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Abstract

We prove in two different ways that the number of prefixes of length k of minimal
factorisations of the n-cycle (1 . . . n) as a product of n−1 transpositions is

(
n
k+1

)
nk−1.

Our first proof is not bijective but makes use of a correspondence between minimal
factorisations and Cayley trees. The second proof consists in establishing a bijection
between the set which we want to enumerate and the set of parking functions of a
certain kind, which can be counted by a standard conjugation argument.

Keywords: Cayley graph of permutations, minimal factorisations, parking func-
tions.

1 Introduction

It is very well known that the n-cycle (1 2 . . . n) cannot be written as a product of less
than n− 1 transpositions and that there are nn−2 distinct ways of writing it as a product
of exactly n − 1 transpositions. The sequence (nn−2)n>1 also counts a variety of other
combinatorial objects, including Cayley trees and parking functions, and a wealth of
bijections have been described between minimal factorisations, Cayley trees and parking
functions (see the works of Dénes [6], Moszkowski [14], Goulden-Pepper [9], Goulden-Yong
[8], Stanley [17]).

The enumeration of minimal factorisations of (1 2 . . . n) as a product of transpositions
was also generalised in several directions, including the enumeration of minimal factorisa-
tions as a product of cycles of prescribed lengths (Biane [4]), the enumerations of classes
of factorisations which differ by exchanging commuting transpositions (Eidswick [7]), the
enumeration of minimal factorisations involving only certain types of transpositions, or
which involve a fixed number of times a certain integer (Rattan [15], Irving-Rattan [10]).
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In the course of the study of the distribution of the eigenvalues of certain random
unitary matrices, using the relations between the unitary groups and the symmetric groups
(see [12]), we were led to enumerating the sequences of transpositions which appear as
initial segments of a minimal factorisation of the n-cycle (1 2 . . . n). This problem seemed
not to have been studied previously, and the way in which we were able to solve it was not
particularly enlightening. The object of this paper is to give a simpler and more explicit
solution to this enumeration problem. We will also revisit our original proof and give a
more self-contained version of it.

Let us give a precise statement of our result. Let n > 1 be an integer. Let Sn

be the symmetric group of order n. Let Tn ⊆ Sn be the subset which consists of all
transpositions. Let k ∈ {0, . . . , n− 1} be an integer. We define

Fn,k =
{

(τ1, . . . , τk) ∈ Tkn : ∃ (τk+1, . . . , τn−1) ∈ Tn−1−kn , τ1 . . . τn−1 = (1 2 . . . n)
}

and call any element of Fn,k a k-prefix of a minimal factorisation of (1 . . . n). Our main
result is the following.

Theorem 1. The set Fn,k has
(
n
k+1

)
nk−1 elements.

The cases where n = 1, or k = 0, or k = 1, are trivial. The case k = n − 1
reproduces the classical result mentioned at the beginning of this introduction. The array
(|Fn,k|)n>1,06k6n−1 corresponds to the sequence A033842 in the OEIS.

In Section 2, we recall some basic properties of the geometry of the symmetric group
generated by its transpositions. In Section 3, we use classical results on the enumeration
of Cayley trees to give a first proof of Theorem 1. We make this section as self-contained
as possible by recalling without proof bijections which allow one to prove the results which
we use. In Section 4, we investigate in more detail the elements of Fn,k, especially those
which enjoy a certain monotonicity property. In Section 5, we construct an action of the
symmetric group Sk on the set Fn,k which allows us to turn any factorisation into a non-
decreasing one. In Section 6, we briefly review, as a preparation for our main argument,
the classical parking functions and sketch their relation with minimal factorisations, along
the lines of the work of Stanley on non-crossing partitions [17]. In Section 7, we define and
enumerate the analogues of parking functions which finally enable us to give, in Section
8, a bijective proof of Theorem 1.

2 The geometry of the symmetric group

Let n > 1 be an integer. Recall that Sn denotes the symmetric group of order n and
Tn ⊂ Sn the subset which consists of all transpositions. Since Tn is a conjugacy class of
Sn, the Cayley graph of the couple (Sn,Tn) is defined without ambiguity regarding the
order of multiplications. The most fundamental property of this graph is expressed by
the identity

(x1 . . . xp)(y1 . . . yq)(xpyq) = (x1 . . . xpy1 . . . yq),
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valid for any sequence of pairwise distinct integers x1, . . . , xp, y1, . . . , yq. According to this
identity, two permutations are neighbours in the Cayley graph of (Sn,Tn) if and only
if one of them is obtained by merging two cycles of the other. In particular, the total
number of cycles of two neighbouring permutations differs by 1.

In fact, the graph distance between any two permutations can be computed by counting
cycles. For all σ ∈ Sn, let us denote by `(σ) the number of cycles of σ, including trivial
cycles. For example, σ is a transposition if and only if `(σ) = n − 1. Then the distance
between two permutations σ1 and σ2, which we shall denote by d(σ1, σ2), is simply given
by d(σ1, σ2) = n− `(σ1σ−12 ).

The notion of distance on Sn allows one to define a partial order on Sn, by declaring
σ1 4 σ2 if and only if d(id, σ2) = d(id, σ1) + d(σ1, σ2). The trivial permutation is the
minimum of Sn with respect to this order, and the n-cycles are its maximal elements.
Observe that the set of k-prefixes of minimal factorisations of (1 . . . n) can be rewritten
as

Fn,k =
{

(τ1, . . . , τk) ∈ (Tn)k : d(id, τ1 . . . τk) = k, τ1 . . . τk 4 (1 . . . n)
}

=
{

(τ1, . . . , τk) ∈ (Tn)k : id 4 τ1 4 τ1τ2 4 . . . 4 τ1 . . . τk 4 (1 . . . n)
}
.

The last description suggests to think of the elements of Fn,k as paths in the Cayley
graph of the symmetric group and this is a point of view which we shall indeed adopt
later.

The following very useful characterisation of the set of permutations which are smaller
than the n-cycle (1 . . . n) is a consequence of [5, Theorem 1].

Proposition 2. Let σ ∈ Sn be a permutation. The relation σ 4 (1 . . . n) holds if and
only if the following two conditions hold:

1. Each cycle of σ has the cyclic order induced by (1 . . . n).

2. The partition of {1, . . . , n} by the orbits of σ is non-crossing with respect to the cyclic
order defined by (1 . . . n).

The first condition is equivalent to the following: each cycle of σ can be written
(i1 . . . ir) with i1 < . . . < ir. The second condition means that there exists no subset
{i, j, k, l} of {1, . . . , n} with i < j < k < l such that i and k belong to a cycle of σ and j
and l belong to another cycle of σ.

3 Minimal factorisations and Cayley trees

A Cayley tree of size n is a connected graph with n − 1 edges and n labelled vertices.
Unless otherwise stated, the vertices of a Cayley tree of size n will be labelled by the
integers {1, . . . , n}.

Theorem 3 (Cayley [1]). There are nn−2 Cayley trees of size n.
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Proof. A simple bijective proof of this fact is given by considering the Prüfer code of a
tree. This code is a sequence of n− 2 elements of {1, . . . , n}, obtained by repeating n− 2
times the following operation: identify the leaf of the tree with the smallest label, write
the label of the vertex to which it is attached, and erase the leaf. The observation that
each integer appears once less in the code of a tree than the degree of the corresponding
vertex in the tree leads to a short proof of the fact that the correspondence between a
Cayley tree and its Prüfer code is bijective.

Let us now recall Dénes’ argument for counting the minimal factorisations of (1 . . . n).

Theorem 4 (Dénes [6]). There are nn−2 minimal factorisations of (1 . . . n).

Proof. Dénes counts minimal factorisations not only of (1 . . . n), but of an arbitrary n-
cycle. Let ((i1 j1), . . . , (in−1 jn−1)) be such a factorisation. Construct a graph with vertices
{1, . . . , n} by successively adding the edges {i1, j1}, . . . , {in−1, jn−1}, respectively labelled
1, . . . , n−1. Since for all l > 1 the transposition (il jl) exchanges two points which are not
in the same cycle of (i1 j1) . . . (il−1 jl−1), the corresponding edge joins two vertices which
were not yet in the same connected component of the graph being constructed. Hence,
the final graph is connected, hence a tree. Moreover, this tree together with the labelling
of its edges allows one to reconstruct the factorisation. Finally, Cayley trees with vertex
set {1, . . . , n} and edges labelled by {1, . . . , n− 1} are in one-to-one correspondence with
minimal factorisation of an n-cycle. Since there are (n−1)!nn−2 Cayley trees with labelled
edges and (n − 1)! n-cycles, there are exactly nn−2 minimal factorisations of any given
n-cycle.

Let us finally recall the number of non-crossing partitions of {1, . . . , n} whose block
sizes agree with a prescribed partition of the integer n. We will denote by 1s12s2 . . . nsn

the partition which for all i ∈ {1, . . . , n} has si parts equal to i. In the rest of this section,
we shall consider partitions of n = s1 + 2s2 + . . .+ nsn with n− k = s1 + . . .+ sn blocks.
Let us note for later reference that for such a partition, 0s1 + 1s2 + . . .+ (n− 1)sn = k.

Theorem 5 (Kreweras [11]). The number of non-crossing partitions of {1, . . . , n} with
n − k blocks and the block sizes of which determine the partition 1s12s2 . . . nsn of n, is

n!
(k+1)!s1!...sn!

.

The original proof of this result is due to Kreweras, but we sketch a bijective argument
due to Liaw, Yeh, Hwang and Chang [13].

Proof. Set λ = (λ1, . . . , λn−k) = 1s12s2 . . . nsn . Let π = (π1, . . . , πn−k) be a non-crossing
partition of {1, . . . , n} whose blocks are labelled from 1 to n−k and have sizes λ1, . . . , λn−k.
Set m = maxπn−k and, for each i ∈ {1, . . . , n − k − 1}, let pi be the first element of πi
which one meets after starting from m and moving clockwise. Then the mapping which
to π associates (p1, . . . , pn−k−1) is a bijection from the set of non-crossing partitions of
{1, . . . , n} whose blocks are labelled from 1 to n− k and have respective sizes λ1, . . . , λk
to the set of arrangements of n− k − 1 distinct elements of {1, . . . , n}.
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There are thus n!
(k+1)!

such partitions with labelled blocks. The final result follows from
the fact that there are s1! . . . sn! disctinct ways of labellings the blocks of π such that they
have respective sizes λ1, . . . , λn−k.

These results allow us to count k-prefixes of minimal factorisations of (1 . . . n).

Proof of Theorem 1. Let us count the prefixes (τ1, . . . , τk) according to the cycle structure
of the permutation τ1 . . . τk. This permutation has n−k cycles whose sizes can determine
any partition of n in n − k parts. If 1s1 . . . nsn is such a partition, then a minimal
factorisation of a permutation with this cycle structure is obtained by choosing a minimal
factorisation of each of its cycles, and shuffling these minimal factorisations. Thus,

|Fn,k| =
∑

s1+...+sn=n−k
1s1+...+nsn=n

n!

(k + 1)!s1! . . . sn!
1(1−2)s1 . . . n(n−2)sn k!

0!s1 . . . (n− 1)!sn
,

where the fisrt term counts, according to Proposition 2 and Theorem 5, the number of
permutations in the chosen conjugacy class which are dominated by (1 . . . n), the second,
according to Theorem 4, the number of choices for the minimal factorisations of each cycle
and the third the number of shufflings of these factorisations.

In the next step of the computation, we seem to lose any sense of bijectivity: we
replace the sum over the partitions of the integer n with n − k parts by a sum over all
partitions of the set {1, . . . , n} with n− k blocks, be they crossing or not. This requires
that we include a factor which compensates for the repetitions that this change of index
introduces. We find

|Fn,k| =
∑

partitions of {1,...,n}
with n−k blocks,
si of size i, i=1...n

1!s1s1! . . . n!snsn!

n!

n!

(k + 1)!s1! . . . sn!
1(1−2)s1 . . . n(n−2)sn k!

0!s1 . . . (n− 1)!sn

=
1

k + 1

∑
partitions of {1,...,n}
with n−k blocks

1(1−1)s1 . . . n(n−1)sn ,

where s1, . . . , sn are respectively the numbers of blocks of size 1, . . . , n of the partition
considered.

It now appears, according to Theorem 3, that the sum counts the forests with vertex
set {1, . . . , n} and with n − k connected components, in every connected component of
which a distinguished vertex has been chosen. Adding a vertex labelled 0 to such a forest
and joining the distinguished vertices to this new vertex produces a Cayley tree with
vertex set {0, . . . , n} in which 0 has degree n − k. This correspondence between forests
and trees is bijective, and the Cayley trees with vertex set {0, . . . , n} in which 0 has degree
n− k are exactly those whose Prüfer code involves n− k− 1 times the letter 0. There are(
n−1
k

)
nk such Prüfer codes, hence such trees. Finally,

|Fn,k| =
1

k + 1

(
n− 1

k

)
nk =

(
n

k + 1

)
nk−1,
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as expected.

It is interesting that this proof eventually shows that (k + 1)|Fn,k| is equal to the
number of Cayley trees on {0, . . . , n} in which 0 has n− k neighbours. We were not able
to find a bijective proof of this fact.

4 Non-decreasing minimal factorisations

We now embark on a bijective and much more concrete proof of Theorem 1. Let us
introduce some notation. Let us first agree that writing a transposition under the form
(i j) implies that the inequality i < j holds. Then, when considering an element γ =
(τ1, . . . , τk) of Fn,k, we shall write γ0 = id and, for all l ∈ {1, . . . , k}, γl = τ1 . . . τl. For
all x ∈ {1, . . . , n} and all l ∈ {0, . . . , k}, we shall also denote by Cl(x) the cycle of γl
containing x, which in fact we see simply as a subset of {1, . . . , n}, namely the orbit of x
under γl. Finally, for all permutation σ, we write |σ| = d(id, σ).

Lemma 6. Let γ = ((i1 j1), . . . , (ik jk)) be an element of Fn,k. Choose l ∈ {1, . . . , k}.
The following properties hold.

1. il < minCl−1(jl) and il is the largest element of Cl−1(il) with this property.

2. jl = maxCl−1(jl).

3. il < minCl−1(il + 1).

Proof. 1 and 2. Since |γl| = |γl−1|+1, il and jl belong to distinct cycles of γl−1 and to the
same cycle of γl. The cycle of γl which contains il and jl has the cyclic order induced by
(1 . . . n), so that it is of the form (x1 < . . . < xr < il < y1 < . . . < ys < jl < z1 < . . . < zt).
The cycles of γl−1 which contain il and jl are thus respectively (x1 . . . xr il z1 . . . zt) and
(y1 . . . ys jl). The first two assertions follow. See Figure 1 for an illustration.

1 n2 il jl 1 n2 il jl

Figure 1: On this picture, we see the cycles of γl−1 and γl which contain il, il + 1 and jl.

3. A glance at the left part of Figure 1 should help to see why this assertion is true.
Let us prove it. If il + 1 ∈ Cl−1(jl), then the third assertion follows from the first part of
the first assertion. Let us now assume that il + 1 /∈ Cl−1(jl). In this case, and since by
the second part of the first assertion we know that il + 1 /∈ Cl−1(il), we have the equality
Cl−1(il + 1) = Cl(il + 1). Suppose there was an element x in Cl−1(il + 1) such that x < il.
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Then the quadruplet x < il < il + 1 < jl would violate the non-crossing condition on the
cycles of γl imposed by the condition γl 4 (1 . . . n). This concludes the proof of the third
assertion.

Let us now make an observation of monotonicity (see also [8, Theorem 2.2]).

Lemma 7. Consider γ = ((i1 j1), . . . , (ik jk)) ∈ Fn,k and l,m ∈ {1, . . . , k} with l < m.

1. If il = im, then jl > jm.

2. If jl = jm, then il > im.

3. If i1 6 . . . 6 ik, then j1, . . . , jk are pairwise distinct.

Proof. The multiplication of γm−1 by (im jm) inserts the cycle of jm in γm−1 in the cycle
of i in γm−1, immediately after i. Hence, i, jm, jl are in this cyclic order in their common
cycle of γm. Since γm 4 (1 . . . n) and i < jl, this implies i < jm < jl.

The second assertion follows from the first and the existence of a simple involution of
Fn,k, which we describe in Lemma 8 below.

The third assertion follows immediately from the second.

Lemma 8. Let ((i1 j1), . . . , (ik jk)) be an element of Fn,k. Then the chain of transpo-
sitions ((n + 1 − jk n + 1 − ik), . . . , (n + 1 − j1 n + 1 − i1)) is also an element of
Fn,k.

Proof. Let ϕ ∈ Sn be the involution which exchanges i and n+1− i for all i ∈ {1, . . . , n}.
The point is the identity ϕ(1 . . . n)−1ϕ−1 = (1 . . . n). Let (τ1, . . . , τk) be an element
of Fn,k. Then on one hand |ϕτk . . . τ1ϕ−1| = |τk . . . τ1| = |τ1 . . . τk| = k. On the
other hand, we have the equality |(1 . . . n)−1ϕτk . . . τ1ϕ

−1| = |ϕ−1(1 . . . n)−1ϕτk . . . τ1| =
|(1 . . . n)(τ1 . . . τk)

−1| = n − 1 − k. Hence, ϕτk . . . τ1ϕ
−1 4 (1 . . . n). Finally, the chain of

transpositions (ϕτkϕ
−1, . . . , ϕτ1ϕ

−1) belongs to Fn,k.

The key of our argument is that the elements of Fn,k for which the sequence (i1, . . . , ik)
is non-decreasing are easy to describe and to characterise. We call them non-decreasing
prefixes and we denote by F ↑

n,k the subset of Fn,k consisting of non-decreasing prefixes.
By the support of an element γ of Sn, we mean the set {i ∈ {1, . . . , n} : γ(i) 6= i}.

Lemma 9. Let γ = ((i1 j1), . . . , (ik jk)) be an element of Fn,k such that j1, . . . , jk are
pairwise distinct. The following properties hold.

1. For all l ∈ {1, . . . , k}, jl is a fixed point of γl−1 and γl is obtained from γl−1 by inserting
jl into the cycle of il immediately after il.

2. For all m ∈ {1, . . . , k}, the support of γm is
⋃m
l=1({il} ∪ {jl}).

Proof. For all l ∈ {1, . . . , k}, we have jl > il > . . . > i1 and, by assumption, jl /∈
{j1, . . . , jl−1}, so that jl is a fixed point of γl−1. Hence, γl(il) = jl, and we have γl(jl) =
γl−1(il). This is exactly the first assertion.

The second assertion follows immediately by induction on k.
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We can now characterise the elements of F ↑
n,k.

Proposition 10. Consider ((i1 j1), . . . , (ik jk)) ∈ (Tn)k. The following properties are
equivalent.

1. ((i1 j1), . . . , (ik jk)) ∈ F ↑
n,k.

2. i1 6 . . . 6 ik and for all l,m ∈ {1, . . . , k} such that l < m, one either has jl 6 im or
jl > jm.

Proof. 1 ⇒ 2. Let us prove that the first property implies the second. For this, let
us choose γ = ((i1 j1), . . . , (ik jk)) ∈ F ↑

n,k and l,m with 1 6 l < m 6 k. It follows
from the third assertion of Lemma 7 that jl 6= jm. Let us assume by contradiction that
im < jl < jm. Then, by Lemma 7, il < im. Hence, il < im < jl < jm. We will find a
contradiction with the non-crossing property of the cycles of γm.

To start with, il and jl belong to the same cycle of γm−1. We claim that neither im
nor jm belong to this cycle, so that the cycles of γm which contain il and jl on one hand
and im and jm on the other hand are distinct, which yields the expected contradiction.

For jm, our claim follows from the first assertion of Lemma 9, according to which
Cm−1(jm) = {jm}. For im, let us assume that im belongs to Cm−1(il) = Cm−1(jl). Then
jl would belong to Cm−1(im) and satisfy both jl > im and jl < {jm} = Cm−1(jm), in
contradiction with the first assertion of Lemma 6.

2 ⇒ 1. Let us now prove that the second property implies the first. To start with,
note that the second property implies that j1, . . . , jk are pairwise distinct. Indeed, if
there exists l < m such that jl = jm, then jm = jl 6 im 6 jm, in contradiction with our
agreement that im < jm.

Moreover, note that for the same reason, the equality il = im for l < m implies jl > jm.
We now proceed by induction on k. If k = 1, then the result is true because F ↑

n,1 = Tn.
Let us assume that the result holds for paths of length up to k − 1 and let us consider a
path γ = ((i1 j1), . . . , (ik jk)) ∈ (Tn)k such that the second property holds. By induction,
γk−1 is a product of n− k + 1 cycles with the cyclic order induced by (1 . . . n) and whose
cycles form a non-crossing partition of {1, . . . , n}.

By the second assertion of Lemma 9, the support of γk−1 is the set
⋃k−1
l=1 ({il} ∪ {jl}).

On one hand, for all l ∈ {1, . . . , k − 1}, we have il 6 ik−1 < jk−1. On the other hand, we
observed that j1, . . . , jk are pairwise distinct. Thus, jk is a fixed point of γk−1, so that γk
is a product of n− k cycles.

Let us prove that the cyclic order of the cycle of γk containing jk is the order induced
by (1 . . . n). We certainly have ik < jk and we claim that ik < jk < γk−1(ik) in the cyclic
order of (1 . . . n), which means exactly that γk−1(ik) 6 ik or γk−1(ik) > jk. But γk−1(ik) is
either il for some l ∈ {1, . . . , k − 1}, in which case γk−1(ik) 6 ik, or γk−1(ik) is jl for some
l ∈ {1, . . . , k − 1}, in which case γk−1(ik) 6 ik or γk−1(ik) > jk, by the main assumption.

Let us finally prove that the cycles of γk form a non-crossing partition. The only
way this could not be true is if some cycle contained two elements x and y such that
ik < x < jk < y < γk−1(ik) in the cyclic order. But, by the main assumption again, any
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x such that ik < x < jk does neither belong to {i1, i2, . . . , ik} nor to {j1, j2, . . . , jk} and
hence is a fixed point of γk.

This proposition allows us to prove that a non-decreasing factorisation γ ∈ F ↑
n,k is

completely determined by the sequence (i1, . . . , ik) and the support of γk.

Corollary 11. Let γ = ((i1 j1), . . . , (ik jk)) be an element of F ↑
n,k. For all m ∈ {1, . . . , k},

jm is the minimum of the intersection of {im + 1, . . . , n} with the support of γm.
Moreover, if γ′ = ((i1 j

′
1), . . . , (ik j

′
k)) is another element of F ↑

n,k such that γ′k and γk
have the same support, then γ′ = γ.

Proof. The support of γm is
⋃m
l=1{il} ∪ {j1, . . . , jm}. For all l < m, we have il 6 im and,

by Proposition 10, jl 6 im or jl > jm. The first assertion follows.
Let us prove the second assertion by induction on k. The result is true for k = 0. Let

us assume that is has been proved for paths of length up to k − 1. By the first assertion,
j′k = jk. Hence, δ = ((i1 j1), . . . , (ik−1 jk−1)) and δ′ = ((i1 j

′
1), . . . , (ik−1 j

′
k−1)) are two

elements of Fn,k−1 such that δ′k−1 and δk−1 have the same support. By induction, they
are equal.

5 Permutation of factorisations

In this section, we describe an action of the symmetric group Sk on Fn,k such that
every orbit contains exaclty one non-decreasing prefix. More precisely, let us consider
the projection I : Fn,k → {1, . . . , n− 1}k which sends the chain ((i1 j1), . . . , (ik jk)) to

the sequence (i1, . . . , ik). The group Sk acts naturally on {1, . . . , n− 1}k by the formula
σ · (i1, . . . , ik) = (iσ−1(1), . . . , iσ−1(k)) and we will endow Fn,k with an action of Sk such
that I is an equivariant mapping, which moreover preserves the stabilisers. This last
condition is equivalent to the fact that the restriction of I to each orbit of Sk in Fn,k is
an injection. Hence, the action of Sk on {1, . . . , n − 1}k can be lifted uniquely to Fn,k

through I.
In order to define the action of Sk on Fn,k, we will use the classical action of the

braid group Bk on the product of k copies of an arbitrary group G (see for example [2]).
If β1, . . . , βk−1 are the usual generators of Bk, this action is given by the formula

βl · (g1, . . . , gk) = (g1, . . . , gl+1, g
−1
l+1glgl+1, . . . , gk),

valid for all (g1, . . . , gk) ∈ Gk and all l ∈ {1, . . . , k − 1}. Observe that if T ⊂ G is
a conjugacy class, then T k is stable under this action. Moreover, the product map
(g1, . . . , gn) 7→ g1 . . . gn is invariant under this action.

Let us denote by σ1 = (1 2), . . . , σk−1 = (k − 1 k) the Coxeter generators of Sk, so
that the natural projection Bk → Sk sends βl to σl for all l ∈ {1, . . . , k − 1}. Consider
γ = ((i1 j1), . . . , (ik jk)) in Fn,k and l ∈ {1, . . . , k − 1}. Set

σl · γ =


γ if il = il+1,

βl · γ if il < il+1,
β−1l · γ if il > il+1.

(1)
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Since the action of the braid group preserves the ordered product of the components, σl ·γ
belongs to Fn,k.

Practically, σl · γ is obtained from γ by doing nothing if il = il+1, and otherwise, by
swapping the l-th and (l + 1)-th transpositions of γ and conjugating the one with the
smallest i by the other. In this way, the transposition with the largest i is not modified,
and only the j of the other is affected. For example, if k = 2,

σ1 · ((1 3), (1 2)) = ((1 3), (1 2)),

σ1 · ((1 2), (2 3)) = ((2 3), (1 3)),

σ1 · ((2 3), (1 3)) = ((1 2), (2 3)).

Proposition 12. The action of the Coxeter generators of Sk on Fn,k defined by (1)
extends to an action of Sk.

Moreover, the mapping I : Fn,k → {1, . . . , n− 1}k is equivariant and preserves the
stabilisers. This means that for all γ ∈ Fn,k and all π ∈ Sk, one has π · I(γ) = I(γ) if
and only if π · γ = γ.

Proof. We must prove that the operations which we have defined satisfy the Coxeter
relations σ2

l = id for l ∈ {1, . . . , k − 1}, (σlσm)2 = id for l,m ∈ {1, . . . , k − 1} with
|l −m| > 2, and (σlσl+1)

3 = id for l ∈ {1, . . . , n− 2}.
To prove the first relation, it suffices to observe that σl ·(σl ·γ) is either γ or βlβ

−1
l ·γ or

β−1l βl ·γ, hence in any case γ. The second relation is equivalent to σl ·(σm ·γ) = σm ·(σl ·γ)
and it clearly holds for |l − m| > 2. In order to prove the third relation, there are ten
cases to consider, corresponding to the possible relative positions of il, il+1 and il+2. In
the six cases where il, il+1, il+2 are pairwise distinct, the relation βlβl+1βl = βl+1βlβl+1

implies the relation on (σlσl+1)
3 = id. The other cases are simpler.

The complete verification is probably best done by the reader himself, but Figure 2
below shows, when k = 3, the effect of σ1 and σ2 on γ in all the possible cases regarding
the respective positions of i1, i2, i3.

σ1

σ2

σ1

σ2

σ1

σ2

β1

β2

β1

β−1
2

β−1
1

β−1
2

σ1

σ2

σ1

σ2

σ1

σ2

1

β2

β1

1

β−1
1

β−1
2

σ1σ2 11

Figure 2: Verification of the Coxeter relations for the action of Sk on Fn,k. The top arrow of
the middle circle indicates, for example, that if i1 = i2 < i3, then applying σ2 to γ corresponds,
by definition, to applying β2, and produces an triple of transpositions such that i1 = i3 < i2.

We have thus an action of the symmetric group Sk on Fn,k. It is a straightforward
consequence of its definition that the mapping I is equivariant under this action and
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the natural action on {1, . . . , n− 1}k. If γ ∈ Fn,k and π ∈ Sk satisfy π · γ = γ, then
π ·I(γ) = I(π ·γ) = I(γ). Finally, let us prove that π ·I(γ) = I(γ) implies π ·γ = γ. Let us
choose γ ∈ Fn,k. A permutation π stabilises I(γ) if and only if its cycles are contained in
the level sets of the mapping 1 7→ i1, . . . , k 7→ ik. Thus, the stabiliser of I(γ) is generated
by the transpositions which it contains, and we may restrict ourselves to the case where
π is a transposition (l m) with il = im. We have (l m) = σl . . . σm−2σm−1σm−2 . . . σl and
σm−2 . . . σl = (m − 1 . . . l). Since I is equivariant, the transpositions which are at the
positions m − 1 and m in the chain σm−2 . . . σl · γ have respectively il and im as their
smallest element. Since il = im, we find

(l m) · γ = σl . . . σm−2σm−1σm−2 . . . σl · γ = σl . . . σm−2σm−2 . . . σl · γ = γ,

as expected.

Corollary 13. Let γ = ((i1 j1), . . . , (ik jk)) be an element of Fn,k. The support of γk =

(i1 j1) . . . (ik jk) is the set
⋃k
l=1({il} ∪ {jl}).

Proof. The action of Sk on Fn,k preserves both the support of γk and the set to which
we wish to show that it is equal. Since every orbit contains a non-decreasing chain, that
is, a chain for which the sequence (i1, . . . , in) is non-decreasing, we may assume that the
element γ which we are considering has this property, and apply the second assertion of
Lemma 9 with m = k.

In the context of minimal factorisations of a cycle, the natural action of the braid
group is called the Hurwitz action and it is known to be transitive (see for example [16]).
The action which we have defined here is germane to this action but different, as it is
an action of the symmetric group. In [4], P. Biane defined another similar action of the
symmetric group on minimal factorisations of a cycle as a product of cycles. The proof
of Proposition 12 is inspired by his work.

6 Parking functions

Let n > 1 be an integer. For each sequence I = (i1, . . . , in−1) of positive integers, let us
call spread of I the function sI : {1, . . . , n − 1} → N defined by backwards induction by
setting sI(n− 1) = in−1 + 1 and, for all k 6 n− 2,

sI(k) = min{t ∈ N : t > ik + 1, t 6= sI(k + 1), . . . , t 6= sI(n− 1)}.

For example, s(3,5,2,1,2,1) sends 6 to 2, 5 to 3, 4 to 4, 3 to 5, 2 to 6 and 1 to 7.
Imagine a linear bike shed with infinitely many parking spaces numbered 1, 2, . . . in the

natural order. If n − 1 bikes arrive successively in this shed, immediately after parking
spaces in−1, . . . , i1 respectively, start exploring the shed in the direction of increasing
labels, and if each bike parks in the first available space it finds, then for each l ∈
{1, . . . , n− 1}, the l-th bike parks in space sI(l).
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Apart from any ecological consideration, this scheme differs slightly from the usual
one in that the bikes arrive in the reversed order of the sequence I and the l-th bike
starts exploring the shed from space il + 1 instead of il. None of these modifications are
important.

The sequence I is called a parking function if sI is a bijection from {1, . . . , n − 1} to
{2, . . . n}. It is well known that this is the case if and only if the non-decreasing reordering
(a1 6 . . . 6 an−1) of I satisfies al 6 l for all l ∈ {1, . . . , n− 1}.

The main connection between parking functions and minimal factorisations is revealed
by the following observation, first made by Stanley [17]. In what follows, we stick to the
convention that writing a transposition under the form (i j) implies that the inequality
i < j holds.

Proposition 14. If (i1 j1) . . . (in−1 jn−1) = (1 . . . n), then (i1, . . . , in−1) is a parking
function.

Proof. Consider the permutations γ0 = id, γ1 = (i1 j1), . . . , γn−1 = (i1 j1) . . . (in−1 jn−1).
Since multiplying a permutation by a transposition can only join two of its cycles or
split one of its cycles in two, and since the chain γ0, . . . , γn−1 joins in n − 1 steps a
permutation with n cycles to a permutation with 1 cycle, it must be the case that for all
l ∈ {1, . . . , n− 1}, the integers il and jl belong to distinct cycles of γl−1 and to the same
cycle of γl.

Consider an integer i ∈ {1, . . . , n−1}. For each l such that il = i, we have jl /∈ Cl−1(i)
but jl ∈ Cl(i). Since jl ∈ {i+ 1, . . . , n}, there can be no more than n− i such integers l.
It follows easily that (i1, . . . , in) is a parking function.

Stanley actually proved that this correspondence between factorisations and parking
functions is a bijection. We shall prove this fact later in a more general setting. Let us
give a first indication of the way in which the factorisation can be reconstructed from the
parking function.

Proposition 15. Let I = (i1, . . . , in) be a non-decreasing parking function. Then the
equality (i1 sI(1)) . . . (in−1 sI(n− 1)) = (1 . . . n) holds.

This is also a result of which we will prove a more general version. In order to be
able to reconstruct a factorisation from an arbitrary parking function, we use the action
of Sn−1 on Fn,n−1 defined in the previous section. Let us explain this now, also without
proof, as we will prove a more general result in the next section. Recall that for any set X,
the group Sn−1 acts on Xn−1 by the formula σ · (x1, . . . , xn−1) = (xσ−1(1), . . . , xσ−1(n−1)).

Proposition 16. Let I = (i1, . . . , in−1) be a parking function. Let sI : {1, . . . , n − 1} →
{2, . . . , n} be the spread of I. Let σ ∈ Sn−1 be any permutation such that σ · I is non-
decreasing. The unique minimal factorisation γ ∈ Fn,n−1 such that I(γ) = I is

γ = σ−1 · ((iσ−1(1) sσ·I(1)), . . . , (iσ−1(n−1) sσ·I(n− 1))).
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For example, take n = 7 and start with the parking function (3, 5, 2, 1, 2, 1) of length
6. Sort this sequence and compute the spread of the resulting sequence. This yields the
minimal factorisation (1 7)(1 2)(2 5)(2 3)(3 4)(5 6) of (1 . . . 7). Finally, permute the trans-
positions of this factorisation to find a factorisation whose image by I is (3, 5, 2, 1, 2, 1).
For this, exchange repeatedly neighbouring transpositions using the definition of the ac-
tion of S6. Possible intermediate steps are

(3 4)(1 7)(1 2)(2 5)(2 4)(5 6)

(3 4)(5 6)(1 7)(1 2)(2 6)(2 4)

(3 4)(5 6)(2 6)(1 7)(1 6)(2 4)

(3 4)(5 6)(2 6)(1 7)(2 4)(1 6)

Each line is an element of F7,6, and the last is the unique one which corresponds to the
parking function (3, 5, 2, 1, 2, 1).

7 Restricted parking functions

Let k be a positive integer. Let I = (i1, . . . , ik) be a sequence of positive integers. Let J be
a subset of N. Let us define the spread of I in J as the function sI : {1, . . . , k} → N∪{+∞}
by backwards induction, setting

sI,J(k) = inf (J ∩ [ik + 1,∞))

and, for all l 6 k − 1,

sI,J(l) = inf (J ∩ [il + 1,∞) ∩ {sI,J(l + 1), . . . , sI,J(k)}c) ,

where the c in exponent denotes the complement in N. The picture is the same as in
Section 6, except that now only the spaces whose labels belong to J are open. It may
happen that a bike does not find any space, in which case the function sI,J takes the value
+∞.

We say that the couple (I, J) is a restricted parking function of size (n, k) if I belongs
to {1, . . . , n−1}k, J is a subset of size k of {2, . . . , n} and sI is a bijection from {1, . . . , k}
onto J .

Proposition 17. Let k be a positive integer. Let I = (i1, . . . , ik) be a sequence of positive
integers. Let J = {j1 < . . . < jk} be a subset of N. The couple (I, J) is a restricted
parking function if and only if the non-decreasing reordering (a1 6 . . . 6 ak) of I satisfies,
for all l ∈ {1, . . . , k}, the inequality al < jl.

With J = {2, . . . , k + 1}, one recovers the classical situation and the usual condition
al 6 l.

Proof. Let us assume that (I, J) is a restricted parking function. The mapping sI,J is
injective by construction and satisfies, for all l ∈ {1, . . . , k}, the inequality il < sI,J(l).
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Thus, for all l, there at least k− l+1 elements of J in the interval (al,+∞). The elements
jk, jk−1, . . . , jl, being the k− l+ 1 greatest elements of J , thus belong to this interval, and
in particular we have al < jl.

Let us prove the converse by induction on k. For k = 1, the assertion is true. Consider
k > 1 and assume that it has been proved when I and J have size k − 1. Consider I and
J of size k such that for all l ∈ {1, . . . , k}, the inequality al < jl holds. Let l ∈ {1, . . . , k}
be the smallest integer such that ik < jl. Observe that there is such an integer, because
ik 6 ak < jk. We have sI,J(k) = jl. Then set I ′ = (i1, . . . , ik−1) and J ′ = J \ {jl}. By
construction of sI,J , its restriction to {1, . . . , k−1} coincides with sI′,J ′ . Let p ∈ {1, . . . , k}
be such that ik = ap. Since ap = ik > jl−1, we have p > l. Let (a′1 6 . . . 6 a′k−1) be the
reordering of I ′. We have on one hand

a′1 = a1 < j1 = j′1, . . . , a
′
l−1 = al−1 < jl−1 = j′l−1

and on the other hand

a′l ∈ {al, al+1} < jl+1 = j′l, . . . , a
′
k−1 ∈ {ak−1, ak} < jk = j′k−1,

so that we can apply the induction hypothesis to (I ′, J ′) to find that sI′,J ′ is a bijection
from {1, . . . , k − 1} onto J ′. Thus, (I, J) is a restricted parking function.

Proposition 18. The number of restricted parking functions of size (n, k) is
(
n
k+1

)
nk−1.

Proof. We use a classical conjugation argument. Let us consider I ∈ {1, . . . , n}k and J a
subset of {1, . . . , n} with k+ 1 elements. Consider the n-cycle σ = (1 . . . n). Let us define
the circular spread of I in J by setting

cI,J(k) = σr(k), where r = min{s ∈ N∗ : σs(k) ∈ J}
and, for all l 6 k − 1,

cI,J(l) = σr(l), where r = min{s ∈ N∗ : σs(l) ∈ J \ {cI,J(l + 1), . . . , cI,J(k)}}.
The bike shed is now circular and has one more available space than there are bikes
to park. The map cI,J is an injection of {1, . . . , k} into J and we denote by e(I, J) =
J \ cI,J({1, . . . , k}) the space which is left free at the end of the parking process. We say
that (I, J) is a restricted circular parking function of size (n, k) if e(I, J) = 1.

On one hand, if (I, J) ∈ {1, . . . , n − 1}k ×
({2,...,n}

k

)
is a restricted parking function,

then (I, J ∪ {1}) is a restricted circular parking function. On the other hand, if (I, J)
is a circular restricted parking function, then the fact that the space 1 is left free in the
process indicates that n does not appear in I and no bike has ever to go past the space
labelled n before it finds an available space, so that (I, J \ {1}) is a restricted parking
function.

This argument allows us to conclude that there are exactly as many restricted parking
functions of a given size as there are restricted circular parking functions of the same size.
This allows us to conclude easily. Indeed, the group Z/nZ acts freely on {1, . . . , n}k ×({1,...,n}

k+1

)
and on {1, . . . , n}, the action of the generator 1 being that of the n-cycle (1 . . . n).

The mapping e : (I, J) 7→ e(I, J) is equivariant under this action, so that every orbit
contains exactly one restricted circular parking function. Thus, there are 1

n

(
n
k+1

)
nk such

functions.

the electronic journal of combinatorics 23(3) (2016), #P3.35 14



8 Prefixes of minimal factorisations

We are now able to count prefixes of minimal factorisations. For this, we establish a
bijection between the set Fn,k of k-prefixes of minimal factorisations of (1 . . . n) on one

hand and the set, which we denote by Pn,k, of couples (I, J) ∈ {1, . . . , n− 1}k×
({2,...,n}

k

)
which are restricted parking functions of size (n, k) on the other hand. Let us describe
this bijection.

Let γ = ((i1 j1), . . . , (ik jk)) be an element of Fn,k. Let σ ∈ Sk be a permutation such

that σ · γ = ((a1 b1), . . . , (ak bk)) belongs to F ↑
n,k. Set I(γ) = (i1, . . . , ik) and J (γ) =

{b1, . . . , bk}.

Lemma 19. The couple (I(γ),J (γ)) is an element of Pn,k.

Proof. For each l ∈ {1, . . . , k}, we have 1 6 il < jl 6 n, so that I(γ) belongs to {1, . . . , n−
1}k. We also have 1 6 al < bl 6 n for all l, so that bl > 2, and by the third assertion of
Lemma 7, J (γ) belongs to

({2,...,n}
k

)
. Since for all l ∈ {1, . . . , k} we have al < bl, it follows

from Proposition 17 that (I(γ),J (γ)) is a restricted parking function.

Let us denote by P : Fn,k →Pn,k the map which we just defined. Let us now describe
the reciprocal mapping. Let (I, J) be a restricted parking function. Let σ ∈ Sk be such
that σ · I is non-decreasing.

Lemma 20. The sequence σ−1 · ((iσ−1(1) sσ·I,J(1)), . . . , (iσ−1(n−1) sσ·I,J(n− 1))) belongs to
Fn,k.

Proof. It suffices to prove that ((iσ−1(1) sσ·I,J(1)), . . . , (iσ−1(n−1) sσ·I,J(n − 1))) belongs to

Fn,k, indeed to F ↑
n,k. For all m ∈ {1, . . . , k}, the fact that sσ·I,J(m) is the smallest

element of J \ {sσ·I,J(m + 1), . . . , sσ·I,J(k)} which is strictly larger than iσ−1(m) implies
that for all l ∈ {1, . . . ,m − 1}, one either has sσ·I,J(l) 6 iσ−1(m) or sσ·I,J(l) > sσ·I,J(l).
By Proposition 10, this suffices to imply that the factorisation which we are considering
belongs to Fn,k.

Let us denote by F : Pn,k → Fn,k this second mapping. It is straightforward to check
the following fact.

Proposition 21. The mappings F and P are inverse of each other.

The main result, Theorem 1, follows immediately from this result and Proposition 18.
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[12] Thierry Lévy. Schur-Weyl duality and the heat kernel measure on the unitary group.
Adv. Math., 218(2):537–575, 2008.

[13] S. C. Liaw, H. G. Yeh, F. K. Hwang, and G. J. Chang. A simple and direct derivation
for the number of noncrossing partitions. Proc. Amer. Math. Soc., 126(6):1579–1581,
1998.

[14] Paul Moszkowski. A solution to a problem of Dénes: a bijection between trees and
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