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Abstract

A bi-Cayley graph is a graph which admits a semiregular group of automorphisms
with two orbits of equal size. In this paper, we give a characterization of cubic non-
Cayley vertex-transitive bi-Cayley graphs over a regular p-group, where p > 5 is
a prime. As an application, a classification of cubic non-Cayley vertex-transitive
graphs of order 2p3 is given for each prime p.
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1 Introduction

All groups considered in this paper are finite, and all graphs are finite, connected, simple
and undirected. For the group-theoretic and graph-theoretic terminology not defined here
we refer the reader to [2, 18].

A graph is said to be a bi-Cayley graph over a group H if it admits H as a semiregular
automorphism group with two orbits of equal size. (Some authors have used the term semi-
Cayley instead [9, 8, 4, 13]. In this paper, we follow [11] to use the term bi-Cayley.) Note
that every bi-Cayley graph admits the following concrete realization. Let R,L and S be
subsets of a group H such that R = R−1, L = L−1 and R∪L does not contain the identity
element of H. Define the graph BiCay(H,R,L, S) to have vertex set the union of the right
part H0 = {h0 | h ∈ H} and the left part H1 = {h1 | h ∈ H}, and edge set the union of
the right edges {{h0, g0} | gh−1 ∈ R}, the left edges {{h1, g1} | gh−1 ∈ L} and the spokes
{{h0, g1} | gh−1 ∈ S} (Note that some authors label the vertices of a bi-Cayley graph for a
group H with ordered pairs (h, i) for h ∈ H and i ∈ {0, 1}, while we are using hi to denote
(h, i)). For the case when |S| = 1, the bi-Cayley graph BiCay(H,R,L, S) is also called
one-matching bi-Cayley graph (see [11]). Also, if |R| = |L| = s, then BiCay(H,R,L, S), is
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said to be an s-type bi-Cayley graph, and if H is abelian, then BiCay(H,R,L, S) is simply
called an abelian bi-Cayley graph.

In the study of bi-Cayley graphs, a natural problem is to characterize or classify bi-
Cayley graphs over a given group with certain valency and specific symmetric property.
Some partial answers for this problem have been obtained. For example, in [16] Pisanski
classified cubic bi-Cayley graphs over cyclic groups, and in [11], Kovács et al. gave a
description of arc-transitive one-matching bi-Cayley graphs over abelian groups, from
which one can obtain the classification of cubic arc-transitive one-matching bi-Cayley
graphs over abelian groups. In [23], the automorphisms of the bi-Cayley graphs were
investigated. In particular, some sufficient conditions for a bi-Cayley graph being vertex-
transitive or Cayley were given, and moreover, for a one-matching bi-Cayley graph Γ over
a group H, the normalizer of the group H in Aut(Γ) was determined. By using this, a
classification of cubic vertex-transitive bi-Cayley graphs over abelian groups was given.
The facts listed above provide the motivation for us to consider the following problem.

Problem 1. Characterize cubic non-Cayley vertex-transitive bi-Cayley graphs over a
p-group for an odd prime p.

Another motivation for us to consider this problem is: it is also related to the study
of non-Cayley vertex-transitive graphs which is very active in 1980’s. Let p > 3 be a
prime. It is easy to prove that every connected cubic non-Cayley vertex-transitive graph
of order 2pn(n > 1) is a bi-Cayley graph over a p-group (see Lemma 9). So the above
problem is equivalent to the problem of characterizing cubic non-Cayley vertex-transitive
graphs of order 2pn. By [5], every cubic symmetric graph of order 2pn (p > 5 is a prime)
is a Cayley graph (see Proposition 4). Clearly, this is not true for the case when p = 5
because the Petersen graph is non-Cayley. In fact, one may construct infinitely many
cubic non-Cayley symmetric graphs of order 2 · 5n by considering the regular coverings of
the Petersen graph.

It is known that for a prime p, every cubic non-Cayley vertex-transitive graph of order
2p or 2p2 is a generalized Petersen graph (see [14, 22]). In [12], the authors proved that
every cubic non-Cayley vertex-transitive graph of order 2pn, where p > 7 is a prime and
n 6 p, is a bi-Cayley graph over a p-group P generated by two elements a and b of the
same order and admitting an automorphism α ∈ Aut(P ) of order 4 such that aα = b and
bα = a−1.

In this paper, we solve the above problem for the case when P is a regular p-group
where p > 5 is a prime. It is proved that a connected cubic vertex-transitive bi-Cayley
graph over a regular p-group P , where p > 5 is a prime, is non-Cayley if and only
if Γ = BiCay(P,R, L, {1}) is 2-type, and Cay(P,R ∪ L) is a tetravalent normal arc-
transitive Cayley graph with Aut(P,R ∪ L) ∼= Z4. As an application, a classification of
cubic non-Cayley vertex-transitive graphs of order 2p3 is given for each prime p.
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2 Preliminaries

In this section, we shall introduce some notations, terminology and preliminary results.
Let n be a positive integer. Denote by Zn the cyclic group of order n, by Z∗n the multi-
plicative group of Zn consisting of numbers coprime to n, and by D2n the dihedral group
of order 2n, respectively.

For a finite, simple and undirected graph X, we use V (X), E(X), A(X) and Aut(X)
to denote its vertex set, edge set, arc set and full automorphism group, respectively. For
u, v ∈ V (X), u ∼ v means that u is adjacent to v and denote by {u, v} the edge incident
to u and v in X. For any subset B of V (X), the subgraph of X induced by B will
be denoted by X[B]. A graph X is said to be vertex-transitive, and arc-transitive (or
symmetric) if Aut(X) acts transitively on V (X) and A(X), respectively.

Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer
of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular
on Ω if Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular. Given a
finite group G and an inverse closed subset S ⊆ G \ {1}, the Cayley graph Cay(G,S) on
G with respect to S is defined to have vertex set G and edge set {{g, sg} | g ∈ G, s ∈ S}.
A Cayley graph Cay(G,S) is connected if and only if S generates G. Given a g ∈ G,
define the permutation R(g) on G by x 7→ xg, x ∈ G. Then R(G) = {R(g) | g ∈ G},
called the right regular representation of G, is a permutation group isomorphic to G. It is
well-known that R(G) 6 Aut(Cay(G,S)). So, Cay(G,S) is vertex-transitive. In general,
a vertex-transitive graph X is isomorphic to a Cayley graph on a group G if and only if
its automorphism group has a subgroup isomorphic to G, acting regularly on the vertex
set of X (see [1, Lemma 16.3]).

A Cayley graph Cay(G,S) is said to be normal if R(G) is normal in Aut(Cay(G,S))
(see [19]). Set A = Aut(Cay(G,S)) and Aut(G,S) = {α ∈ Aut(G) | Sα = S}.

Proposition 2. [19, Proposition 1.5] The Cayley graph Cay(G,S) is normal if and only
if A1 = Aut(G,S), where A1 is the stabilizer of the identity 1 of G in A.

Let p be a prime. A finite p-group P is called a regular p-group if for any two elements
x and y in P , there exist c1, c2, · · · , cr in the derived group of 〈x, y〉 such that (xy)p =
xpypcp1c

p
2 · · · cpr.

Proposition 3. [6, Theorem 3.1] Let p be a prime and G a regular p-group with p 6=
2, 5. Let X = Cay(G,S) be a connected tetravalent Cayley graph on G. Then we have
Aut(Cay(G,S)) = R(G) o Aut(G,S).

Proposition 4. [5, Corollary 3.4] Let p > 5 be a prime. Then every connected cubic
symmetric graph of order 2pn is a Cayley graph.

The following proposition lists all of the tetravalent connected arc-transitive Cayley
graphs of order p3 for each prime p.

Proposition 5. [7, Theorem 4.1] Let p be a prime and let X = Cay(G,S) be a tetravalent
connected arc-transitive Cayley graph of order p3. Then one of the following holds.
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(1) G = Zp3 = 〈a〉, S = {a, a−1, aλ, a−λ} (λ2 ≡ −1 (mod p3)).

(2) G = Zp2 × Zp = 〈a〉 × 〈b〉, S = {a, a−1, aλb, (aλb)−1} (λ2 ≡ −1 (mod p)).

(3) G = Zp2 × Zp = 〈a〉 × 〈b〉, S = {a, a−1, ab, (ab)−1}.

(4) G = 〈a, b, c | ap = bp = cp = 1, c = [a, b], [a, c] = [b, c] = 1〉, S = {a, a−1, b, b−1}.

To end this section, we give some results regarding the bi-Cayley graphs. For the proof
of these results, one may see [23]. Let Γ = BiCay(H,R,L, S) be a connected bi-Cayley
graph over a group H. The following proposition gives some basic properties of Γ.

Proposition 6. The following hold.

(1) H is generated by R ∪ L ∪ S.

(2) If S 6= ∅, then S can be chosen to contain the identity element of H.

(3) For any automorphism α of H, BiCay(H,R,L, S) ∼=BiCay(H,Rα, Lα, Sα).

Let R(H) denote the right regular representation of H. Then R(H) can be regarded
as a group of automorphisms of BiCay(H,R,L, S) acting on its vertices by the rule

h
R(g)
i = (hg)i, ∀i ∈ Z2, h, g ∈ H.

For an automorphism α of H, define two permutations on V (Γ) = H0 ∪H1 as follows:

δα : h0 7→ (hα)1, h1 7→ (hα)0,∀h ∈ H,
σα : h0 7→ (hα)0, h1 7→ (hα)1,∀h ∈ H.

(1)

Set
I = {δα | α ∈ Aut(H) s.t. Rα = L,Lα = R, Sα = S−1},
F = 〈σα | α ∈ Aut(H) s.t. Rα = R,Lα = L, Sα = S〉. (2)

Proposition 7. Each element in I ∪ F is an automorphism of Γ. Furthermore, for any
δα ∈ I, if α has order 2, then 〈R(H), δα〉 = R(H) o 〈δα〉 acts regularly on V (Γ).

Proposition 8. Let Γ =BiCay(H,R,L, {1}) be a connected one-matching bi-Cayley graph
over the group H. Then Aut(Γ) contains a regular subgroup containing R(H) if and only
if there exists an automorphism α ∈ Aut(H) of order at most 2 such that Rα = L.

3 Characterization

Lemma 9. Let p > 3 be a prime. Then every connected cubic non-Cayley vertex-transitive
graph of order 2pn(n > 1) is a bi-Cayley graph over a p-group.
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Proof. Let Γ be a cubic non-Cayley vertex-transitive graph of order 2pn with p > 3 a
prime. Set A = Aut(Γ). By Proposition 4, either Γ is non-symmetric or Γ is symmetric
and p = 5. Let P be a Sylow p-subgroup of A. If Γ is non-symmetric, then the vertex-
stabilizer Av of v ∈ V (Γ) is a 2-group, and so P is semiregular on V (Γ). If Γ is symmetric
and p = 5, then Av is a {2, 3}-group, and so P is also semiregular on V (Γ). Consequently,
P is always semiregular and has two orbits of equal size. This implies that Γ must be a
bi-Cayley graph over P . �

Now we introduce the concept of quotient graph which will be used in the proof of
the following lemma. Let Γ be a connected vertex-transitive graph, and let G 6 Aut(Γ)
be vertex-transitive on Γ. For a G-invariant partition B of V (Γ), the quotient graph ΓB
is defined as the graph with vertex set B such that, for any two vertices B,C ∈ B, B is
adjacent to C if and only if there exist u ∈ B and v ∈ C which are adjacent in Γ. Let
N be a normal subgroup of G. Then the set B of orbits of N in V (Γ) is a G-invariant
partition of V (Γ). In this case, the symbol ΓB will be replaced by ΓN .

Lemma 10. Let Γ = BiCay(P,R, L, S) be a connected cubic non-Cayley vertex-transitive
bi-Cayley graph over a regular p-group P , where p > 5 is a prime. Let A = Aut(Γ). Then
R(P ) is a normal Sylow p-subgroup of A.

Proof. By Proposition 4, Γ must be non-symmetric. It follows that the vertex-stabilizer
Av of any v ∈ V (Γ) in A is a 2-group. This implies that Av/A

∗
v 6 Z2, where A∗v is the

kernel of Av acting on the neighborhood of v. Since Γ is non-Cayley, one has Av > 1.
If Av/A

∗
v = 1, then Av(= A∗v) fixes all neighbors of v, and by the vertex-transitivity

and connectedness of Γ, we get that Av fixes all vertices of Γ, forcing that Av = 1, a
contradiction. Thus, Av/A

∗
v
∼= Z2, and so there is one and only one neighbor, say u, of v

such that Au = Av. By the arbitrariness of v, the following set

B = {{u, v} | u, v ∈ V (Γ) such that Au = Av}.

is a 1-factor of Γ. Clearly, for any g ∈ A, Aug = Agu = Agv = Avg . It follows that B is also
an A-invariant partition of V (Γ). Consider the quotient graph ΓB of Γ relative to B, and
let K be the kernel of A acting on V (ΓB). Then A/K is vertex-transitive on ΓB and so
ΓB has regular valency. Since Γ is cubic, ΓB has valency at most 4, and since |ΓB| = |P |
is odd, the valency of ΓB is 2 or 4. Since p is odd and K is a 2-group, R(P ) ∼= R(P )K/K
must be regular on V (ΓB).

Suppose K 6= 1. Then, B is the set of orbits of K. Since each orbit of K is just
an edge of Γ, the quotient graph ΓB must be a cycle of length pn, where pn = |P |, and
moreover, since Γ has valency 3, the edges between any two adjacent orbits of K form
a perfect matching. It follows that the neighbors of any v ∈ V (Γ) are in three different
orbits of K. Thus, Kv fixes each neighbor of v. By the connectedness of Γ, we obtain
that Kv = 1 and hence K ∼= Z2. As R(P )K/K is regular on V (ΓB), R(P )K = R(P )×K
is regular on V (Γ), implying that Γ is a Cayley graph, a contradiction.

Now we know that K = 1. Then A acts faithfully on B, and so A 6 Aut(ΓB). Since
R(P ) = R(P )K/K acts regularly on V (ΓB), ΓB can be viewed as a Cayley graph on P .
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If ΓB has valency 2, then ΓB is a cycle of length pn and Aut(ΓB) ∼= D2pn . It follows that
|A| = 2pn = 2|P |, contradicting that A is not regular on V (Γ). Thus, ΓB has valency 4.
Since P is a regular p-group with p 6= 2, 5, by Proposition 3, ΓB is a normal Cayley graph
on P . It follows that R(P ) E Aut(ΓB), and since A 6 Aut(ΓB), one has R(P ) E A, as
required. �

By Huppert [10, III, Theorem 10.2], a p-group of order pn with n 6 p is regular. By
Lemma 9, the following corollary is straightforward.

Corollary 11. [12, Lemma 4.2] Let Γ be a connected cubic vertex-transitive graph of order
2pn, where p > 7 is a prime and n 6 p. Then a Sylow p-subgroup of Aut(Γ) is normal.

The following is the main result of this section.

Theorem 12. Let Γ = BiCay(P,R, L, S) be a connected cubic vertex-transitive bi-Cayley
graph over a regular p-group P , where p > 5 is a prime. Then Γ is non-Cayley if and
only if Γ = BiCay(P,R, L, {1}) is 2-type, and Cay(P,R ∪ L) is a tetravalent normal
arc-transitive Cayley graph with Aut(P,R ∪ L) ∼= Z4.

Proof. We first prove the sufficiency. Since R = R−1 and L = L−1, we may assume
that R = {a, a−1} and L = {b, b−1}. Since Aut(P,R ∪ L) ∼= Z4, we may assume that
Aut(P,R ∪ L) = 〈α〉 such that aα = b, bα = a−1. In particular, α interchanges R and
L. By the definition of δα (see Eq 1)), δα interchanges the two orbits of R(P ). It
follows from Proposition 7 that Γ is vertex-transitive. Suppose that Γ is Cayley. Since
Γ = BiCay(P,R, L, {1}) is 2-type, by Proposition 8 there is an automorphism β ∈ Aut(P )
of order at most 2 such that Rβ = L. This implies that β ∈ Aut(P,R∪L) = 〈α〉. Clearly,
R 6= L, so β has order 2. It follows that β = α2. However, Rα2

= R and Lα
2

= L, a
contradiction. Thus, Γ is non-Cayley.

For the necessity, since p is odd, the subgraph induced by each orbit of R(P ) must
have even valency. It follows that Γ is 0- or 2-type.

Case 1 Γ is 0-type.
By Lemma 10, R(P ) E Aut(Γ). Since R(P ) has two orbits on V (Γ), the quotient

graph ΓR(P ) of Γ relative to R(P ) is the 3-dipole Dip3 (see Fig. (1)). This implies that

t t

Figure 1: The 3-dipole Dip3

Γ is a regular cover of Dip3, and so Aut(Γ) can project to a subgroup of Aut(ΓR(P )).
Since Aut(Dip3) ∼= S3 × Z2, Aut(Γ)/R(P ) 6 Z2 × Z2 because Γ is not symmetric by
Proposition 4. Since p > 2, Aut(Γ) = R(P ) o Q, where 1 < Q 6 Z2 × Z2 is a Sylow
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2-subgroup of Aut(Γ). As Γ is vertex-transitive, there exists a 2-element, say g, such that
g interchanges the two orbits of R(P ). Since Q 6 Z2 × Z2, g must be an involution.
Therefore, R(P )o 〈g〉 acts regularly on V (Γ), and so Γ is Cayley. A contradiction occurs.

Case 2 Γ is 2-type.
Recall that V (Γ) = P0 ∪ P1 with P0 = {g0 | g ∈ P} and P1 = {g1 | g ∈ P}. By

Proposition 6 (2), we may assume that S = {1}. It follows that {g0, g1} ∈ E(Γ) for each
g ∈ P . Set A = Aut(Γ). Then A is not regular on V (Γ). So, for each g ∈ P , we have
Ag0 6= 1. Since R(P )EA, A fixes the partition V (Γ) = P0∪P1, and since g1 is the unique
neighbor of g0 in P1, it follows that Ag0 fixes g1. This implies that for any α ∈ A, either
{g0, g1}α = {g0, g1} or {g0, g1}α ∩ {g0, g1} = ∅. Set B = {{g0, g1} | g ∈ P}. Then A acts
transitively on B. Let K be the kernel of A acting on B.

Suppose K 6= 1. Clearly, B is the set of orbits of K. Since each orbit of K contains
exactly one edge, the quotient graph ΓB of Γ relative to B must be a cycle of length pn,
where pn = |P |. It follows that the neighbors of any v ∈ V (Γ) are in three different orbits
of K. Thus, Kv fixes each neighbor of v. By the connectedness of Γ, we obtain that
Kv = 1 and hence K ∼= Z2. Then R(P )×K is regular on V (Γ), and so Γ can be viewed
as a Cayley graph on R(P )×K. This is impossible.

Now assume that K = 1. Then A acts faithfully on B. It follows that A 6 Aut(ΓB).
It is easy to see that R(P ) is regular on B, and so ΓB can be viewed as a Cayley graph
on P . Recall that Γ = BiCay(P,R, L, {1}). Set R = {a, b} and L = {x, y}.

Suppose |R∩L| = 2. Then R = L. In this case, it is easy to see that the permutation
α =

∏
g∈P (g0 g1) is an automorphism of Γ. Furthermore, α commutes with R(P ). So,

R(P )× 〈α〉 acts regularly on V (Γ), a contradiction.
Suppose |R∩L| = 1. Without loss of generality, assume that a = x. Then P = 〈a, b, y〉.

Since R−1 = R and L−1 = L, all a, b, x, y are involutions. This is clearly impossible
because P is a p-group with p > 2.

Suppose |R∩L| = 0. In this case, the neighbors of {10, 11} in ΓB are {a0, a1}, {b0, b1},
{x0, x1} and {y0, y1}. So, ΓB is a tetravalent Cayley graph on P . Note that A10 = A11 .
Since A is not regular on V (Γ), A10 interchanges a0 and b0, and also interchanges x1
and y1. Since {10, 11} is a block of A, A contains an element interchanging 10 and 11.
This implies that A{10,11} is transitive on the neighborhood of {10, 11} in ΓB. So, A is an
arc-transitive automorphism group of ΓB. Let X = Cay(P,R ∪ L). It is easy to verify
that the following map

f : g 7→ {g0, g1},∀g ∈ P
is an isomorphism from X to ΓB. So, X ∼= ΓB. Since ΓB is arc-transitive, X is also
arc-transitive. Since P is a p-group with p > 2, we may assume that R = {a, a−1}
and L = {x, x−1}. By Proposition 3, X is a normal Cayley graph, and so Aut(ΓB) =
R(P )oAut(P,R∪L). Clearly, Aut(P,R∪L) acts faithfully on R∪L. Since p > 2, it is easy
to see that R,L are blocks of Aut(P,R∪L) on R∪L. It follows that Aut(P,R∪L) 6 D8,
and so A 6 Aut(ΓB) 6 R(P ) oD8. Also, as R,L are blocks of Aut(P,R ∪ L) on R ∪ L,
by Proposition 7, each element in Aut(P,R ∪ L) can also induce an automorphism of Γ.
This implies that A = Aut(ΓB). Since Γ is arc-transitive, Aut(P,R ∪ L) is isomorphic to
Z2 × Z2,Z4, or D8.
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If Aut(P,R∪L) ∼= Z2×Z2 or D8, then there exists an involution, say α, in Aut(P,R∪L)
which interchanges R and L. By Proposition 7, α can induce an automorphism, say δα, of
Γ of order 2 such that R(P )o 〈δα〉 is regular on V (Γ), and so Γ is Cayley, a contradiction.
Thus, Aut(P,R ∪ L) ∼= Z4. �

4 Cubic non-Cayley vertex-transitive graphs of order 2p3

Let p be an odd prime. We first introduce some cubic connected non-Cayley vertex-
transitive graphs of order 2p3. It is well known that Z∗pn is cyclic and has order pn−1(p−1).
So, if 4 | (p− 1) then Z∗pn has a unique subgroup of order 4. Clearly, if λ is an element of
order 4 in Z∗pn , then {1,−1, λ,−λ} is the unique subgroup of order 4 in the cyclic group
Z∗pn .

Example 13. Let p be a prime such that p − 1 is divisible by 4 and let λ be an
element of order 4 in Z∗p3 . The graph NC02p3 is defined to be the bi-Cayley graph

BiCay(Zp3 , R, L, {1}), where Zp3 = 〈a〉, R = {a, a−1} and L = {aλ, a−λ}.

By the uniqueness of the subgroup of order 4 in Zp3 , the graph NC02p3 is independent
of the choice of λ. Let α be the automorphism of Zp3 induced by the map a 7→ aλ. Then
α swaps R and L, and by Proposition 7, δα ∈ Aut(NC02p3) (see Equations (1)-(2) for the

definition of δα) and so NC02p3 is vertex-transitive because δα swaps the two orbits of Zp3
on V (NC02p3).

In view of [20, Theorem 1], we have Cay(Zp3 , R ∪ L) is a tetravalent normal arc-
transitive Cayley graph and Aut(Zp3 , R∪L) ∼= Z4. If p = 5, then by Magma [3], NC02p3 is

non-Cayley vertex-transitive and |Aut(NC02p3)| = 4p3, and if p > 5, then by Theorem 12,

again we have NC02p3 is non-Cayley vertex-transitive.

Example 14. Let p be a prime such that p− 1 is divisible by 4 and let λ be an element
of order 4 in Z∗p. The graph NC12p3 is defined to be the bi-Cayley graph BiCay(Zp2 ×
Zp, R, L, {1}), where Zp2 × Zp = 〈a〉 × 〈b〉, R = {a, a−1} and L = {(ab)λ, (ab)−λ}.

By the uniqueness of the subgroup of order 4 in Zp, the graph NC12p3 is independent
of the choice of λ. Let β be the automorphism of Zp2 × Zp induced by the map a 7→
(ab)λ, b 7→ aλ

3+λb−λ. Then β swaps R and L, and by Proposition 7, δβ ∈ Aut(NC12p3) and

so NC12p3 is vertex-transitive because δβ swaps the two orbits of Zp2 o Zp on V (NC12p3).
In view of [21, Proposition 3.3], we have Cay(Zp2 ×Zp, R ∪L) is a tetravalent normal

arc-transitive Cayley graph and Aut(Zp2 ×Zp, R∪L) ∼= Z4. If p = 5, then by Magma [3],
NC12p3 is non-Cayley vertex-transitive and |Aut(NC12p3)| = 4p3, and if p > 5, then by

Theorem 12, again we have NC12p3 is non-Cayley vertex-transitive.

Also, note that Aut(NC02p3) ∼= Zp3 oZ4 and Aut(NC12p3) ∼= (Zp2 oZp)oZ4. It follows

that NC02p3 and NC12p3 are not isomorphic to each other.

Theorem 15. Let p be a prime. Then a cubic vertex-transitive graph of order 2p3 is
non-Cayley if and only if it is isomorphic to NC02p3 or NC12p3.
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Proof. By [15], all connected cubic vertex-transitive graphs of order 16 are Cayley. By [17],
if p = 3, then all connected cubic vertex-transitive graphs of order 54 are Cayley, and if
p = 5, then up to isomorphism, there are exactly two non-Cayley vertex-transitive graphs
of order 2 · 53, and so Γ ∼= NC02·53 or NC12·53 .

In what follows, assume that p > 5. By Lemma 9, Γ is a bi-Cayley graph over a
group P , where P is a Sylow p-subgroup of Aut(Γ). By Theorem 12, Γ = BiCay(P, R,
L, {1}) and Cay(P, R ∪ L) is a tetravalent normal arc-transitive Cayley graph such that
Aut(P,R ∪ L) ∼= Z4. Since |Γ| = 2p3, one has |P | = p3. Noting that R = R−1 and
L = L−1, by Proposition 5, one of the following happens:

(1) P = Zp3 = 〈a〉, R = {a, a−1}, L = {aλ, a−λ}(λ2 ≡ −1 (mod p3));
(2) P = Zp2 × Zp = 〈a〉 × 〈b〉, R = {a, a−1}, L = {(ab)λ, (ab)−λ}(λ2 ≡ −1 (mod p));
(3) P = Zp2 × Zp = 〈a〉 × 〈b〉, R = {a, a−1}, L = {ab, (ab)−1};
(4) P = 〈a, b, c | ap = bp = cp = 1, c = [a, b], [a, c] = [b, c] = 1〉,

R = {a, a−1}, L = {b, b−1}.

If (1) happens, then Γ ∼= NC02p3 , and if (2) happens, then Γ ∼= NC12p3 . If (3) happens, then
in view of [21, Proposition 3.3], we have Aut(P,R ∪ L) ∼= Z2 × Z2. This is impossible by
Theorem 12. If (3) happens, then P = 〈a, b, c | ap = bp = cp = 1, c = [a, b], [a, c] = [b, c] =
1〉, and any two elements generating P have the same relation as a and b. It follows that
Aut(P,R ∪ L) ∼= D8, and by Theorem 12, Γ is not non-Cayley, a contradiction. �
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