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Abstract

Motivated by a problem of Gallai on (1-1)-transversals of 2-intervals, it was
proved by the authors in 1969 that if the edges of a complete graph K are colored
with red and blue (both colors can appear on an edge) so that there is no monochro-
matic induced C4 and C5 then the vertices of K can be partitioned into a red and a
blue clique. Aharoni, Berger, Chudnovsky and Ziani recently strengthened this by
showing that it is enough to assume that there is no induced monochromatic C4 and
there is no induced C5 in one of the colors. Here we strengthen this result further,
showing that it is enough to assume that there is no monochromatic induced C4 and
there is no K5 on which both color classes induce a C5. We also answer a question
of Kaiser and Rabinovich, giving an example of six 2-convex sets in the plane such
that any three intersect but there is no (1-1)-transversal for them.

1 Red-blue clique partitions of complete graphs

In 1968, thinking on a problem about piercing cycles in digraphs, Gallai arrived at the
problem of piercing 2-intervals. He defined 2-intervals as subsets of the real line R having
two interval components, one in (−∞, 0) and one in (0,∞) and asked: how many points
are needed to pierce a family of pairwise intersecting 2-intervals? His question generated
the paper [7] in which (as a special case of a general upper bound) we proved that two
points always pierce pairwise intersecting 2-intervals and one of them can be selected from
(−∞, 0) and the other from (0,∞). Let’s call such a pair of points a (1-1)-transversal.
This result can be extended to 2-trees, where a 2-tree is the union of two subtrees, one a
subtree of T1 the other a subtree of T2, where T1 and T2 are vertex-disjoint trees. In [7] we
proved a stronger result (see Theorem 1 below) using only properties of the intersection
graph of subtrees of a tree. Consider 2-colored complete graphs, where edges are colored
with red, blue, or both colors. Edges of one color only are called pure edges and can be
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pure red or pure blue. Another view is to consider a complete graph (clique) as the union
of a red and a blue graph on the same vertex set.

Theorem 1. (Gyárfás, Lehel [7], 1970) Assume that G is a 2-colored complete graph
containing no monochromatic induced C4 and C5. Then V (G) can be partitioned into a
red and a blue clique.

Given a set of n pairwise intersecting 2-subtrees, one can represent their intersec-
tions by a 2-colored complete graph Kn. Then both colors determine chordal graphs i.e.
graphs in which every cycle of length at least four has a chord. In particular, there is no
monochromatic induced C4 and C5. Applying Theorem 1, the vertices of Kn can be par-
titioned into a red and a blue clique (empty sets or single vertices are accepted as cliques)
and by the Helly-property of subtrees we have a (1-1)-transversal for the 2-subtrees. Thus
Theorem 1 implies the following.

Corollary 2. (Gyárfás, Lehel [7], 1970) Pairwise intersecting 2-subtrees have a (1-1)-
transversal.

Since 2-colorings of complete graphs with pure edges only can be considered as a
graph and its complement, furthermore, the complement of C4 is 2K2, we get another
consequence of Theorem 1.

Corollary 3. (Földes, Hammer [6], 1977) Assume that a graph G does not contain
C4, 2K2, C5 as an induced subgraph. Then G is a split graph, i.e. its vertices can be
partitioned into a clique and an independent set.

The seminal paper of Tardos [11] (1995) introduced topological methods, he proved
that 2-intervals without k+1 pairwise disjoint members have (k−k)-transversals. Further
results were obtained by Kaiser [8] (1997), Alon [2, 3] (1998, 2002), Matousek [10] (2001),
Berger [5] (2005), and this list of references is very far from being complete. In this note
we only consider the graph coloring approach. Very recently Theorem 1 was generalized
as follows.

Theorem 4. (Aharoni, Berger, Chudnovsky, Ziani [1], 2015) Assume that G is a 2-colored
complete graph such that there is no monochromatic induced C4 and there is no red induced
C5. Then V (G) can be partitioned into a red and a blue clique.

We show that the proof of Theorem 1 in [7] yields an even stronger result. Let K∗
5

denote the 2-colored K5 where every edge is pure and both colors span a C5.

Theorem 5. Assume that G is a 2-colored complete graph such that there is no monochro-
matic induced C4 and there is no K∗

5 . Then V (G) can be partitioned into a red and a blue
clique.

Proof. We prove the result by induction on |V (G)|. For 1 6 |V (G)| 6 3 the theorem is
obvious. Fixing any p ∈ V (G), by the inductive hypothesis we have V (G − p) = R ∪ B
where R and B are disjoint vertex sets spanning a red and a blue clique.
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Set

R∗ = {r ∈ R : (p, r) is pure blue}, B∗ = {b ∈ B : (p, b) is pure red}.

Assume that among all choices of R,B satisfying V (G−p) = R∪B, |R∗|+ |B∗| is as small
as possible. We show that either R∗ or B∗ is empty and thus R or B can be extended
with p, concluding the proof.

Suppose on the contrary that R∗, B∗ are both nonempty. For any q ∈ B∗ there exists
r ∈ R such that (q, r) is pure blue, otherwise R1 = R ∪ {q} and B1 = B \ {q} would be
a red-blue clique partition of V (G− p) with |R∗

1| + |B∗
1 | < |R∗| + |B∗|, contradicting the

assumption. In fact, we may assume that r ∈ R∗, otherwise, with any s ∈ R∗, consider
the four-cycle C = (p, q, s, r, p). If (q, s) would be red then C is a red cycle with pure blue
diagonals (q, r), (p, s), contradiction. Thus (q, s) is pure blue and we can choose s ∈ R∗

instead of r.
Applying the argument of the previous paragraph for any s ∈ R∗, there exists q ∈ B∗

such that (s, q) is pure red. So there exists a shortest even cycle C = (s1, q1, s2, . . . , qm, s1)
in the bipartite graph [R∗, B∗] with edges alternating as pure red, pure blue, pure red . . . .
We claim that C is a four-cycle. Indeed, if m > 2, then from the minimality of m,
all diagonals (si, qj) must have both colors. In particular, (s1, q2), (s3, q1) both have red
colors. Now if (q1, q2) is pure blue then the red four-cycle (s1, q1, p, q2, s1) has pure blue
diagonals. Otherwise, if (q1, q2) is red, then the red four-cycle (q1, q2, s2, s3, q1) has pure
blue diagonals, contradicting the assumption that there is no induced monochromatic
C4. This proves the claim that C = (s1, q1, s2, q2, s1). Observe that (s1, s2) is pure red,
otherwise (s1, s2, q1, q2, s1) is a blue four-cycle with pure red diagonals and (q1, q2) is pure
blue, otherwise (q1, q2, s2, s1, q1) is a red four-cycle with pure blue diagonals, contradiction.
Therefore {p, s1, s2, q1, q2} spans a K∗

5 , giving the final contradiction. �

Remark 6. An anonymous referee pointed out the algorithmic aspect of our subject as
follows. The decision problem whether there exists a red-blue clique partitioning of the
2-colored complete graph can be formulated as a 2-satisfiability (2SAT) problem which is
described by a Boolean formula in conjunctive normal form using two literals per clauses
(2-CNF). The feasibility of 2SAT is a well-studied polynomially solvable problem (see [4]).
In our case the easy description of the obstructions denying feasibility may complete the
view of the structural characterizations considered in this note.

2 Red-blue clique partition of complete 3-uniform hypergraphs

Extending 2-intervals Kaiser and Rabinovich [9] defined a planar 2-body as a union of
two closed convex sets of the plane separated by a fixed line, say the y-axis. They asked
whether the assumption ‘any three 2-bodies intersect’ implies that they have a (1-1)-
transversal.

Following Theorem 1, where the (1-1)-transversal problem is translated into properties
that imply a red-blue clique cover of a two-colored clique, this problem can be stated in
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terms of red-blue colored 3-uniform complete hypergraphs. However, the obstructions for
a red-blue clique cover of a hypergraph can be more complicated than those for graphs
in Theorems 1, 4 and 5. In particular, as our next example shows, the answer is negative
to the question above.

Example 7. We define six planar 2-bodies, Ai ∪ Bi, 0 6 i 6 5, as follows. On each side
of the y-axis we are given 5 triangles formed by consecutive triples of vertices of a fixed
regular pentagon, and the inner pentagon bordered by its diagonals is the sixth convex set.
On the A-side the (clockwise) consecutive triangles are labeled A1, A2, A3, A4, A5; on the
B-side the labeling of the consecutive triangles is B1, B3, B5, B2, B4; the inner pentagons
are labeled A0 and B0 (see Figure 1).
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Figure 1: Ai ∪Bi, 0 6 i 6 5, any three intersect without (1-1)-transversal

The 2-bodies of the example define a natural 2-coloring of the edges of K
(3)
6 , the

complete 3-uniform hypergraph on vertex set V = {0, 1, 2, 3, 4, 5}: if a triple of convex
sets has non-empty intersection on the A-side (on the B-side), then the corresponding
edge of the hypergraph is colored red (blue). It is easy to check that no four convex
sets intersect on either side, furthermore, the 10 vertices and the 10 intersection points
of diagonals are the intersections of the triples of the six 2-bodies. The red edges are
the triples {(i, i + 1, i + 2) : 1 6 i 6 5} (counting modulo 5) and their complements
(with respect to V ); the blue edges are the triples {(i, i + 1, i + 3) : 1 6 i 6 5} and their
complements. Thus V is covered by two triples of the same color, but it cannot be covered
by a red and a blue triple.

Example 7 shows that the assumption ‘any three 2-bodies intersect’ does not imply
that the 2-bodies have a (1-1)-transversal. However, Kaiser and Rabinovich [9] proved it
from the condition that ‘any four 2-bodies intersect’.

Theorem 8. (Kaiser, Rabinovich [9], 1999) If S is a set of planar 2-bodies such that any
four members of S have nonempty intersection, then S has a (1-1)-transversal. �
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[6] S. Földes, P. Hammer. Split graphs, Proceedings of 8th Southeastern Conference on
Combinatorics, Graph Theory and Computing (F. Hoffman et al.,eds.) 311–315.
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