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Abstract

We prove that if G is an Abelian group and Ai,..., A C G satisfy m4; = G
(the m-fold sumset), then Ay + --- + Ay = G provided that k& > ¢, loglog|G].
This generalizes a result of Alon, Linial, and Meshulam [Additive bases of vector
spaces over prime fields. J. Combin. Theory Ser. A, 57(2):203-210, 1991] regarding
so-called additive bases.

1 Introduction

Let p be a fixed prime, and let Z; denote the n-dimensional vector space over the field
Z,. Given a multiset B with elements from Z", let S(B) = {3 ,.sb | S C B}. The set
B is called an additive basis if S(B) = Z;,.

Jaeger, Linial, Payan, and Tarzi [JLPT92] made the following conjecture and showed
that if true, it would provide a beautiful generalization of many important results re-
garding nowhere-zero flows. In particular the case p = 3 would imply the weak 3-flow
conjecture, which has been proven only recently by Thomassen [Thol2].

Conjecture 1. [JLPT92] For every prime p, there exists a constant k, such that the
union (with repetitions) of any k, bases for Z; forms an additive basis.

Let us denote by k,(n) the smallest k& € N such that the union of any k bases for
Zy forms an additive basis. In [ALM91] two different proofs are given to show that
k,(n) < ¢,logn, where here and throughout the paper the logarithms are in base 2. The
first proof is based on exponential sums and yields the bound k,(n) < 1+ (p?/2) log 2pn,
and the second proof is based on an algebraic method and yields k,(n) < (p—1) log n+p—2.

*Supported by an NSERC Discovery Grant.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.33 1



As observed in [ALMO1], it is easy to construct examples showing that k,(n) > p, and,
to the best of our knowledge, it is quite possible that k,(n) = p.

Let G be an Abelian group, and for A, B C G, define the sumset A + B = {a +
bla € Ab € B}, For A C G and m € N, let mA = A+ --- 4+ A denote the m-
fold sumset of A. Note that for a basis B of Z7, we have (p — 1)S(B) = Z7. On the
other hand if B = By U...U By is a union with repetitions of k bases for Zj, then
S(B) = §(By) + -+ + S(Bg). Hence Theorem 2 below is a generalization of the above

mentioned theorem of Alon et al [ALM91].

Theorem 2 (Main theorem). Let G be a finite Abelian group. Suppose Ay, ..., Asx C G
satisfy mA; = G for all 1 < i < 2K where K > mlnlog(|G|). Then A; +---+ Ay = G.
Moreover, for m = 2, it suffices to have K > loglog(|G|).

We present the proof of Theorem 2 in Section 2. While it is quite possible that
Conjecture 1 is true, the following example shows that its generalization, Theorem 2,
cannot be improved beyond ©(loglog |G|) even when m = 2.

Example 3. Let n = 2¥ and fori = 1,...,k, let C; C Z?j be the set of vectors in Zg \ {0}
in which the first half or the second half (but not both) of the coordinates are all 0’s.
Note that C; + C; = Z2'. Define Ay = (2, \ {0})*" and for i = 1,...,k, let

144 = (:% X X (:% - ZZZ.
—_——

2k—i

It follows from C; + C; = Zzi that A; + A; = Zj;. On the other hand a simple induction
shows that for j < k,

Ag+ -+ Ay = (Z2\ {0} £ 2.

Remark 4. Theorem 2 in particular implies that k,(n) < 2(p —1)Inn + 2(p — 1) Inlog p,
and k3(n) < 2logn + 2. Note that for p > 3, the algebraic proof of [ALM91] provides
a slightly better constant, however unlike the theorem of [ALMO91], Theorem 2 can be
applied to the case where p is not necessarily a prime.

2 Proof of Theorem 2

The proof is based on the Pliinnecke-Ruzsa inequality.

Lemma 5 (Pliinnecke-Ruzsa). If A, B are finite sets in an Abelian group satisfying |A +
B| < a|Bj|, then
kA < o*|B,

provided that k > 1.
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Next we present the proof of Theorem 2. For 2 < i < K, substituting k =m, A = A;
and B=A;+---+ A;_1 in Lemma 5, we obtain

’A1+"'+Ai_1+Ai|
|A1++AZ,1|

1G] = [mAl <( ) Ay 4ot A,

which simplifies to

GV ™| Ar+ -+ A" <A+ A+ A

Consequently,

GI" AL <AL+ - + Akl
where A = (21 ¥ Since K > mlInlog |G|, we have A\ = (m?’l)K < e K/m < 1/1og |G,
and thus |G|* < 2 and |G|/2 < |A; + -+ + Ag|. Similarly we obtain

Gl/2 < |Agg1+ -+ + Askl.
Since A+ B = G if |A|,|B| > |G|/2, we conclude
A+ -+ Ak =G

Finally note that for m = 2, we have A = 275 and thus to obtain |G|/2 < |G[*"* A, ],
it suffices to have K > loglog |G]|.

3 Quasi-random Groups

While Example 3 shows that the bound of O(loglog|G|) is essential in Theorem 2, for
certain non-Abelian groups, it is possible to achieve the constant bound similar to what
is conjectured in Conjecture 1. A finite group G is called D-quasirandom if all non-trivial
unitary representations of G have dimension at least D. The terminology “quasirandom
group” was introduced explicitly by Gowers in the fundamental paper [Gow08] where he
showed that dense Cayley graphs in quasirandom groups are quasirandom graphs in the
sense of Chung, Graham, and Wilson [CGW89]. The group SLy(Z,) is an example of a
highly quasirandom group. The so-called Frobenius lemma says that SLy(Z,) is (p—1)/2-
quasirandom. This has to be compared to the cardinality of this group, |SLa(Z,)| = p*—p.
The basic fact that we will use about quasirandom groups is the following theorem of
Gowers (See also [Taolb, Exercise 3.1.1]).

Theorem 6 ([Gow08]). Let G be a D-quasirandom finite group. Then every A, B,C C G
with |A||B||C| > |G|/ D satisfy ABC = G.

We will also need the noncommutative version of Ruzsa’s inequality.

Lemma 7 (Ruzsa inequality [Ruz96]). Let A, B,C C G be finite subsets of a group G.
Then

|AB~!||BC™|

A0 <
B
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Proof. The claims follows immediately from fact that by the identity ac™' = ab~tbct,
every element ac™! in AC~! has at least | B| distinct representations of the from zy with
(z,y) € (AB™') x (BC™1). O

Finally we can state the analogue of Theorem 2 for quasi-random groups.

Theorem 8. Let G be a |G|°-quasirandom finite group for some § > 0. If the sets
Ay, ... Ax C G satisfy ;A7 = G for all 1 < i < K where K > log(3/3). Then
Al ce A3K =dG.

Proof. Obviously |A;] > |G|Y2. For 2 < i < K, substituting A = C = A;! and B =
Aj...A;_1 in Lemma 7, we obtain

VIGIAL. .. Ai] <AL Ay,
which in turn shows
G2 <AL Akl
Since K > log(3/9), we have

GG < |A; ... Ax].

We obtain a similar bound for |Ag 1 ... Ask| and |Agk 1 - .. Ask|, and the result follows
from Theorem 6. [l

Remark 9. Note that in particular for G = SLy(Z,,), if p > 7, and Ay, ..., A2 C G satisty
AZAl_l = G, then Al .. .Alg =G.
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