., r 6 dn/2e.

In the following, we show that there is the largest Sperner family A in I such that
(1) holds. We distinguish two cases.

Case 1: we consider the case that n is even. Let n = 2m. Then r 6 m. We show that
s > r. Assume that s < r. Let

Ā1 =
(
A1\{A1 ∩I (s)

1 }
)
∪
(
∇(r)(A1 ∩I (s)

1 )
)
,

where
∇(r)(A1 ∩I (s)

1 ) = {A ∈ B(r)
2m−1 : ∃B ∈ A1 ∩I (s)

1 , A ⊃ B}.
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By (4), ∇(r)(A1 ∩I (s)
1 ) ⊂ I1 and Ā1 is still a Sperner family in I1. By Lemma 3,∣∣∣∇(r)(A1 ∩I (s)

1 )
∣∣∣ > ∣∣∣A1 ∩I (s)

1

∣∣∣ ,
so that |Ā1| > |A1| which contradicts the maximality of A1 in I1. Hence we have s > r,
which means that A1 ∪A2 is still a Sperner family in I . Hence by (2) and (3), we have

|A1 ∪A2|
|I |

=
|A1|+ |A2|
|I1|+ |I2|

> T (2m− 1) = T (2m),

and thus A = A1 ∪A2 is the family as desired.
Case 2: we consider the case that n is odd. Let n = 2m + 1. Then r 6 m + 1. If

r < m+ 1, by (4) we similarly have s > r, and thus A = A1∪A2 is the family as desired.
If r = m + 1, then

I1 =
m+1⋃
k=0

B(k)
2m ∪

⋃
k>m+1

I (k)
1

and A1 = B(m)
2m . However B(m)

2m ∪A2 is no longer a Sperner family. Let

Ā2 =
(
A2\{A (m+1)

2 }
)
∪
(

∆1(A
(m+1)
2 )

)
,

where ∆1

(
A (m+1)

2

)
is the shadow of A (m+1)

2 in I2, i.e.,

∆1

(
A (m+1)

2

)
, ∆

(
A (m+1)

2 (2m + 1)
)
∪ {2m + 1}.

Then Ā2 is still a Sperner family in I2. Moreover, B(m)
2m ∪ Ā2 is also a Sperner family in

I . We then show that ∣∣∣B(m)
2m ∪ Ā2

∣∣∣
|I1|+ |I2|

> T (2m + 1). (5)

We first claim that (
2m

m

)
> (2m + 1)|A2| − (2m + 2)|Ā2|. (6)

Note that

|A2| =
∣∣∣A (m+1)

2

∣∣∣+
∑

i<m+1

∣∣∣A (i)
2

∣∣∣ ,
and

|Ā2| =
∣∣∣∆1(A

(m+1)
2 )

∣∣∣+
∑

i<m+1

∣∣∣A (i)
2

∣∣∣ .
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Hence we get that

(2m + 1)|A2| − (2m + 2)|Ā2| 6 (2m + 1)
∣∣∣A (m+1)

2

∣∣∣− (2m + 2)
∣∣∣∆1(A

(m+1)
2 )

∣∣∣ .
So, to show that (6) is correct, it suffices to show that the following inequality is correct.(

2m

m

)
> (2m + 1)

∣∣∣A (m+1)
2

∣∣∣− (2m + 2)
∣∣∣∆1(A

(m+1)
2 )

∣∣∣ . (7)

Actually,
A (m+1)

2 (2m + 1) ⊆ I (m+1)
2 (2m + 1) ⊆ B(m)

2m .

Suppose that ∣∣∣A (m+1)
2 (2m + 1)

∣∣∣ =

(
x

m

)
,

where m 6 x 6 2m. Then by Lemma 4, we have∣∣∣∆1(A
(m+1)
2 )

∣∣∣ =
∣∣∣∆(A (m+1)

2 (2m + 1))
∣∣∣ > ( x

m− 1

)
.

Thus

(2m + 1)
∣∣∣A (m+1)

2

∣∣∣− (2m + 2)
∣∣∣∆1(A

(m+1)
2 )

∣∣∣
6 (2m + 1)

(
x

m

)
− (2m + 2)

(
x

m− 1

)
6

(
(2m + 1)

x−m + 1

m
− (2m + 2)

)(
x

m− 1

)
6

(
(2m + 1)

2m−m + 1

m
− (2m + 2)

)(
2m

m− 1

)
=

m + 1

m

(
2m

m− 1

)
=

(
2m

m

)
.

This completes the proof of (7).
Then we show that (5) can be derived from (6). Actually, we have

∣∣Ā2

∣∣+
1

2m + 2

(
2m

m

)
>

2m + 1

2m + 2
|A2| =

T (2m + 1)

T (2m)
|A2| > T (2m + 1) |I2| . (8)

Replace T (2m + 1) by
(
2m+1
m

)
/22m+1 and rewrite (8) as

22m+1|Ā2|+
22m+1

2m + 2

(
2m

m

)
>

(
2m + 1

m

)
|I2|.
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We thus obtain (
2m
m

)
+
∣∣Ā2

∣∣
22m + |I2|

>

(
2m+1
m

)
22m+1

= T (2m + 1)

by using the identity

22m+1

2m + 2

(
2m

m

)
= 22m+1

(
2m

m

)
− 22m

(
2m + 1

m

)
.

Hence ∣∣∣B(m)
2m ∪ Ā2

∣∣∣
|I1|+ |I2|

>

(
2m
m

)
+
∣∣Ā2

∣∣
22m + |I2|

> T (2m + 1),

as required. This completes the proof of Theorem 2.

3 Remarks

Let I be an ideal in Bn. The sequence f(I ) = (f0(I ), f1(I ), . . . , ft(I )), with fk(I ) =

|I
⋂

B(k)
n |, is called the profile of the ideal I . It is known that there exists a compressed

ideal I ′ sharing the same profile with the ideal I in Bn (see [1, Theorem 8.2.1] for
details). By Theorem 2, there exists the largest Sperner family A ′ in compressed ideal
I ′ such that |A ′|/|I ′| >

(
n
dn/2e

)
/2n. So, a key step to show that the ideal I satisfies

Conjecture 1 should be to find the relationship between the largest Sperner family A ∈ I
and A ′.
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