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Abstract

A partial orthomorphism of a group G (with additive notation) is an injection
π : S → G for some S ⊆ G such that π(x) − x 6= π(y) − y for all distinct x, y ∈ S.
We refer to |S| as the size of π, and if S = G, then π is an orthomorphism. Despite
receiving a fair amount of attention in the research literature, many basic questions
remain concerning the number of orthomorphisms of a given group, and what cycle
types these permutations have.

It is known that conjugation by automorphisms of G forms a group action on the
set of orthomorphisms of G. In this paper, we consider the additive group of binary
n-tuples, Zn

2 , where we extend this result to include conjugation by translations in
Zn
2 and related compositions. We apply these results to show that, for any integer

n > 1, the distribution of cycle types of orthomorphisms of the group Zn
2 that

extend any given partial orthomorphism of size two is independent of the particular
partial orthomorphism considered. A similar result holds for size one. We also
prove that the corresponding result does not hold for orthomorphisms extending
partial orthomorphisms of size three, and we give a bound on the number of cycle-
type distributions for the case of size three. As a consequence of these results, we
find that all partial orthomorphisms of Zn

2 of size two can be extended to complete
orthomorphisms.

1 Introduction

Let G be a finite group written with additive notation. A partial orthomorphism of G is
an injection π : S → G such that π(x)− x = π(y)− y implies x = y for all x, y ∈ S ⊆ G.
The size of a partial orthomorphism is the cardinality of the domain S. If S = G, then π
is an orthomorphism. An orthomorphism σ is said to extend a partial orthomorphism π
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whenever σ agrees with π everywhere on the domain of π. A partial orthomorphism (or
orthomorphism) is canonical if π(0) = 0.

Orthomorphisms grew out of the study of mutually orthogonal Latin squares, initiated
by Euler in [4]. The concept of orthomorphism was further developed by Johnson, et al.
in [8], motivated by the study of mutually orthogonal Latin squares. Since then, results on
the number of orthomorphisms of some small groups have been computed and an upper
bound on the maximum number of orthomorphisms for a group of a given size has been
proved. See [14] for an exposition of the current state of research in the context of Latin
squares. Further, in the context of Latin squares, the existence of extensions of partial
orthomorphisms of various sizes for the group Zn has been studied [1, 7, 13].

Applications of orthomorphisms of the group Zn
2 to cryptography are found in the

construction of block ciphers and hash functions–most famously in the Lai-Massey scheme
[15], but also in the less well-known FOX family of block ciphers [9]. More recently,
orthomorphisms have been used to strengthen the Even-Mansour block cipher against
a cryptographic attack which makes use of the non-uniformity of p(x) − x when p is a
random permutation [5].

Interest in the algebraic structure of orthomorphisms, of the group Zn
2 specifically,

can be found in [10] where Mittenthal shows that a permutation is an orthomorphism if
and only if it maps every maximal subgroup half into itself and half into its complement.
Further mathematical research on orthomorphisms of the group Zn

2 can be found in [2]
and [6].

Since orthomorphisms are permutations, it is natural to consider their cycle types.
Although the number of different cycle types for a permutation of a set with m elements
is given by the number of integer partitions of m, we find that for orthomorphisms of Zn

2 ,
the number of possible cycle types is significantly reduced. For example, it is elementary
to show that orthomorphisms of Zn

2 must have exactly one fixed point and can have no
cycles of length two. These constraints alone dramatically limit the number of cycle types
possible for orthomorphisms. Our results extend these elementary observations and offer
further information concerning the permissible cycle types.

Indeed, although the set of orthomorphisms of Zn
2 for the n 6 4 cases can be easily

generated with a computer, it turns out that, as of the date of this writing, even the car-
dinality of this set is unknown for any n > 5. When n = 1, there are no orthomorphisms.
When n = 2, it is easily shown that all 8 orthomorphisms have cycle type 1,3, that is,
they have precisely one fixed point and one cycle of length three. Similarly, when n = 3,
all 384 orthomorphisms have cycle type 1,7. When n = 4, however, we find that there are
a total of 244,744,192 orthomorphisms, and they are distributed among exactly 16 cycle
types. This is out of 231 total partitions of the number 24 = 16, and out of just 17 that
have a single fixed point and no cycles of length two.

To investigate these cycle structures further, we will consider a number of group actions
on the set of orthomorphisms. These group actions lead to a uniformity in the cycle types
of orthomorphisms that extend certain partial orthomorphisms. Specifically, we show
that, for any integer n > 1, the distribution of cycle types of orthomorphisms of the
group Zn

2 that extend any given partial orthomorphism of size two is independent of the
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particular partial orthomorphism considered. A similar result holds for size one. However,
we also prove that the corresponding result does not hold for orthomorphisms extending
partial orthomorphisms of size three, and we give a bound on the number of cycle type
distributions for the case of size three.

2 Bijective, cycle-preserving maps

In this section, we introduce a class of bijective cycle-type preserving functions defined on
sets of orthomorphisms. The basic functions in this class are conjugations by automor-
phisms g ∈ Aut(Zn

2 ), conjugations by translations

Tk(x) = x+ k,

for x, k ∈ Zn
2 , and the inverse map. In particular, we consider all functions of the form

Ch(π) = hπh−1 where h is a finite composition of automorphisms and translations, and
π is an orthomorphism. As conjugations, the functions Ch are obviously bijective and
cycle-type preserving. Similarly, the inverse map is bijective and cycle-type preserving.
The critical point, in all cases, is to verify that these functions map orthomorphisms to
orthomorphisms.

Lemma 1. [8, p.361] For any g ∈ Aut(Zn
2 ) and any orthomorphism π of Zn

2 ,

Cg(π) = gπg−1

is an orthomorphism of Zn
2 .

Proof. Since g, π are permutations of Zn
2 , it suffices to show that the map x 7→ gπg−1(x)−x

is a permutation. Since π is an orthomorphism, the map σ : x 7→ π(x)−x is a permutation.
Therefore

gπg−1(x)− x = g(π(g−1(x)))− g(g−1(x))

= g(π(g−1(x))− g−1(x))

= gσg−1(x),

and gσg−1 is a permutation.

We note that, as the proof above shows, Lemma 1 is generally true for any group G,
not just Zn

2 . Next we consider conjugating by translations.

Lemma 2. For any k ∈ Zn
2 and any orthomorphism π of Zn

2 , the map

CTk
(π) = TkπT

−1
k

is an orthomorphism of Zn
2 .
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Proof. Since Tk, π are permutations of Zn
2 , it suffices to show the map x 7→ TkπT

−1
k (x)−x

is a permutation. Since π is an orthomorphism, the map σ : x 7→ π(x)−x is a permutation.
Therefore,

TkπT
−1
k (x)− x = Tk(π(x− k)))− x

= π(x− k) + k − x
= π(x− k)− (x− k)

= σT−1k (x)

is also a permutation.

We note that, as the above proof shows, if G is an arbitrary group, then Lemma 2
holds.

Corollary 3. If π is an orthomorphism and h is any composition of a finite number of
automorphisms and translations of Zn

2 , then Ch(π) is an orthomorphism. Moreover, the
cycle type of Ch(π) is the same as that of π.

Proof. An immediate consequence of Lemmas 1 and 2. The cycle type of any permutation
is preserved by conjugation [3, p. 125].

The final cycle-type preserving function on orthomorphism sets we describe in this
paper will be used in Section 7. Once again, as the proof shows, the result is generally
true for any group G.

Lemma 4. For any orthomorphism π of Zn
2 , the map

R(π) = π−1

is an orthomorphism of Zn
2 with the same cycle type as π.

Proof. Since π−1 is a permutation with the same cycle-type as π, it suffices to show
x 7→ π−1(x) − x is injective. Let x, y ∈ Zn

2 . Since π is bijective, there exists unique
x′, y′ ∈ Zn

2 such that π(x′) = x and π(y′) = y. The following are equivalent,

π−1(x)− x = π−1(y)− y
π−1(π(x′))− π(x′) = π−1(π(y′))− π(y′)

x′ − π(x′) = y′ − π(y′),

thus, since π is an orthomorphism, x′ = y′. Further, since π is well-defined, x = y.

We observe that the group Zn
2 may be viewed as an n-dimensional vector space over

the field with two elements. So, the following theorem is fundamental to most of the
arguments in Sections 4 and 5.

Theorem 5. For any n ∈ N, the automorphism group of Zn
2 satisfies the following prop-

erties.
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1. Aut(Zn
2 ) ∼= GLn(Z2), the group of invertible n× n matrices.

2. Each element of g ∈ Aut(Zn
2 ) can be represented by a matrix in GLn(Z2) and its

action on Zn
2 corresponds to matrix multiplication.

3. Let g be an element of Aut(Zn
2 ). Any x1, . . . , xk ∈ Zn

2 satisfies a dependence relation

c1x1 + · · ·+ ckxk = 0 (c1, . . . , ck ∈ Z2)

if and only if g(x1), . . . , g(xk) satisfies the same relation.

4. In particular, if g ∈ Aut(Zn
2 ) then any x1, . . . , xk ∈ Zn

2 are linearly dependent (in-
dependent) if and only if g(x1), . . . , g(xk) are linearly dependent (independent).

Proof. For more about these standard results from linear algebra, we refer the interested
reader to the excellent texts [3, Chapter 11] and [12].

3 Notation

Definition 6. If π is a partial orthomorphism of size one with a domain in Zn
2 such that

π(r) = i, then we write π as (ir). If π is a partial orthomorphism of size two such that
π(r) = i and π(s) = j for distinct r, s, then we write π as (ir, js). Further, if π is a partial
orthomorphism of size three such that π(r) = i, π(s) = j, and π(t) = k, then we write π
as (ir, js, kt).

Note that in the partial orthomorphism (ir, js), the elements i and j are distinct since
the partial orthomorphism is injective; and i+ r 6= j+ s which follows from the definition
of partial orthomorphism.

Definition 7. If π is a partial orthomorphism of size one with a domain in Zn
2 such that

π(r) = i, then the set of all orthomorphisms that extend π is denoted S(ir). If (ir, js)
is a partial orthomorphism of size two then the set of all orthomorphisms that extend it
is denoted S(ir, js). Further, if (ir, js, kt) is a partial orthomorphism then the set of all
orthomorphisms that extend it is denoted S(ir, js, kt).

We now define a sequence that encodes the distribution of orthomorphisms among the
possible cycle types.

Definition 8. For a fixed n, let Cn be the set of all possible cycle types of permutations
of Zn

2 . Then, for any partial orthomorphism (ir, js), we define

~d(ir, js) = (nt)t∈Cn

to be the |Cn|-tuple of nonnegative integers, indexed by Cn, whose entries nt equal the
number of elements of S(ir, js) with the given cycle type t. For partial orthomorphisms

of size one (and three), we define ~d(ir) (and ~d(ir, js, kt)) similarly.
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4 Cycle type distributions and partial orthomorphisms of size
one

In this section we show that the set of orthomorphisms that extend any partial orthomor-
phism of size one has a cycle-type distribution which does not depend on the particular
partial orthomorphism of size one chosen.

We begin by considering some canonical partial orthomorphisms of size one and two.

Lemma 9. Suppose (00, ir) is a partial orthomorphism of Zn
2 and n > 1. Then

~d(00) = (2n − 2)~d(00, ir).

Proof. Partitioning the set of canonical orthomorphisms S(00) according to the partial
orthomorphisms of size two on {0, r} they extend, we have

~d(00) =
∑
j 6=0,r

~d(00, jr).

For any i, j ∈ Zn
2 \ {0, r}, the sets {r, i} and {r, j} are linearly independent. So, by

Theorem 5, there exists an automorphism g of Zn
2 such that g(r) = r and g(i) = j. Then

the function Cg maps S(00, ir) onto S(00, jr) bijectively, showing that ~d(00, ir) = ~d(00, jr).

It follows that each of the 2n − 2 terms in the sum shares the common value ~d(00, ir), so

~d(00) =
∑
j 6=0,r

~d(00, jr) = (2n − 2)~d(00, ir),

as desired.

Lemma 10. Suppose (is, tt) is a partial orthomorphism of Zn
2 and n > 1. Then

~d(is) = (2n − 2)~d(is, tt).

Proof. First note that i, s, t must be distinct since (is, tt) is a partial orthomorphism.
Indeed, observe that any x ∈ Zn

2 is a fixed point of an orthomorphism π if and only if
π(x)− x = 0. So, if r and s are fixed points of π then

π(r)− r = 0 = π(s)− s,

but the map x 7→ π(x) − x is a permutation when π is an orthomorphism. So, by
injectivity, every orthomorphism of Zn

2 has at most 1 fixed point; and by surjectivity,
some x must satisfy π(x) − x = 0, so every orthomorphism has at least 1 fixed point.
Therefore, every orthomorphism of Zn

2 has precisely one fixed point. So, we can partition
the set of orthomorphisms S(is) so that:

~d(is) =
∑
j 6=i,s

~d(is, jj).
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For any j, t ∈ Zn
2 \ {i, s}, the sets {i+ s, t+ s} and {i+ s, j+ s} are linearly independent.

So, by Theorem 5, there exists an automorphism g of Zn
2 such that g(i + s) = i + s and

g(t+s) = j+s. Set h = TsgTs, and note that the function Ch maps S(is, tt) onto S(is, jj)

bijectively, showing that ~d(is, tt) = ~d(is, jj). It follows that all 2n − 2 terms in the above
sum are equal, so

~d(is) = (2n − 2)~d(is, tt),

as desired.

With the lemmas above, we are now ready to prove our result concerning size one
partial orthomorphisms.

Theorem 11. For any integer n > 1, the distribution of cycle types of orthomorphisms
of the group Zn

2 that extend any given partial orthomorphism of size one is independent
of the particular partial orthomorphism considered.

Proof. Let i, s, i′, s′ ∈ Zn
2 . If i = s and i′ = s′ then Ch maps S(is) onto S(i′s′) bijectively

when h = Ts+s′ . If i 6= s and i′ 6= s′, we can instead use the map h = Ts′gTs, where g is
any automorphism satisfying g(i + s) = i′ + s′. We are left to show that S(00) has the
same cycle type distribution as S(is) for some i 6= s. From Lemmas 9 and 10, we can
write

~d(00) = (2n − 2)~d(is, 00) = ~d(is),

and the statement is proved.

5 Cycle type distributions and partial orthomorphisms of size
two

Investigating partial orthomorphisms of size two leads to the consideration of three basic
types of cycle structures. We will explore each of these cases separately by first proving
cycle distribution uniformity within each category. Then we complete the argument by
establishing uniformity across the cases. Note that the 2-cycle and two 1-cycles are not
partial orthomorphisms, so cases related to them are not considered.

Case Orthomorphism Set Digraph Representation

1 S(tt, is)
t s i

2 S(tr, rs)
ts r

3 S(tr, is)
r t s i

Regarding Cases 1 and 2, notice that if (tt, is) is a partial orthomorphism then i, s, t ∈
Zn

2 are distinct. Similarly, if (tr, rs) is a partial orthomorphism then r, s, t are distinct.
This pattern does not continue for the partial orthomorphism (tr, is). To distinguish Case
3 from the others, we make the additional assumption that i, r, s, t ∈ Zn

2 are distinct.
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Lemma 12 (Case 1). Suppose (tt, is) and (t′t′ , i
′
s′) are partial orthomorphisms of Zn

2 and
n > 1. Then

~d(tt, is) = ~d(t′t′ , i
′
s′).

Proof. By Lemma 10 and Theorem 11, we have

~d(tt, is) =
(

1
2n−2

)
~d(is) =

(
1

2n−2

)
~d(i′s′) = ~d(t′t′ , i

′
s′).

Lemma 13 (Case 2). Suppose (tr, rs) and (t′r′ , r
′
s′) are partial orthomorphisms of Zn

2 and
n > 1. Then

~d(tr, rs) = ~d(t′r′ , r
′
s′).

Proof. Observe that the sets {r + s, t + s} and {r′ + s′, t′ + s′} are linearly independent
whenever (tr, rs) and (t′r′ , r

′
s′) are partial orthomorphisms. So, by Theorem 5, there exists

an automorphism g of Zn
2 that satisfies g(r + s) = r′ + s′ and g(t + s) = t′ + s′. Finally,

apply Ch where h = Ts′gTs to S(tr, rs) to prove the statement of the lemma.

We make note of the following corollary, which relates Case 2 for partial orthomor-
phisms of size two back to the distributions for partial orthomorphisms of size one.

Corollary 14. For distinct r, s, t ∈ Zn
2 , and n > 1,

~d(tr) = (2n − 2)~d(tr, rs).

Proof. By Lemma 13, we have ~d(tr, rs) = ~d(tr, rs′) for all s′ ∈ Zn
2 \ {r, t}. So,

~d(tr) =
∑
s′ 6=r,t

~d(tr, rs′)

= (2n − 2)~d(tr, rs).

We now turn to Case 3.

Lemma 15 (Case 3). Suppose (tr, is) and (t′r′ , i
′
s′) are partial orthomorphisms of Zn

2 and
n > 1 where i, r, s, t ∈ Zn

2 are distinct and i′, r′, s′, t′ ∈ Zn
2 are distinct. Then

~d(tr, is) = ~d(t′r′ , i
′
s′).

Proof. To begin, note that the set {t+r, i+r, s+r} is linearly independent whenever (tr, is)
is a partial orthomorphism with distinct elements. Similarly, the set {t′+r′, i′+r′, s′+r′}
is linearly independent. Then by Theorem 5, there exists an automorphism g of Zn

2 such
that g(t + r) = t′ + r′, g(i + r) = i′ + r′, and g(s + r) = s′ + r′. Setting h = Tr′gTr, the
map Ch defines a cycle-type preserving bijection from from S(tr, is) onto S(t′r′ , i

′
s′).

Again we make note of a relationship between Case 3 for partial orthomorphisms of
size two and the distributions for partial orthomorphisms of size one.
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Corollary 16. For distinct r, s, t ∈ Zn
2 and n > 1,

~d(tr) = (2n − 2)~d(tr, is)

for all i ∈ Zn
2 \ {r, s, t, t+ r + s}.

Proof. Given that r, t ∈ Zn
2 and r 6= t, we have

~d(tr) =
∑

i 6=t,t+r+s

~d(tr, is).

Using Lemma 15, Corollary 14, and Lemma 10, we see that, for some i ∈ Zn
2 \ {r, s, t, r+

s+ t},

~d(tr) = (2n − 4)~d(tr, is) + ~d(tr, rs) + ~d(tr, ss)

= (2n − 4)~d(tr, is) +

(
1

2n − 2

)
~d(tr) +

(
1

2n − 2

)
~d(tr).

Solving for ~d(tr) yields

~d(tr) = (2n − 2)~d(tr, is),

as desired.

Finally, Lemma 17 will show that the orthomorphism sets from Cases 1 and 2 have
the same distribution, and Lemma 18 will show that the orthomorphism sets from Cases
1 and 3 have the same distribution.

Lemma 17. For distinct i, r, s, t ∈ Zn
2 and n > 1,

~d(tt, is) = ~d(tr, rs)

Proof. If t, r, s, i ∈ Zn
2 are distinct, then

~d(tt, is) =

(
1

2n − 2

)
~d(is) Lemma 10

=

(
1

2n − 2

)
~d(tr) Theorem 11

= ~d(tr, rs) Corollary 14.

Lemma 18. For distinct r, s, t ∈ Zn
2 and n > 1,

~d(tt, rs) = ~d(tr, is)

for any i ∈ Zn
2 \ {t, t+ r + s}.
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Proof. As in the previous lemma, we argue as follows

~d(tt, rs) =

(
1

2n − 2

)
~d(rs) Lemma 10

=

(
1

2n − 2

)
~d(tr) Theorem 11

= ~d(tr, is),

with the last equality holding: for i = r by Corollary 14; for all i ∈ Zn
2 \ {r, s, t, t+ r+ s}

by Corollary 16; and for i = s by Lemma 10. Therefore, ~d(tt, rs) = ~d(tr, is) for all
i ∈ Zn

2 \ {t, t+ r + s}.

To summarize, we have established the following.

Theorem 19. Suppose (tr, is) and (t′r′ , i
′
s′) are partial orthomorphisms of Zn

2 and n > 1.
Then

~d(tr, ij) = ~d(t′r′ , i
′
j′).

In other words, the distribution of cycle types of orthomorphisms of the group Zn
2 that

extend any given partial orthomorphism of size two is independent of the particular partial
orthomorphism considered.

Cycle Type Orthomorphism Count
1,4,4,7 23040
1,3,3,3,6 3840
1,4,5,6 57600
1,3,4,8 74880
1,3,12 109440
1,5,5,5 9984
1,4,11 80640
1,3,6,6 13440
1,15 332544
1,5,10 99072
1,7,8 92160
1,3,3,3,3,3 2048
1,6,9 46080
1,3,5,7 103680
1,3,3,9 42240
1,3,4,4,4 1920

total 1092608

Table 1: Cycle type distribution of S(tr, ij) in Z4
2 when (tr, ij) is a partial orthomorphism.
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Cycle Type π σ τ
1,4,4,7 1920 0 0
1,3,3,3,6 320 2304 0
1,4,5,6 4608 0 2304
1,3,4,8 5696 14976 6528
1,3,12 8768 21888 4224
1,5,5,5 768 0 768
1,4,11 6400 0 3840
1,3,6,6 1024 2688 1152
1,15 25600 0 25344
1,5,10 7488 0 9216
1,7,8 7104 0 6912
1,3,3,3,3,3 128 2048 512
1,6,9 3840 0 0
1,3,5,7 7360 20736 15360
1,3,3,9 3072 16896 5376
1,3,4,4,4 128 384 384

total 84224 81920 84224

Table 2: Cycle-type distributions for τ , π, and σ defined in Example 21.

As an illustration of Theorem 19, consider the set of orthomorphisms of Z4
2. For any

given partial orthomorphism of size two, there are 1,092,608 orthomorphisms that extend
it. The cycle-type distribution of this set of orthomorphisms is given in Table 1.

An important consequence of Theorem 19 is the following corollary.

Corollary 20. Every partial orthomorphism of size two of Zn
2 for n > 1 can be extended

to an orthomorphism.

Proof. Since an orthomorphism exists for each n > 1 in Zn
2 (see [11]), there exists a partial

orthomorphism of size two that the orthomorphism extends. So, by Theorem 19, every
partial orthomorphism of size two can be extended to an orthomorphism.

6 Examples and the case of size three

Example 21. As shown in Theorem 19, the cycle-type distribution of orthomorphisms
that extend partial orthomorphisms of size two is independent of the particular partial
orthomorphism of size two chosen. However, as mentioned earlier, a similar statement for
partial orthomorphisms of size three does not hold. For example, consider the group Z4

2

and let π, σ, and τ denote the partial orthomorphisms of size three defined below.

x π(x) σ(x) τ(x)

0000 0000 0001 0000
0001 0010 0010 0010
0010 0100 0000 0011
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There are 84,224 orthomorphisms that extend π, but there are 81,920 that extend σ. So
the sets of orthomorphisms extending π, σ do not share the same cardinality, much less
the same distribution of cycle types.

On the other hand, the number of orthomorphisms extending τ is also 84,224 which
matches π, and yet these sets have different cycle-type distributions. See Table 2.

7 Cycle-type distributions and partial orthomorphisms of size
three

As illustrated in the previous section, the cycle-type distributions of orthomorphisms
that extend partial orthomorphisms of size three are not all the same. In this section,
we show that, for any n > 2, there are at most 12 cycle-type distributions for these
orthomorphisms.

Similar to orthomorphism sets that extend partial orthomorphisms of size two, a set
of 5 basic types of cycle structures arise. We consider each case separately. In each of
the cases displayed in the following table, we assume the elements in each of the partial
orthomorphisms are distinct.

Case Orthomorphism Set Digraph Representation

1 S(rr, ts, it)
r s t i

2 S(rr, is, jt)
r s i t j

3 S(rt, sr, ts)
t r s

4 S(ir, ts, jt)
r i s t j

5 S(ir, js, kt)
r i s j t k

(∗)

We begin with the following lemma which is the basis for each of the case arguments
in this section.

Lemma 22. Suppose (ir, js, kt) and (i′r′ , j
′
s′ , k

′
t′) are partial orthomorphisms of Zn

2 . Then

~d(ir, js, kt) = ~d(i′r′ , j
′
s′ , k

′
t′)

whenever (i + r, j + r, s + r, k + r, t + r) and (i′ + r′, j′ + r′, s′ + r′, k′ + r′, t′ + r′) satisfy
the same set of dependence relations.

Proof. By Theorem 5, let g be an automorphism that satisfies g(i+r) = i′+r′, g(j+r) =
j′ + r′, g(s + r) = s′ + r′, g(k + r) = k′ + r′, and g(t + r) = t′ + r′, then apply Ch where
h = Tr′gTr to S(ir, js, kt).

The apparent distinction of r (and r′) relative to the other parameters in Lemma 22
is insignificant, as we see in Remark 23 below, since many symmetries exist among the
parameters.
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Remark 23. Notice that, by construction, the order in which the coordinates are written
in the expression (ir, js, kt) has no effect on the cycle-type distribution of S(ir, js, kt).
That is,

~d(ir, js, kt) = ~d(ir, kt, js) = ~d(js, kt, ir)

= ~d(js, ir, kt) = ~d(kt, js, ir) = ~d(kt, ir, js).

Additionally, using the inverse map, R, presented in Lemma 4 of Section 2, we find

~d(ir, js, kt) = ~d(ri, sj, tk).

Each of the case arguments in this section have the following form. With Lemma
22, it is sufficient to examine the collection of the possible sets of dependence relations
on {i + r, j + r, s + r, k + r, t + r} to determine the possible cycle-type distributions of
S(ir, js, kt). So, the number of cycle-type distributions is at most the number of sets of
dependence relations. With the help of the content of Remark 23, we can reduce the
upper bound on the number of cycle-type distributions further.

Note that there exist no partial orthomorphisms of Z2
2 that fall into Cases 2, 4, or 5,

as there are only 4 elements in Z2
2 and each of these cases requires more than 4 distinct

elements. We now proceed with each of the five cases given in (∗).

Lemma 24 (Case 1). Suppose (rr, ts, it) is a partial orthomorphism for distinct i, r, s, t ∈
Zn

2 and n > 1. Then S(rr, ts, it) has one of at most 2 different cycle-type distributions.

Proof. Note that {t+ r, s+ r, i+ r} is linearly dependent if and only if t+ r + s+ i = 0,
since all other possible dependence relations contradict the assumption that (rr, ts, it) is a
partial orthomorphism and i, r, s, t are distinct. The statement then follows from Lemma
22.

Lemma 25 (Case 2). Suppose (rr, is, jt) is a partial orthomorphism for distinct i, j, r, s,
t ∈ Zn

2 and n > 2. Then S(rr, is, jt) has one of at most 2 different cycle-type distributions.

Proof. By Lemma 22, it is sufficient to examine the possible sets of dependence relations
on the set {i + r, s + r, j + r, t + r} to determine the possible cycle-type distributions of
S(rr, is, jt). If {i + r, s + r, j + r, t + r} is linearly dependent and (rr, is, jt) is a partial
orthomorphism for distinct i, j, r, s, t, then one of the following is true: (a) r+s+t+i = 0,
(b) r+s+t+j = 0, (c) r+s+i+j = 0, (d) r+t+i+j = 0. By Remark 23, an orthomorphism
set in Case 2 that satisfies equation (a) has the same cycle-type distribution as a set
that satisfies equation (b). Similarly for sets that satisfy (c) and (d). By Lemma 4, an
orthomorphism set that satisfies equation (a) has the same cycle-type distribution as a
set that satisfies equation (c). Thus, there are two possible cycle-type distributions for
orthomorphism sets in Case 2 distinguished by whether the set {i + r, s + r, j + r, t + r}
is linearly dependent or not.

Lemma 26 (Case 3). Suppose (rt, sr, ts) is a partial orthomorphism for distinct r, s, t ∈ Zn
2

and n > 1. Then S(rt, sr, ts) shares one common cycle-type distribution.
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Proof. Since (rt, sr, ts) is a partial orthomorphism for distinct r, s, t, the set {s+ r, t+ r}
is linearly independent. The stated lemma follows from Lemma 22.

Lemma 27 (Case 4). Suppose (ir, ts, jt) is a partial orthomorphism for distinct i, j, r, s, t ∈
Zn

2 and n > 2. Then S(ir, ts, jt) has one of at most 3 different cycle-type distributions.

Proof. By Lemma 22, it is sufficient to examine the possible sets of dependence relations
on the set {i + r, s + r, t + r, j + r} to determine the possible cycle-type distributions of
S(ir, ts, jt). If {i + r, s + r, t + r, j + r} is linearly dependent and (ir, ts, jt) is a partial
orthomorphism for distinct i, j, r, s, t, then one of the following is true: (a) s+t+i+j = 0,
(b) r+s+t+j = 0, (c) r+s+i+j = 0. By Lemma 4, an orthomorphism set in Case 4 that
satisfies equation (a) has the same cycle-type distribution as a set that satisfies equation
(b). Thus, there are at most three possible cycle-type distributions for orthomorphism
sets in Case 4: two when {i + r, s + r, j + r, t + r} is linearly dependent and one when
{i+ r, s+ r, j + r, t+ r} is linearly independent.

Lemma 28 (Case 5). Suppose (ir, js, kt) is a partial orthomorphism for distinct i, j,
k, r, s, t ∈ Zn

2 and n > 2. Then S(ir, js, kt) has one of at most 4 different cycle-type
distributions.

Proof. By Lemma 22, it is sufficient to examine the possible sets of dependence relations
on the set {i+ r, j+ r, s+ r, k+ r, t+ r} to determine the possible cycle-type distributions
of S(ir, js, kt). There are 14 possible sets of linear relations on {i+r, j+r, s+r, k+r, t+r}
when (ir, js, kt) is a partial orthomorphism and i, j, r, s, t ∈ Zn

2 are distinct. Two of the sets
of relations correspond to the set {i+r, j+r, s+r, k+r, t+r} being linearly independent,
and the dependence relation r + s+ t+ i+ j + k = 0. We show the remaining 12 sets of
relations reduce to orthomorphism sets with just two different cycle-type distributions by
first grouping the single-element relation sets in the following way.

i+ s+ j + k = 0
i+ t+ j + k = 0
i+ j + k + r = 0

Type 1a

r + i+ s+ t = 0
r + j + s+ t = 0
r + s+ k + t = 0

Type 1b


Type 1

i+ j + s+ t = 0
i+ s+ t+ k = 0
r + i+ t+ j = 0
r + i+ s+ k = 0
r + j + s+ k = 0
r + j + k + t = 0


Type 2

For the equations of Type 1a, we may relabel the elements in (ir, js, kt) and use Remark

23 to show ~d(ir, js, kt) is the same for each line. A similar argument holds for the equations
of Type 1b and equations of Type 2. To show orthomorphism sets with relations of Type
1a and Type 1b have the same cycle-type distribution, we may relabel the elements in
(ir, js, kt) and use Lemma 4.

Thus, there are at most four possible cycle-type distributions for orthomorphism sets
in Case 5.

With the lemmas above, we are now ready to prove our result concerning partial
orthomorphisms of size 3.
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Cycle Type (00, 21, 32) (00, 21, 84) (10, 21, 02) (10, 42, 34) (10, 42, 64)
1,4,4,7 0 1920 0 1920 1920
1,3,3,3,6 0 320 2304 128 320
1,4,5,6 2304 4896 0 4800 4608
1,3,4,8 6528 6512 14976 4992 5696
1,3,12 4224 9296 21888 7296 8768
1,5,5,5 768 864 0 832 768
1,4,11 3840 6880 0 6720 6400
1,3,6,6 1152 1168 2688 896 1024
1,15 25344 28768 0 27712 25600
1,5,10 9216 8640 0 8256 7488
1,7,8 6912 7968 0 7680 7104
1,3,3,3,3,3 512 192 2048 0 128
1,6,9 0 3840 0 3840 3840
1,3,5,7 15360 9280 20736 6912 7360
1,3,3,9 5376 3744 16896 2112 3072
1,3,4,4,4 384 176 384 128 128

total 81920 94464 81920 84224 84224

Cycle Type (10, 42, 84) (10, 82, 43) (10, 82, 34) (10, 82, 127)
1,4,4,7 1920 2072 1768 1920
1,3,3,3,6 368 288 304 416
1,4,5,6 4848 5088 4464 4800
1,3,4,8 6688 6392 5640 6864
1,3,12 9664 9184 8512 10032
1,5,5,5 848 872 776 832
1,4,11 6800 7016 6344 6720
1,3,6,6 1200 1160 1000 1232
1,15 28240 29216 25680 27712
1,5,10 8448 8520 7800 8256
1,7,8 7824 7920 7296 7680
1,3,3,3,3,3 224 144 144 256
1,6,9 3840 4032 3648 3840
1,3,5,7 9392 8816 7712 9504
1,3,3,9 3984 3584 2992 4224
1,3,4,4,4 176 160 144 176

total 94464 94464 84224 94464

Table 3: Cycle type distributions realized for 9 representative partial orthomorphisms of
size three of Z4

2.
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Theorem 29. For any integer n > 2, the set of orthomorphisms of the group Zn
2 that

extend any given partial orthomorphism of size three has one of at most 12 different
cycle-type distributions.

For small values of n, not all cycle-type distributions are realized. For n = 1, there
exist no orthomorphisms. For n = 2, there is only one possible cycle-type distribution
for the set of all orthomorphisms that extend a particular partial orthomorphism of size
three, since there is only one orthomorphism that extends any partial orthomorphism of
size three, and all orthomorphisms of Z2

2 have cycle-type 1,3.
As in the case when n = 2, it turns out for n = 3 there is only one cycle-type distribu-

tion for the set of all orthomorphisms that extend any particular partial orthomorphism of
size three. For n = 4, there are 9 different cycle-type distributions realized. See Table 3 for
9 representative partial orthomorphisms of size 3 and their cycle-type distributions, where
we use the notation 23i3 + 22i2 + 2i1 + i0 ∈ Z for (i3, i2, i1, i0) ∈ Zn

2 . Values of n greater
than 4 have yet to be studied computationally in this context, as working with orthomor-
phisms of this group is infeasible with current knowledge and technologies. Hopefully,
future research will better illuminate the structure of orthomorphisms for larger values
of n.
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