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Abstract

Recently, Bostan and his coauthors investigated lattice walks restricted to the
non-negative octant N3. For the 35548 non-trivial models with at most six steps,
they found that many models are associated to a group of order at least 200 and
conjectured these groups were in fact infinite groups. In this paper, we first confirm
these conjectures and then consider the non-D-finite property of the generating
function for some of these models.

1 Introduction

The objective of this paper is to use the properties of Jacobian matrix at fixed points
to derive the infiniteness of groups associated with certain lattice walks restricted to the
positive octant. Furthermore, we present the non-D-finiteness of corresponding generating
functions for some lattice walks of infinite order by considering the asymptotic behavior
of their coefficients.

Counting walks in a fixed region of the lattice Zd is a classical topic in enumerative
combinatorics [8, 10, 12, 16] and in probability theory [14, 15]. In the past few years,
lattice path models restricted to the quarter plane and the positive octant have received
special attention, and recent works [1–4,9,11,13] have shown how they can help us better
understand generating functions of lattice walks.
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Many recent papers dealt with the enumeration of lattice walks with prescribed steps
confined to the positive quadrant. In fact, Bousquet-Mélou and Mishna [4] proved that
among the 28 possible cases of small-step walks in the quarter plane, there were exactly 79
inherently different cases. Then, they showed that 23 of these models were associated with
a finite group, of which 22 admitted D-finite generating functions (see, for example [17]
for an overview on D-finite series). The 23rd model, known as Gessel walks, was proven
D-finite, and even algebraic, by Bostan and Kauers [2]. Moreover, it was conjectured in [4]
that the 56 remaining models with infinite group had non-D-finite generating functions.
This was proved by Kurkova and Raschel [9] for the 51 nonsingular walks. The remaining
ones are the five so called singular models:

A = [[−1, 1], [1,−1], [1, 1]], B = [[−1, 1], [1,−1], [0, 1], [1, 0]],

C = [[−1, 1], [1,−1], [0, 1]], D = [[−1, 1], [1,−1], [0, 1], [1, 1]],

E = [[−1, 1], [1,−1], [0, 1], [1, 0], [1, 1]]. (1.1)

The non-D-finiteness of these 5 singular models was proved by Mishna and Rechnitzer [13]
and Melczer and Mishna [11]. The classification is now complete for walks with steps in
{0,±1}2: the generating function is D-finite if and only if a certain group associated with
the model is finite.

Recently, Bostan and his coauthors [1] considered the analogous problem for lattice
walks confined to the non-negative octant N3. They showed that there are 35548 non-
trivial models with at most six steps. Each model corresponds to a group which plays an
important role in exploring the properties of the generating function. They found that
many models are associated to a group of order at least 200 and conjectured these groups
were in fact infinite groups.

In this paper, we utilize two methods employed by Bousquet-Mélou and Mishna [4] to
confirm these conjectures via considering models of dimension two and three, respectively.
For the notation of dimension of a model, one can refer to Definition 2.2.

More specifically, for the cases of models of dimension two, Bostan et al. [1] showed
that there were 527 models of cardinality at most 6. They found that 118 models are
associated to a finite group of order at most 8, and conjectured that the remaining 409
ones associated to a group of infinite order. Our first result is to confirm this conjecture
as follows.

Theorem 1.1. The 409 two-dimensional models associated to groups of order at least 200
are in fact associated to infinite groups.

At the end of this paper, we will prove that the generating functions for most of these
models are not D-finite, which means that their generating functions do not satisfy any
non-trivial linear differential recurrences with polynomial coefficients.

Theorem 1.2. For these 409 two-dimensional models associated to infinite groups, the
generating functions of the excursions of the 366 non-singular models are all non-D-finite,
and there are 18 singular models with non-D-finite generating functions.
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For the cases of three-dimensional models, Bostan et al. [1] showed that there were
20634 models associated to a group of order at least 200 and conjectured the order to be
infinite. Our third result is the confirmation of this conjecture.

Theorem 1.3. The 20634 three-dimensional models associated with groups of order at
least 200 are in fact associated with infinite groups.

This paper is organized as follows. In Section 2, We first recall some notations. Then
we derive the infiniteness of groups associated with certain models in Section 3. Meanwhile
the proof of Theorem 1.1 and Theorem 1.3 will be presented, respectively. Section 4
discusses the non-D-finite property, and the proof of Theorem 1.2 will be presented.

2 Preliminaries

To make this paper self-contained, we now recall some definitions and notations. In
particular, we shall use the dimension, the characteristic polynomial and the associated
group of models.

Given the hyper cubic lattice Zd, a finite set of steps S ⊂ {−1, 0, 1}d is called a
model as adopted in [1]. An S-walk is defined to be any walk which starts from the
origin (0, 0, 0) and takes its steps in S. In particular, we focus on octant walks, which are
S-walks remaining in the non-negative octant N3, with N = {0, 1, 2, . . . }. Then we have

Definition 2.1. The complete generating function of an octant walk is

O(x, y, z; t) =
∑

i,j,k,n>0

o(i, j, k;n)xiyjzktn,

where o(i, j, k;n) is the number of n-step walks in the octant that end at position (i, j, k).
The specialization O(0, 0, 0; t) counts S-walks returning to the origin, called S-excursions.

To shorten notation, steps of Zd will be denoted by d-letter words. For example, 110
stands for the step (−1, 1, 0). In fact, an S-walk of length n can be viewed as a word
w = w1w2 · · ·wn made up of letters of S. For each step s ∈ S, let as be the number of
occurrences of s in w. Then w ends in the positive octant if and only if the following
three linear inequalities hold∑

s∈S

assx > 0,
∑
s∈S

assy > 0,
∑
s∈S

assz > 0, (2.1)

where s = {sx, sy, sz} are steps in S. Consequently, w = w1w2 · · ·wn remains in the
octant if w1w2 · · ·wi, for each 1 6 i 6 n, satisfies these inequalities.

Now we are ready to give the definition of dimension of a model as follows.

Definition 2.2. Let d ∈ {0, 1, 2, 3}. A model S is said to have dimension d if both of the
following two conditions are satisfied:
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(1) There exist d inequalities in Equation (2.1) such that any |S|-tuple (as)s∈S of non-
negative integers satisfying these d inequalities satisfies in fact all three of them.

(2) For any i ∈ {0, 1, . . . , d−1}, if we substitute i for d in the above statement, the first
condition will not be satisfied.

Given a model S of cubic lattice, we denote by S(x, y, z) the Laurent polynomial

S(x, y, z) =
∑
ijk∈S

xiyjzk.

According to the degrees of x, y and z, respectively, S(x, y, z) can be written as

S(x, y, z) = xA−(y, z) + A0(y, z) + xA+(y, z)

= yB−(x, z) +B0(x, z) + yB+(x, z)

= zC−(x, y) + C0(x, y) + zC+(x, y),

where x = 1/x, y = 1/y, and z = 1/z. We call S(x, y, z) the characteristic polynomial
of S.

Let us first assume that S is 3-dimensional. Then it has a positive and a negative step
in each direction, and for any α ∈ {A,B,C}, α+, α− are non-zero. Now we introduce the
notation of the group associated with a model.

Definition 2.3. For a given model S, the group associated with S is defined as the group
G(S) of birational transformations of the variables [x, y, z] generated by the following three
involutions

φ([x, y, z]) =

[
x
A−(y, z)

A+(y, z)
, y, z

]
,

ψ([x, y, z]) =

[
x, y

B−(x, z)

B+(x, z)
, z

]
,

τ([x, y, z]) =

[
x, y, z

C−(x, y)

C+(x, y)

]
.

By construction, G(S) fixes the characteristic polynomial S(x, y, z).
Suppose S is a 2-dimensional model, for which the z-condition can be ignored. The

corresponding group G(S) is the group generated by φ and ψ.

3 Infiniteness of Associated Groups

In this section, we consider the 35548 non-trivial models with at most six steps and
confined to the non-negative octant N3. We derive the infiniteness of these groups by
giving the proofs of Theorem 1.1 and Theorem 1.3, respectively.
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3.1 The Proof of Theorem 1.1

When dealing with a model of dimension two, we consider the projection of the model to
a plane throughout this paper. Then the model is a multi-set of {1, 0, 1}2 \ {0, 0}.

In order to show the infiniteness of groups associated to two dimensional octant models,
we first introduce the method of fixed point argument given by Bousquet-Mélou and
Mishna [4].

Assume that θ = ψ ◦ φ is well-defined in the neighborhood of (a, b) ∈ C2, which was
fixed by θ. Note that a and b are algebraic over Q. Let us write θ = (θ1, θ2), where θ1
and θ2 are the two coordinates of θ. Each θi sends the pair (x, y) to a rational function
of x and y. The local expansion of θ around (a, b) reads

θ(a+ u, b+ v) = (a, b) + (u, v)Jθ(a, b) +O(u2) +O(v2) +O(uv),

where Jθ(a, b) is the Jacobian matrix of θ at (a, b):

Jθ(a, b) =

(
∂θ1
∂x

(a, b) ∂θ2
∂x

(a, b)

∂θ1
∂y

(a, b) ∂θ2
∂y

(a, b)

)
.

Iterating the above expansion gives

θm(a+ u, b+ v) = (a, b) + (u, v)Jmθ (a, b) +O(u2) +O(v2) +O(uv), (3.1)

where m is a positive integer.
Assume that θ is of order n. Then θn(a+ u, b+ v) = (a, b) + (u, v) and Equation (3.1)

show that Jnθ (a, b) is the identity matrix. In particular, all eigenvalues of Jθ(a, b) are roots
of unity. This provides a strategy for proving that a group G(S) is infinite.

We now give some properties on the fixed points of θ = ψ◦φ and the Jacobian matrices,
which will simplify our computations.

Proposition 3.1. (a, b) is a fixed point of θ if and only if it is a fixed point of φ and ψ.

Proof. Suppose (a, b) is a fixed point of θ. Assume that φ(a, b) = (u, b). Then we have
ψ(u, b) = (a, b). By definition, ψ preserves the first coordinate. We thus have u = a and
(a, b) is a fixed point of φ and ψ. The inverse assertion holds straightforwardly.

This proposition indicates that the fixed point (a, b) of θ can be determined by the
equations

A−(b)

A+(b)
= a2 and

B−(a)

B+(a)
= b2.

Moreover, we require that a and b are both non-zero. Now we rewrite the left hand
sides of the above two equations in reduced form by canceling the common divisor of the
numerator and the denominator and we get

p1(b)

q1(b)
= a2 and

p2(a)

q2(a)
= b2.
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We need to find the solutions of the polynomial systems

p1(y)− x2q1(y) = 0, p2(x)− y2q2(x) = 0, xy 6= 0.

Such systems can be solved by the Gröbner basis theory introduced by Buchberger [5] or
the Maple package epsilon developed by Wang [18]. In this paper, we use the standard
Maple command Groebner[Basis] to solve such systems. In fact, suppose

F = [p1(y)− x2q1(y), p2(x)− y2q2(x), 1− xyt].

We may apply the command

fpt:=Groebner[Basis](F, plex(t,y,x))

and take the intersection

fp = fpt ∩ C[x,y].

to find the equations satisfied by the fixed points. When fp=[1], there exists no fixed
point and the method fails.

When applying the above method to each of the 409 two-dimensional models, there
always exists an element of fpt with a non-zero constant leading coefficient with respect
to t. Then according to the extension theorem in [6, page 118], we know fp is a basis of
the equations satisfied by the fixed points.

The determinant of the Jacobian matrix Jθ at fixed points satisfies the following prop-
erty.

Lemma 3.2. The determinant of the Jacobian matrix Jθ at fixed points is 1.

Proof. Suppose (a, b) was fixed by θ. By the chain rule, we have Jθ(a, b) = Jψ(a, b)·Jφ(a, b).
While

Jφ(a, b) =

(
− 1
a2
p1(b)
q1(b)

∂(p1(y)/xq1(y))
∂y

∣∣∣
(a,b)

0 1

)
=

(
−1 ∗
0 1

)
,

and

Jψ(a, b) =

(
1 0

∂(p2(x)/yq2(x))
∂x

∣∣∣
(a,b)

− 1
b2
p2(a)
q2(a)

)
=

(
1 0
∗ −1

)
.

Therefore, the determinant of Jθ is (−1) · (−1) = 1.
Let p(X, x, y) be the numerator of

χ(X) = det(XId− Jθ(x, y))

= X2 −
(
∂(p2(x)/yq2(x))

∂x
· ∂(p1(y)/xq1(y))

∂y
− 2

)
X + 1,

and fp=[p1,p2,. . . ,pk] be a basis on the equations satisfied by the fixed points (x, y).
Once again, we use
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Groebner[Basis]([p,p1,p2,...,pk], plex(x, y, X))

to obtain an equation q(X) satisfied by X, which is an eigenvalue of Jθ(x, y). To verify
whether the eigenvalues of Jθ(x, y) are roots of unity, we only need to check whether the
irreducible factors of q(X) are cyclotomic polynomials.

To make the above statements easier to understand, we present several examples.

Example 3.3. Suppose S = [11, 10, 01, 11], the corresponding characteristic polynomial
is

1

xy
+

1

x
+

1

y
+ xy.

Then we derive

A−(y) = 1 +
1

y
, A+(y) = y, B−(x) = 1 +

1

x
, B+(x) = x.

Applying the command Groebner[Basis], we obtain [−1− x + x4, y − x], which implies
that a fixed point (x, y) must satisfy

−1− x+ x4 = 0, y − x = 0.

Let p(X, x, y) be the numerator of χ(X), we get

p(X, x, y) = X2x4y4 −Xyx− 2Xx− 2Xy − 4X + 2Xx4y4 + x4y4.

Using Groebner[Basis] once again, we obtain

q(X) = 1− 19X −X2 − 124X3 + 3X4 − 124X5 −X6 − 19X7 +X8,

implying that the eigenvalues of the Jacobian matrix satisfy q(X) = 0. It’s easy to check
that q(X) is irreducible and not a cyclotomic polynomial. Hence the eigenvalues of the
Jacobian matrix are not roots of unity and thus S = [11, 10, 01, 11] is associated with an
infinite group.

The following example deals with a more complicated case.

Example 3.4. Suppose S = [10, 11, 11, 11, 01, 11]. By similar discussions as in Exam-
ple 3.3, we find that the fixed point (x, y) of θ must satisfy the following two equations:

p1(x) = −3 + 9x− x2 − 6x3 + x5 = 0 and p2(x, y) = 1 + 3x− x3 + 6y = 0.

Let p(X, x, y) be the numerator of χ(X), we get

p(X, x, y) =9X2y3x+ 6X2y3x3 +X2y3x5 + 3X −Xx2 + 18Xxy3

+ 12Xx3y3 + 2Xx5y3 + 9xy3 + 6x3y3 + x5y3.
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Using Groebner[Basis] once again, we obtain

Groebner[Basis]([p(X, x, y), p1(x), p2(x, y)], plex(x, y,X))

= [q(X), q1(X, y), q2(X, x)], (3.2)

where

q(X) =27X10 − 216X9 − 2267X8 − 7881X7 − 15249X6 − 18785X5

− 15249X4 − 7881X3 − 2267X2 − 216X + 27,

q1(X, y) =− 458244 + 4456350X + 33544804X2 + 91401861X3 + 139937762X4

+ 134228180X5 + 80122341X6 + 26311990X7

+ 2933118X8 − 337419X9 + 44874y

and

q2(X, x) =− 543942 + 4825089X + 40138304X2 + 114480051X3

+ 180619657X4 + 177429229X5 + 108213837X6 + 36257324X7

+ 4134537X8 − 470313X9 + 22437x.

It’s easy to check that q(X) has two irreducible factors X2 +X + 1 and 27X8− 243X7−
2051X6 − 5587X5 − 7611X4 − 5587X3 − 2051X2 − 243X + 27. Since the second factor
is not a cyclotomic polynomial, we can find X0 which is not a root of unity such that
q(X0) = 0. Substituting X by X0 in q1(X, y) and q2(X, x), we get x0 and y0 such that

q1(X0, y0) = 0 and q2(X0, x0) = 0.

According to Equation (3.2), we know that (x0, y0) was fixed by θ and p(X, x0, y0) is an
equation satisfied by the eigenvalues of Jθ(x0, y0). From Equation (3.2), it’s easy to verify
that p(X0, x0, y0) = 0. As X0 is not a root of unity, we know S = [10, 11, 11, 11, 01, 1] is
associated with an infinite group.

Example 3.5. Suppose S = [11, 11, 11, 10], then the corresponding characteristic polyno-
mial is

S(x, y) =
2y

x
+
x

y
+ x,

and
A−(y) = 2y, A+(y) = 1/y + 1, B−(x) = x, B+(x) = 2/x.

Applying the command Groebner[Basis], the output is [1] and the method fails.

By similar discussions as in the above examples, we can show 379 of all the 409 two-
dimensional models are associated with infinite groups. There are 30 models left, such as
S = [11, 11, 11, 10] in Example 3.5. When canceling the repeated steps, all these models
will be reduced to one of the set SS = {A,Ar,B,Br, C, Cr,D,Dr, E , Er}, the elements
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of which are the five singular models in Equation (1.1) or their x/y reflection. The five
singular models were proved associated with an infinite group by the valuation argument.

The valuation argument was given by Bousquet-Mélou and Mishna in [4]. In fact, they
defined the valuation of a Laurent series F (t) to be the smallest d such that td occurs
in F (t) with a non-zero coefficient. Suppose z is an indeterminate, and x, y are Laurent
series in z with coefficients in Q, of respective valuations a and b. Assuming that the
trailing coefficients of these series, namely [za]x and [zb]y, are positive. Defining x′ by
φ(x, y) = (x′, y). Then the trailing coefficient of x′ (and y) is positive, and it’s easy to
check that the valuation of x′ (and y) only depends on a and b:

Φ(a, b) := (val(x′), val(y)) =


(
−a+ b(v

(y)
−1 − v

(y)
1 ), b

)
, if b > 0;(

−a+ b(d
(y)
−1 − d

(y)
1 ), b

)
, if b 6 0;

where v
(y)
i (resp. d

(y)
i ) denotes the valuation (resp. degree) in y of Ai(y), for i = ±1.

Similarly, ψ(x, y) = (x, y′) is well defined, and the valuations of x and y′ only depend on
a and b:

Ψ(a, b) := (val(x), val(y′)) =


(
a,−b+ a(v

(x)
−1 − v

(x)
1 )
)
, if a > 0;(

a,−b+ a(d
(x)
−1 − d

(x)
1 )
)
, if a 6 0;

where v
(x)
i (resp. d

(x)
i ) denotes the valuation (resp. degree) in x of Bi(x), for i = ±1. For

a given model S, in order to prove the associated group G is infinite, it suffices to prove
that the group G′ generated by Φ and Ψ is infinite. To prove the latter statement, it
suffices to exhibit (a, b) ∈ Z2 such that the orbit of (a, b) under the action of G′ is infinite.
For the five singular models, Bousquet-Mélou and Mishna derived by induction on n that

(Ψ ◦ Φ)n(1, 2) = (2n+ 1, 2n+ 2) and Φ(Ψ ◦ Φ)n = (2n+ 3, 2n+ 2).

Hence the orbit of (1, 2) under the action of Φ and Ψ is infinite, and so are the groups G′

and G.
It’s easy to check that the repeated steps do not change the value of Φ(a, b) and Ψ(a, b)

according to the definition of valuation. Thus, we can derive that the remaining 30 models
are all associated with infinite groups.

This completes the proof of Theorem 1.1.

3.2 The Proof of Theorem 1.3

In this section, we consider the three-dimensional models. The proof of Theorem 1.3 is
similar to the proof for the two-dimensional ones. Indeed, for three-dimensional cases, we
could consider φ ◦ψ, φ ◦ τ and ψ ◦ τ , instead of θ = ψ ◦ φ in the cases of two-dimensional
models. Moreover, we need only to concern two variables by fixing the third variable with
any given value. More precisely, we will set the third variable to be 1/7.

The following lemma indicates that we only need to consider one of φ ◦ ψ and ψ ◦ φ.
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Lemma 3.6. If the eigenvalues of Jφ◦ψ are roots of unity, then so are Jψ◦φ.

Proof. Notice that the determinant of Jθ is 1. The eigenvalues of Jθ are both roots of
unity or neither of the eigenvalues is root of unity. Since (ψ ◦ φ)−1 = φ ◦ ψ, we have
J−1φ◦ψ = Jψ◦φ. Thus, the eigenvalues of Jφ◦ψ are the reciprocal of those of Jψ◦φ and hence
they are both roots of unity or none of them are roots of unity.

By applying the fixed point method as in Section 3.1 to the 20634 three-dimensional
models, we are left with 69 models that can not be proved to have an infinite group.
Project these models to two-dimensional ones (we have three choices) and remove the
repeated steps, one can find that they all fall in the set

SS = {A,Ar,B,Br, C, Cr,D,Dr, E , Er}.

The elements of SS are the five singular models and their x/y reflection. Thus the
remaining 69 models are all associated with infinite groups.

This completes the proof of Theorem 1.3.

4 The non-D-finite Property

In this section, we mainly discuss the non-D-finite property of the generating function of
the 409 two-dimensional models associated with an infinite order and give the proof of
Theorem 1.2.

As shown in Section 3.1, by projecting to a plane, these two-dimensional models are
reduced to multi-sets of {1, 0, 1}2 \ {0, 0}. For a 2D octant model where the z-condition
is redundant, we focus on the complete generating function

O(x, y; t) := O(x, y, 1; t), (4.1)

which counts quadrant walks with steps in multiset S ′ = {ij : ijk ∈ S}. Note that non-
D-finiteness of O(x, y; t) implies the non-D-finiteness of O(x, y, z; t). The main objective
of this section is to study the non-D-finite property of O(x, y; t). We further reduce to
consider the non-D-finiteness of the generating function O(0, 0; t) of the excursions.

Firstly, we consider the nonsingular walks, which are walks having at least one step
from the set {(−1, 0), (−1,−1), (0,−1)}. Our proof is a multi-set analogue of the proof
given by Bostan et al. [3], where they proved that the generating function of the excursion
corresponding to any of the 51 nonsingular models having no repeated step and with
infinite group were not D-finite.

The non-D-finiteness is based on the asymptotic behavior of the coefficients.

Proposition 4.1. (c.f. Thm. 3 in [3]) Let (an)n>0 be an integer-valued sequence whose
n-th term an behaves asymptotically like K · ρn · nα, for some real constant K > 0. If the
growth constant ρ is transcendental, or if the singular exponent α is irrational, then the
generating function A(t) =

∑
n>0 ant

n is not D-finite.
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Bostan et al. considered the non-degeneracy of the walk: for all (i, j) ∈ N2, the set
{n ∈ N : o(i, j;n) 6= 0} is nonempty; furthermore, the walk is said to be aperiodic when
the gcd of the elements of this set is 1 for all (i, j). Otherwise, it is periodic and this gcd
is the period. They restated a result of Denisov and Wachtel [7] in the following way.

Proposition 4.2. Let S ⊂ {0,±1}2 be the step set of a walk in the quarter plane N2,
which is not contained in a half-plane. Let en denote the number of excursions of length n
using only steps in S, and let χ denote the characteristic polynomial

∑
(i,j)∈S x

iyj of the
step set S. Then the system

∂χ

∂x
=
∂χ

∂y
= 0 (4.2)

has a unique solution (x0, y0) ∈ R2
>0. Next, define

ρ := χ(x0, y0), c :=

∂2χ
∂x∂y√
∂2χ
∂x2
· ∂2χ
∂y2

(x0, y0), α := −1− π

arccos(−c)
. (4.3)

Then there exists a constant K > 0, which only depends on S, such that

• if the walk is aperiodic, then en ∼ K · ρn · nα.

• if the walk is periodic (then of periodic 2), then

e2n ∼ K · ρ2n · (2n)α, e2n+1 = 0.

To prove this proposition, Bostan et al. [3] assigned each step with a probability
xi0y

j
0/χ(x0, y0) so that the expectation of the movement is zero. This condition leads to

the equations (4.2). Once the probability model is set up, the asymptotic estimation is
obtained by considering the exist time of the random walk.

Now consider the case when the set S is replaced by a multi-set. In this case, we shall
assign each step with a probability ri,jx

i
0y
j
0/χ(x0, y0), where ri,j was the multiplicity of

(i, j) ∈ S. Then Bostan’s augment works smoothly for the rest parts. We thus see that
Proposition 4.2 still holds when S is a multi-set.

By Propositions 4.1 and 4.2, if α given by (4.3) is not a rational number, then the
excursion generating function O(0, 0; t) is not D-finite. Bostan also presented an algorithm
to determine whether α is rational. We apply this algorithm to the 366 non-singular
models of dimensional two. It turns out that all of them correspond to irrational α.
Hence the generating function of these models are not D-finite.

The algorithmic irrationality proof fails for the 43 singular models, which were listed
in the Appendix, Table 1. However, we find that all these models can be reduced to one of
the 5 singular models or their x/y symmetry, when getting rid of the repeated steps. The
5 singular models were proved to have non-D-finite generating function by Mishna and
Rechnitzer [13] and Melczer and Mishna [11] using the iterated kernel method, a variant
of the kernel method.
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As we know, A = [[−1, 1], [1,−1], [1, 1]] is one of the 5 singular models and its gener-
ating function is not D-finite. Now we rewrite the complete generating function of A into
the following form:

O(x, y; t) =
∑

n1,n2,n3>0

o(n1, n2, n3)x
−n1+n2+n3yn1−n2+n3tn1+n2+n3 ,

where o(n1, n2, n3) denotes the number of walks in the quarter plane with the i-th element
of A appears ni times. Then it’s easy to see that (−n1 +n2 +n3, n1−n2 +n3) denotes the
ending point. Suppose A′

is a multi-set which can be reduced to A through getting rid of
the repeated steps, and the i-th element of A repeats ri times in A′

. Then the complete
generating function for A′

can be given as

O′(x, y; t) =
∑

n1,n2,n3>0

rn1
1 r

n2
2 r

n3
3 o(n1, n2, n3)x

−n1+n2+n3yn1−n2+n3tn1+n2+n3 .

It’s easy to verify that

O′(x, y; t) = O(

√
r3
r1
x,

√
r3
r2
y;
√
r1r2t),

which implies that O′(x, y; t) is not D-finite, since algebraic substitution does not change
the D-finite property. There are 7 of the 43 singular models can be reduced to A =
[[−1, 1], [1,−1], [1, 1]] or its x/y symmetry Ar. The above discussions show that the cor-
responding generating function for these 7 models are all not D-finite.

Similar discussions for C = [[−1, 1], [1,−1], [0, 1]] will lead to the non-D-finiteness
of the generating functions for another 11 singular models. From Table 1, we can see
that models numbered 19, 27 and 40 are in fact B,D and E in Equation (1.1), thus the
generating functions are not D-finite.

At this stage, we have shown that the generating functions of the 366 nonsingular mod-
els and 21 of all the 43 singular models have non-D-finite generating functions. According
to this fact and results from [3,9, 11, 13], we make the following conjecture.

Conjecture 4.3. The generating functions of the 43 singular models, in Table 1, are all
non-D-finite.
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Appendix

Number Models Reduced Models

1 [[−1, 1], [1,−1], [1, 1]]

2 [[−1, 1], [−1, 1], [1,−1], [1, 1]]

3 [[−1, 1], [1,−1], [1, 1], [1, 1]]

4 [[−1, 1], [−1, 1], [−1, 1], [1,−1], [1, 1]] [[−1, 1], [1,−1], [1, 1]]

5 [[−1, 1], [−1, 1], [1,−1], [1,−1], [1, 1]]

6 [[−1, 1], [−1, 1], [1,−1], [1, 1], [1, 1]]

7 [[−1, 1], [−1, 1], [1,−1], [1, 1], [1,−1], [1, 1]]

8 [[−1, 1], [0, 1], [1,−1]]

9 [[−1, 1], [−1, 1], [0, 1], [1,−1]]

10 [[−1, 1], [−1, 1], [1,−1], [1, 0]]

11 [[−1, 1], [0, 1], [0, 1], [1,−1]]

12 [[−1, 1], [−1, 1], [−1, 1], [0, 1], [1,−1]]

13 [[−1, 1], [−1, 1], [−1, 1], [1,−1], [1, 0]] [[−1, 1], [1,−1], [0, 1]]

14 [[−1, 1], [−1, 1], [0, 1], [0, 1], [1,−1]]

15 [[−1, 1], [−1, 1], [0, 1], [1,−1], [1,−1]]

16 [[−1, 1], [−1, 1], [1,−1], [1, 0], [1, 0]]

17 [[−1, 1], [−1, 1], [−1, 1], [0, 1], [0, 1], [1,−1]]

18 [[−1, 1], [−1, 1], [0, 1], [0, 1], [1,−1], [1,−1]]

19 [[−1, 1], [0, 1], [1,−1], [1, 0]]

20 [[−1, 1], [−1, 1], [0, 1], [1,−1], [1, 0]]

21 [[−1, 1], [0, 1], [0, 1], [1,−1], [1, 0]]

22 [[−1, 1], [−1, 1], [−1, 1], [0, 1], [1,−1], [1, 0]]

23 [[−1, 1], [−1, 1], [0, 1], [0, 1], [1,−1], [1, 0]] [[−1, 1], [1,−1], [0, 1], [1, 0]]

24 [[−1, 1], [−1, 1], [0, 1], [1,−1], [1,−1], [1, 0]]

25 [[−1, 1], [−1, 1], [0, 1], [1,−1], [1, 0], [1, 0]]

26 [[−1, 1], [0, 1], [0, 1], [1,−1], [1, 0], [1, 0]]

27 [[−1, 1], [0, 1], [1,−1], [1, 1]]

28 [[−1, 1], [−1, 1], [0, 1], [1,−1], [1, 1]]

29 [[−1, 1], [−1, 1], [1,−1], [1, 0], [1, 1]]

30 [[−1, 1], [0, 1], [0, 1], [1,−1], [1, 1]]

31 [[−1, 1], [0, 1], [1,−1], [1, 1], [1, 1]]

32 [[−1, 1], [−1, 1], [−1, 1], [0, 1], [1,−1], [1, 1]]

33 [[−1, 1], [−1, 1], [−1, 1], [1,−1], [1, 0], [1, 1]] [[−1, 1], [1,−1], [0, 1], [1, 1]]
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34 [[−1, 1], [−1, 1], [0, 1], [0, 1], [1,−1], [1, 1]]

35 [[−1, 1], [−1, 1], [0, 1], [1,−1], [1,−1], [1, 1]]

36 [[−1, 1], [−1, 1], [0, 1], [1,−1], [1, 1], [1, 1]]

37 [[−1, 1], [−1, 1], [1,−1], [1, 0], [1, 0], [1, 1]]

38 [[−1, 1], [−1, 1], [1,−1], [1, 0], [1, 1], [1, 1]]

39 [[−1, 1], [0, 1], [0, 1], [1,−1], [1, 1], [1, 1]]

40 [[−1, 1], [0, 1], [1,−1], [1, 0], [1, 1]]

41 [[−1, 1], [−1, 1], [0, 1], [1,−1], [1, 0], [1, 1]] [[−1, 1], [1,−1], [0, 1], [1, 0], [1, 1]]

42 [[−1, 1], [0, 1], [0, 1], [1,−1], [1, 0], [1, 1]]

43 [[−1, 1], [0, 1], [1,−1], [1, 0], [1, 1], [1, 1]]

Table 1: 43 singular models.
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