All Ramsey numbers for brooms in graphs
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Abstract

For k,£ > 1, a broom By, ¢ is a tree on n = k + £ vertices obtained by connecting
the central vertex of a star K j with an end-vertex of a path on £ — 1 vertices. As
B, 29 is a star and Bj ,—1 is a path, their Ramsey number have been determined
among rarely known R(T},) of trees T,, of order n. Erdés, Faudree, Rousseau and
Schelp determined the value of R(Bj,) for £ > 2k > 2. We shall determine all
other R(B} ) in this paper, which says that, for fixed n, R(B,_¢¢) decreases first
on 1 < ¢ < 2n/3 from 2n — 2 or 2n — 3 to [4*] — 1, and then it increases on
2n/3 <€ < nfrom [4]—1to [2] — 1. Hence R(B,_r,) may attain the maximum
and minimum values of R(7},) as ¢ varies.

Keywords: Ramsey number; Tree; Broom

1 Introduction

Given a graph G, the Ramsey number R(G) is the smallest integer N such that every red-
blue coloring of the edges of K contains a monochromatic G. Let T}, be a tree of order
n. Finding R(T,) for an arbitrary 7,, is a difficult unsolved problem in Ramsey theory.
Most works focus on improving the known bounds, see [10]. Erdés and S6s conjectured
that if a graph G has average degree greater than n — 1, then G contains every tree of n
edges, which implies that R(7},) < 2n—2 for n > 2. A result of Erdds, Faudree, Rousseau
and Schelp in [4] yields

)z (3] -1 1)

under (2) by minimizing the lower bound with b = 2a, and the lower bound can be
attained by some brooms. For k,¢ > 1, a broom By is a tree on k + ¢ vertices obtained
by connecting the central vertex of a star K;;, with an end-vertex of a path on ¢ —1
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vertices. Thus By = Ky, Bi2 = Ki,1 and By = Py, where Py is a path of order
¢+ 1. They obtained the following result.

Theorem 1. ([}]) Let k and ¢ be integers with £ > 2k > 2 and n =k + (. Then

R(Byy) =n+ m -~
Thus R(Byy) = [3]—1for ¢ € {2k, 2k+1,2k+2} and n = k+[, which attain the lower
bound in (1). In this paper, we shall determine the values of R(By,) for 1 < ¢ < 2k — 1.
Note that when £ is fixed and ¢ is sufficient large, By, ¢ is similar to a path P,; when ¢
is fixed and k is sufficient large, By, is similar to a star K ,_1. Among few known results
of R(T,), R(P,) and R(K,-1) have been determined completely. For n > 2, the exact
value of R(P,) was determined in [7] as

v = |2

and R(K,-1) was determined in [3] as

2n — 3 if n is odd,
2n — 2 otherwise.

R(K1n-1) = {

As Byy = Ppy1, Byg = Ky and By 2 = K j4+1, their Ramsey numbers can be determined
by the above results. It was proved that R(Bys) = R(Kjiks1) in [2]. Thus we shall
consider the case £ > 4 and k > 2.

Theorem 2. Let k and ¢ be integers with k > 2 and n =k + £. Then

 n+TE -1 if £>2k—1,
R(Bk,z)—{ 2n—2(§1—1 if 4<0<2k—2.

Remark. Roughly speaking, for fixed n, R(B,_ss) decreases first on 2 < ¢ < 221

3
from 2n — 2 or 2n — 3 to [4] — 1, and then increases on 241 < ¢ < n from [$] —1 to
|3 ] — 1. Hence R(B,_s;) may attain the maximum and minimum values of R(7},) when

¢ varies, as it is believed that R(K7 ,,—1) is the maximum value of R(T,,).

2 Proofs

For any red-blue edge-coloring of Ky, denote R and B be the induced red and blue sub-
graph, respectively, and Ngr(z) and Np(x) be the red neighborhood and blue neighborhood
of x, respectively. Let Ng[x] = Ng(x) U{z}, Nglz] = Np(z) U {z}, degg(z) = |Ng(z)|,
and degy = |Np(z)|. For a graph G and disjoint subset A and D, denote by G(A)
the subgraph of G induced by A, and G(A, D) the bipartite subgraph of G induced by
A and D. If G is the red-blue edge-colored Ky, we write Gr(A) = G(A) N R and
Gr(A,D) = G(A, D) N R. Notation not specifically mentioned will follow from [1]. We
do not distinguish the vertex set and the graph when there is no danger of confusion.
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Consider a tree T, as a bipartite graph with two parts of size a and b, respectively,
where a < b, a + b = n. Observing that a red-blue edge-colored Ky, o with R =
K, 1 U K,yp_1 contains no monochromatic 7},, and a red-blue edge-colored Ko, o with
R = Kp_1 U K,_1 contains no monochromatic 7;,,. We see that

R(T}) > max{?a fb—1, 2 — 1}, 2)

where a and b are determined by T),.
Note that By, is a bipartite graphs on parts of sizes a = [g} and b=k + Léj, then

R(Bys) > max{k—i— F’;] 1, 2k+2L§J - 1}. (3)

We shall prove the cases ¢ = 2k — 1 and ¢ = 4 in Theorem 2 via the following two
lemmas.

Lemma 3. Let k > 2 be an integer. Then
R(By k1) = 4k — 2.
Lemma 4. Let k > 2 be an integer. Then
R(By4) =2k +3
In order to prove Lemma 3, we need two results from [9] and [6], respectively.

Lemma 5. (/9]) Let G(A, D) be a bipartite graph on parts A and D with |A| = k and
|D| = 2k — 2 such that
min{d(z) : z € A} > k.

Then G(A, D) contains a cycle Co.
Lemma 6. (/6]) R(Cy) = 3k — 1 for integer k > 3

Proof of Lemma 3. 1t is easy to see that R(Bs3) = 6, we assume that k£ > 3. As the lower
bound (3) implies R(Byok—1) = 4k — 2, it suffices to show the opposite inequality.

Let G be a red-blue edge-colored K4,_». We shall show that GG contains a monochro-
matic Byor—1. By lemma 6, G contains a monochromatic cycle Cy,. Without loss of
generality, we assume that this Cy; is blue and denote it by Céf). Let D = G\ Céf).
Then |D| = 2k — 2. If there exists a vertex x € C’Q(f) such that |[Ng(x) N D| > k — 1, then
G contains a blue By or—1. We then assume that |[Ng(x) N D] < k — 2 for each = € C’éf).
The fact that

INg(z) N D| + |[Nr(z)ND| =|D| =2k —2

implies that |[Ng(x) N D| > k for each z € C’Q(f), hence the number of red edges between
CékB) and D is at least 2k?. So there exists a vertex u € D such that

2 2
2k 2k >k+1.

N ncP) > — ==
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Let {ug,us,...,ur} € Ng(u)N C’éf), and A = CékB) \ {w,ug,...,ux}. Then |A| = k.
Consider the bipartite graph Gr(A, D). By Lemma 5, there is a red cycle Cy, between
A and D. Denote by CékR) the red Cy. Since C’Z(f) contains A hence v, so the graph on
{uy, ug, ..., ug}, u, ug, C’Q(kR) induced by red edges contains a red By, o5_1.

This completes the proof of Lemma 3. n

Proof of Lemma 4. The lower bound (3) implies R(By4) = 2k + 3, and we shall show
R(Bga) < 2k + 3. Let G be a red-blue edge-colored Kyji3. Assume that G contains no
monochromatic By, 4.

If k=2 2k+3=7. As R(Ps) =6 < 7, we suppose that G contain a red Ps. Label
the vertices of the path in order as {x1,zs, ..., x5}, denote another two vertices as y1, ys.
Since there is no red Bg g, all the edges between {2, 24} and {y1,y2} are red. If there is
red edge between {x1, x5} and {y1,y2}, say edge x5y is red. Then edges z5y1, T3y1,23Y2
are blue. Now {x2,z3}, Y2, 4, y1, x5 contain a blue By 4, a contradiction. If all the edges
between {z1, x5} and {y1,y»} are blue, then {x1, 22}, y2, 4,91, x5 contain a blue By, a
contradiction.

Now we consider the case k > 3. As R(K 4+1) < 2k+3, we suppose that there is a blue

star K 41, which is denoted by Kﬁll. Let = be the center of Kﬁll, A= Kﬁ)ﬂ \ {z}

and D =G\ Kﬁll. Then |A| = |D| =k + 1.

Claim. D induces a red Kjy;.

Proof. Suppose to the contrary, there is a blue edge uv in D. Since G contains no
blue By 4, the edges between {u,v} and A are all red, and thus all the edges between
{u,v} and D \ {u,v} are blue from the assumption that G contains no red By4. Now
consider the blue edges between {u,v} and A. With a similar analysis, we get that D
induces a blue Kj 1 and all edges between D and A are red.

Now, consider the adjacency between x and a vertex of D, say xu, no matter what the
color of zu is, we have a monochromatic By 4, leading to a contradiction and the claim is
proved.

Now D is a red Kjyq. If there exists a red edge zw with w € D, then D U {z}
induces a red K1 with center w. As A = V(G) \ (D U {z}), a similar analysis for
the above claim tells us that A is a blue Kj;. If the number of blue edges between A
and D is at least k + 2, then there exists a vertex y € A such that |[Ng(y) N D| > 2.
Now choose two vertices {y1,42} € Np(y) N D and two vertices {a1,as} C A\ y, then
(A\{a1, a2, y})U{y1,y2},y, a1, az, v contains a blue By 4, a contradiction. Thus assume to

the contrary, there exists a vertex z € D such that [Ng(z) N A| > Uﬁl)i% =k>21If

w, z are the same vertex, we can choose two vertices {z1, 2o} C Ng(z)NA and three vertices
{d1,ds,ds} C D\ z for |D|=k+1>4. Then (D\ {d1,ds,d3,2})U{z1, 20,2}, 2,dq,ds,d3
contain a red By4. If w,z are different, choose a vertex dy € D \ {z,w}, then (D \
{z,w,d1}) U{z1, 22}, z,dy, w,x contain a red By 4, a contradiction.

Finally, assume that z is adjacent to D completely blue. Choose any set F' C AU D
such that |F| =k + 1 and denote M = V(G) \ (F Ux). A similar analysis for the claim
says that M is a red Kj1. The choice of F tells us that AU D is a red Ky 9, hence G
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contains a red Bj 4, which is a contradiction too.
This completes the proof of Lemma 4. ]

Lemma 7. For integers k,{, N with 5 < { < 2k —2 and N > 2k + QLéj — 1, let the edges
of Kn be colored by two colors i = 0,1 (mod 2). Suppose i is a color and x is a vertex
such that

deg;(z) = max max{deg;(v), deg;,(v)}.

If there exist vertices y, z C Ni1(x), not necessarily distinct, satisfying
1. |Niya(y) 0 Ny(z)| = k, and
2. deg; 1(2) > N —/(

then G contains a monochromatic By, g.

Proof of Lemma 7. Since |Ni1(y) N N;(z)| = k, we can choose a subset A in N;1(y) N
Ni(x) such that |A| = k. Let H = G\ A, then |H| = N — k. Since R(Cy) = 3t — 1 for
t > 3, H contains a monochromatic Cy; in color j, denoted by C’éi), where

N—k~|—1J >2Lk+2|_€/2JJ >

2t>2{
3 3

for 5 < £ < 2k — 2. The choice of vertex x implies deg;(z) > deg;,,(2) > N — ¢, and thus

| Nifa] \ 4| + | > |H|+1,

> |H|+1, | Nl \ 4] + |

which implies that both N;[z] \ A and N;41[z] \ A contain a vertex of C’Q(f).

Case 1. y = z. If j = 7, namely, Cé{) = éi) is in color 7, there is a monochromatic
By in color i in AU {z} U Cg(?, and otherwise j = ¢ + 1, there exists a monochromatic
By in color i +1in AU {y} U iy,

Case 2. y # z. Similarly, we can find a monochromatic By, either in AU {z} U C’Q({)
orin AU{y,x,z} U C’é?.

This completes the proof of Lemma 7. [

The next two lemmas are results about the extremal edges in graph that contains no
path P,.

Lemma 8. (/5]) Let t > 2 be an integer, and G a graph of order N that contains no P;.

t—2)N
Let e(G) be the number of edges of G, then e(G) < %

Lemma 9. ([8]) Let G(Xg, Xg) be a bipartite graph on parts Xg and Xg with |Xg| <
| Xg|. If G(Xp, XR) contains no Py with 2(t — 1) < | Xg|, then

e(G(Xp, Xp)) < (¢ = 1) || Xp| + | Xp| - 2(t = 1)
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Proof of Theorem 2. We may assume that 5 < ¢ < 2k — 2 from Theorem 1, Lemma 3 and
Lemma 4.

Set N = 2n—2[£]—1 = 2k+2[£] —1. Let G be a red-blue edge-colored Ky, and let R
and B be the induced red and blue subgraph, respectively. Without loss of generality, we
may assume that the maximal monochromatic degree of G is the maximum blue degree
and z is a vertex such that

degg(r) = max max{degg(v), degg(v)}.
To simplify the notation, we write Xp = Np(z), Xg = Ng(x) and
t=0+k—|Xg|—1.

The choice of = implies Ng(u) N Xp # 0 for each vertex u € Xg as otherwise Ng[x] C
Ng(u) and thus degp(u) > degg(x), which is impossible. We shall separate the proof into
three cases depending on | Xp|.

Case 1. | Xp| < k+ € — 1, and either G(Xg) contains a blue P, denoted by PP or
G(Xp, XR) contains a blue Py, denoted Pz(f ),

In G(Xp U Xg), let PB) be the longest blue path extended from Pt(B) such that one
of its end-vertices is in Xp if G(Xg) contains a blue P;, or that from PQ(f ) otherwise. If
|PB)| > ¢ — 1, then there exists a blue By, Thus we assume that |[P®)| < ¢ — 2, then
P®) fails to contain at least |Xz| — ({ —2 —t) = k + 1 vertices of Xp. Let y be the
other end-vertex of P®). Then |Ng(y) N Xp| > k + 1. The maximality of | P(®)| implies
INr(y)| > N—1—({ —2) = N —{+ 1, which and Lemma 7 imply that G contains a
monochromatic By, .

Case 2. | Xg| =2 k+(—1.
Let P(® be the longest blue path in G(Xp5 U Xg) that has an end-vertex in Xg. A
similar analysis in Case 1 implies that G' contains a monochromatic By, 4.

Case 3. |Xp| < k+ ¢ — 1, and neither G(Xg) contains a blue P, nor G(Xp, Xg)
contains a blue Pyy.
Ast=0+Fk—|Xp|—12>2, then [Xg|<l+k—-3and [Xg|=N—-1—|Xp| > k.
Since G(Xg) contains no blue P, Lemma 8 implies e(Gp(Xg)) < (t — 2)|Xr|/2. The
choice of x implies that the min{degy(v), degg(v)} > |Xg| for each vertex v of G, and
thus
e(Gp(Xp, Xr)) 2 [Xg| - |Xg| = (t = 2)|Xg| = (|X&| -t +2)| Xk

Since G(Xp, Xg) contains no blue Py, Lemma 9 yields
e(Gp(Xp, Xr)) < Ms,

where
Mp=(t—1)||Xp|+ |Xgr| —2(t—-1)]|.

Claim for Case 3. G(Xp, Xr) has at most | Xg|(|Xp — k|) — 1 blue edges.
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Proof. Suppose opposite, then
G(GB<XB,XR)) = ‘XR’ : max{|XR| —t4+ 2, |XB| — k’} = mpg.

where
mp = k(| Xgr| —t+2)+ (| Xgr| — k)(| X5| — k).

Note that Mp and mpg are upper and lower bound of number of blue edges in G(Xpg, Xg),
respectively, and thus Mg > mp.
Case 3.1. { is even. In this subcase, | Xp| + |Xg| = 2k + ¢ — 2 and

t=0+k—|Xg|—1=|Xg|—k+1,
mp = k(k+ 1)+ (| Xg| — k)(| X5| — k),
Mp = (|Xg| = 1) [| X5 + k = (| Xz| — b)]
we have
mp — Mp = k* = 2k(|Xgr| — k) + (| Xg| — k) +k = (2k — | Xg|)? + k > 0,
which is a contradiction.
Case 3.2. ( is odd. In this subcase, | Xg|+ |Xp| =2k + ¢ — 3 and
t=0+k—|Xg|—1=|Xg|—k+2,
mp = k* + (| Xg| = k)(|X5| - k),
Mp = (| Xg| = k+ 1) || Xp|+k — (| Xg| — k) —2].
We have
mp— Mp = (2k —|Xg|)*+ 3|Xg| — |Xp| — 4k + 2
(2k — | XR|)(2k — | Xg| —4) + 2k — £ + 5.

For ¢ < 2k — 2,is odd, we get | Xg| < [851] < 2k — 3. If | Xg| < 2k — 4, mp — Mp >
2k —0+5 > 0; if b5 =2k — 3, mp — Mg = 2k — { + 2 > 0, a contradiction, hence the
claim holds.

We now have

e(Gr(Xn)) > (\XRI) (=2 Xe| (k= 1)|Xa|

2 2 - 2
and
e((Gr(Xp, X)) 2 |Xg| - |Xp| — [| Xrl(|X5| — k) — 1] = k|Xg| +1,
Recall Xp = Ng(x), and thus
> INr(v)| = e(Gr(Xp, Xr)) + 2e(Gr(Xg)) + | Xr| = 2k Xp| + 1.
veEXR

Therefore, there exist y,z C Xr = Ng(z),not necessarily distinct, such that |Ng(y) N
Np(z)| 2 k+ 1 and |Ng(2)| = 2k +1 > N — (. Then, Lemma 7 implies that G contains
a monochromatic By .

This completes the proof of Theorem 2. O
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