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Abstract

We prove that if G is an Abelian group and A1, . . . , Ak ⊆ G satisfy mAi = G
(the m-fold sumset), then A1 + · · · + Ak = G provided that k > cm log log |G|.
This generalizes a result of Alon, Linial, and Meshulam [Additive bases of vector
spaces over prime fields. J. Combin. Theory Ser. A, 57(2):203–210, 1991] regarding
so-called additive bases.

1 Introduction

Let p be a fixed prime, and let Znp denote the n-dimensional vector space over the field

Zp. Given a multiset B with elements from Znp , let S(B) =
{∑

b∈S b
∣∣ S ⊆ B

}
. The set

B is called an additive basis if S(B) = Znp .
Jaeger, Linial, Payan, and Tarzi [JLPT92] made the following conjecture and showed

that if true, it would provide a beautiful generalization of many important results re-
garding nowhere-zero flows. In particular the case p = 3 would imply the weak 3-flow
conjecture, which has been proven only recently by Thomassen [Tho12].

Conjecture 1. [JLPT92] For every prime p, there exists a constant kp such that the
union (with repetitions) of any kp bases for Znp forms an additive basis.

Let us denote by kp(n) the smallest k ∈ N such that the union of any k bases for
Znp forms an additive basis. In [ALM91] two different proofs are given to show that
kp(n) 6 cp log n, where here and throughout the paper the logarithms are in base 2. The
first proof is based on exponential sums and yields the bound kp(n) 6 1 + (p2/2) log 2pn,
and the second proof is based on an algebraic method and yields kp(n) 6 (p−1) log n+p−2.
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As observed in [ALM91], it is easy to construct examples showing that kp(n) > p, and,
to the best of our knowledge, it is quite possible that kp(n) = p.

Let G be an Abelian group, and for A,B ⊆ G, define the sumset A + B = {a +
b |a ∈ A, b ∈ B}. For A ⊆ G and m ∈ N, let mA = A + · · · + A denote the m-
fold sumset of A. Note that for a basis B of Znp , we have (p − 1)S(B) = Znp . On the
other hand if B = B1 ∪ . . . ∪ Bk is a union with repetitions of k bases for Znp , then
S(B) = S(B1) + · · · + S(Bk). Hence Theorem 2 below is a generalization of the above
mentioned theorem of Alon et al [ALM91].

Theorem 2 (Main theorem). Let G be a finite Abelian group. Suppose A1, . . . , A2K ⊆ G
satisfy mAi = G for all 1 6 i 6 2K where K > m ln log(|G|). Then A1 + · · ·+A2K = G.
Moreover, for m = 2, it suffices to have K > log log(|G|).

We present the proof of Theorem 2 in Section 2. While it is quite possible that
Conjecture 1 is true, the following example shows that its generalization, Theorem 2,
cannot be improved beyond Θ(log log |G|) even when m = 2.

Example 3. Let n = 2k and for i = 1, . . . , k, let Ci ⊆ Z2i

p be the set of vectors in Z2i

p \{~0}
in which the first half or the second half (but not both) of the coordinates are all 0’s.
Note that Ci + Ci = Z2i

p . Define A0 = (Zp \ {0})2
k

and for i = 1, . . . , k, let

Ai = Ci × · · · × Ci︸ ︷︷ ︸
2k−i

⊆ Znp .

It follows from Ci + Ci = Z2i

p that Ai + Ai = Znp . On the other hand a simple induction
shows that for j 6 k,

A0 + · · ·+ Aj = (Z2j

p \ {~0})2
k−j 6= Znp .

Remark 4. Theorem 2 in particular implies that kp(n) 6 2(p− 1) lnn + 2(p− 1) ln log p,
and k3(n) 6 2 log n + 2. Note that for p > 3, the algebraic proof of [ALM91] provides
a slightly better constant, however unlike the theorem of [ALM91], Theorem 2 can be
applied to the case where p is not necessarily a prime.

2 Proof of Theorem 2

The proof is based on the Plünnecke-Ruzsa inequality.

Lemma 5 (Plünnecke-Ruzsa). If A,B are finite sets in an Abelian group satisfying |A+
B| 6 α|B|, then

|kA| 6 αk|B|,

provided that k > 1.
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Next we present the proof of Theorem 2. For 2 6 i 6 K, substituting k = m, A = Ai
and B = A1 + · · ·+ Ai−1 in Lemma 5, we obtain

|G| = |mAi| 6
(
|A1 + · · ·+ Ai−1 + Ai|
|A1 + · · ·+ Ai−1|

)m
|A1 + · · ·+ Ai−1|,

which simplifies to

|G|1/m|A1 + · · ·+ Ai−1|
m−1
m 6 |A1 + · · ·+ Ai−1 + Ai|.

Consequently,
|G|1−λ|A1|λ 6 |A1 + · · ·+ AK |,

where λ =
(
m−1
m

)K
. Since K > m ln log |G|, we have λ =

(
m−1
m

)K
< e−K/m 6 1/ log |G|,

and thus |G|λ < 2 and |G|/2 < |A1 + · · ·+ AK |. Similarly we obtain

|G|/2 < |AK+1 + · · ·+ A2K |.

Since A+B = G if |A|, |B| > |G|/2, we conclude

A1 + · · ·+ A2K = G.

Finally note that for m = 2, we have λ = 2−K , and thus to obtain |G|/2 < |G|1−λ|A1|λ,
it suffices to have K > log log |G|.

3 Quasi-random Groups

While Example 3 shows that the bound of Θ(log log |G|) is essential in Theorem 2, for
certain non-Abelian groups, it is possible to achieve the constant bound similar to what
is conjectured in Conjecture 1. A finite group G is called D-quasirandom if all non-trivial
unitary representations of G have dimension at least D. The terminology “quasirandom
group” was introduced explicitly by Gowers in the fundamental paper [Gow08] where he
showed that dense Cayley graphs in quasirandom groups are quasirandom graphs in the
sense of Chung, Graham, and Wilson [CGW89]. The group SL2(Zp) is an example of a
highly quasirandom group. The so-called Frobenius lemma says that SL2(Zp) is (p−1)/2-
quasirandom. This has to be compared to the cardinality of this group, |SL2(Zp)| = p3−p.
The basic fact that we will use about quasirandom groups is the following theorem of
Gowers (See also [Tao15, Exercise 3.1.1]).

Theorem 6 ([Gow08]). Let G be a D-quasirandom finite group. Then every A,B,C ⊆ G
with |A||B||C| > |G|3/D satisfy ABC = G.

We will also need the noncommutative version of Ruzsa’s inequality.

Lemma 7 (Ruzsa inequality [Ruz96]). Let A,B,C ⊆ G be finite subsets of a group G.
Then

|AC−1| 6 |AB
−1||BC−1|
|B|

.
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Proof. The claims follows immediately from fact that by the identity ac−1 = ab−1bc−1,
every element ac−1 in AC−1 has at least |B| distinct representations of the from xy with
(x, y) ∈ (AB−1)× (BC−1).

Finally we can state the analogue of Theorem 2 for quasi-random groups.

Theorem 8. Let G be a |G|δ-quasirandom finite group for some δ > 0. If the sets
A1, . . . , AK ⊆ G satisfy AiA

−1
i = G for all 1 6 i 6 K where K > log(3/δ). Then

A1 . . . A3K = G.

Proof. Obviously |A1| > |G|1/2. For 2 6 i 6 K, substituting A = C = A−1i and B =
A1 . . . Ai−1 in Lemma 7, we obtain√

|G||A1 . . . Ai−1| 6 |A1 . . . Ai|,

which in turn shows
|G|1−2−K

6 |A1 . . . AK |.

Since K > log(3/δ), we have

|G||G|−δ/3 < |A1 . . . AK |.

We obtain a similar bound for |AK+1 . . . A2K | and |A2K+1 . . . A3K |, and the result follows
from Theorem 6.

Remark 9. Note that in particular for G = SL2(Zp), if p > 7, and A1, . . . , A12 ⊆ G satisfy
AiA

−1
i = G, then A1 . . . A12 = G.
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