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Abstract

We study random subcube intersection graphs, that is, graphs obtained by se-
lecting a random collection of subcubes of a fixed hypercube Qd to serve as the
vertices of the graph, and setting an edge between a pair of subcubes if their in-
tersection is non-empty. Our motivation for considering such graphs is to model
‘random compatibility’ between vertices in a large network.

For both of the models considered in this paper, we determine the thresholds
for covering the underlying hypercube Qd and for the appearance of s-cliques. In
addition we pose a number of open problems.

1 Introduction

In this paper we introduce and study two models of random subcube intersection graphs.
These are random graph models obtained by (i) selecting a random collection of subcubes
of a fixed hypercube Qd, to serve as the vertices of the graph, and (ii) setting an edge
between a pair of subcubes if their intersection is non-empty. Our basic motivation
for studying these random graphs is that they give a model for ‘random compatibility’
between vertices. Before we make our models mathematically precise let us consider some
examples of the applications we have in mind.

A first example is the random k-SAT problem, which has attracted the attention of
both physicists [27] and mathematicians [1] for many decades. In this problem we have
a set of n Boolean variables and some number m of Boolean clauses on k variables are
chosen at random. Each clause forbids exactly one of the 2k possible assignments to the k
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variables in the clause and the question of interest is whether there exists an assignment
to the n variables which is compatible with all the clauses. It is known that there is
a sharp threshold [22] for satisfiability with respect to the number m of clauses chosen
and that for large k [15] this threshold is located at approximately m = n2k ln(k). It
is conjectured that for all fixed k there exists a constant ck such that the satisfiability
threshold is asymptotically ckn (a proof of this conjecture for all sufficiently large values
of k has been announced recently [17]).

The random k-SAT problem is a problem about random subcubes. Given a clause
C the assignments which are incompatible with C are given by the subcube where the
k variables in C are assigned the values forbidden by C. This is an (n − k)-dimensional
subcube of the n-dimensional cube of all possible assignments, and a collection of clauses
is unsatisfiable if and only if the union of the corresponding subcubes contains all vertices
of the n-cube. The random k-SAT problem is thus equivalent to finding the threshold
for covering all the vertices of a cube by a collection of random subcubes. This example
also suggests that a mathematical analysis of the covering problem will be harder for
subcubes than for e.g. the usual independent random intersection graph models (where
it is analogous to the classical coupon collector problem).

A second example of applications we have in mind comes from social choice theory.
Suppose we have a society V which is faced with d political issues, each which can be
resolved in a binary fashion. We represent the two policies possible on each issue by 0, 1,
and the family of all possible sets of policies by a d-dimensional hypercube Qd.

Individual members of the society may have fixed views on some issues, but may be
undecided or indifferent on others. We can thus associate to each citizen v ∈ V a subcube
of acceptable policies f(v) in a natural way. The subcube intersection graph G arising
from (V,Qd, f) then represents political agreement within the society: uv is an edge of G
if and only if the citizens u and v can agree on a mutually acceptable set of policies.

A key characteristic of subcubes is that they possess the Helly property : if we have
s subcubes f(v1), f(v2), . . . f(vs) of Qd which are pairwise intersecting, then their total
intersection

⋂s
i=1 f(vi) is non-empty (this is an easy observation, already made in [25]).

A consequence of this fact is that in the model for political agreement described above,
s-cliques represent s-sets of citizens able to agree on a mutually acceptable set of policies
and, say, unite their forces to promote a common political platform. This motivates our
study of the clique number in (random) subcube intersection graphs. For a more detailed
discussion of the role of subcube intersection graphs in the context of social choice theory
and voting problems, see [31].

There are many examples of compatibility graphs naturally modeled by subcube inter-
section graphs. Some closely resemble the one above: the work of matrimonial agencies or
the assignment of room-mates in the first year at university, for instance, naturally lead
to the study of such compatibility graphs. Another class of examples can be found in the
medical sciences. For kidney or blood donations, several parameters must be taken into
account to determine whether a potential donor–receiver pair is compatible. Large ran-
dom subcube intersection graphs provide a way of modeling these compatibility relations
over a large pool of donors and receiver, and of identifying efficient matching schemes.

the electronic journal of combinatorics 23(3) (2016), #P3.43 2



1.1 The models

Let us now describe our models more precisely. We begin with some basic definitions and
notation.

Definition 1.1 (Intersection graphs). A feature system is a triple (V,Ω, f), where V is a
set of vertices, Ω is a set of features, and f is a function mapping vertices in V to subsets
of Ω. Given a vertex v ∈ V , we call f(v) ⊆ Ω its feature set. We construct a graph G
on the vertex-set V from a feature system (V,Ω, f) by placing an edge between u, v ∈ V
if their feature sets f(u), f(v) have non-empty intersection. We call G the intersection
graph of the feature system (V,Ω, f).

Intersection graphs are well-studied objects with many applications— see the mono-
graph of McKee and McMorris [30]. In this paper we shall study intersection graphs
where Ω and the feature sets {f(v) : v ∈ V } have some additional structure. Namely, Ω
shall be a high-dimensional hypercube Qd and the feature sets will consist of subcubes of
Qd.

Definition 1.2 (Hypercubes and subcubes). The d-dimensional hypercube is the set Qd =
{0, 1}d. A k-dimensional subcube of Qd is a subset obtained by fixing (d− k)-coordinates
and letting the remaining k vary freely. We may regard subcubes of Qd as elements of
{0, 1, ?}d, where ? coordinates are free and the 0, 1 coordinates are fixed.

We shall define two models of random subcube intersection graphs. Both of these are
obtained by randomly assigning to each vertex v ∈ V a feature subcube f(v) of Qd and
then building the resulting intersection graph.

Definition 1.3 (Uniform model). Let V be a set of vertices. Fix k, d ∈ N with k 6 d.
For each v ∈ V independently select a k-dimensional subcube f(v) of Qd uniformly at
random, and set an edge between u, v ∈ V if f(u) ∩ f(v) 6= ∅. Denote the resulting
random subcube intersection graph by GV,d,k.

Definition 1.4 (Binomial model). Let V be a set of vertices. Fix d ∈ N and p ∈ [0, 1].
For each v ∈ V independently select a subcube f(v) ∈ {0, 1, ?}d at random by setting
(f(v))i = ? with probability p and (f(v))i = 0, 1 each with probability 1−p

2
independently

for each coordinate i ∈ {1, . . . d} (we refer to such a subcube as a binomial random
subcube). Denote the resulting random subcube intersection graph by GV,d,p.

Remark 1.5. We may view GV,d,p as the intersection of d independent copies of GV,1,p on
a common vertex-set V . Indeed an edge uv of GV,d,p is present if and only if for each of
the d dimensions of Qd we have that f(u) and f(v), viewed as vectors, are identical or at
least one of them is ?. The graph GV,1,p is itself rather easy to visualise: we first randomly
colour the vertices in V with colours from {0, 1, ?}, and then remove from the complete
graph on V all edges between vertices in colour 0 and vertices in colour 1.
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1.2 Degree distribution, edge-density and relation to other models of random
graphs

Our two models of random subcube intersection graphs bear some resemblance to previous
random graph models. To give the reader some early intuition into the nature of random
subcube intersection graphs, we invite her to consider the degree distributions and edge-
densities found in them, and to contrast them with models of random graphs with similar
degree distributions and edge-densities.

Let us first note that in order to get an random model which is both structurally
interesting and amenable to asymptotic analysis we typically consider the case where
d→∞, and the other parameters are functions of d.

The degree of a given vertex in the uniform model GV,d,k is a binomial random variable
with parameters |V | − 1 and q, where q is the probability that two uniformly chosen k-
dimensional subcubes of Qd meet. If k = k(d) = bαdc for some fixed α ∈ (0, 1), then one
can show q = q(α) = e−g(α)d+o(d), where

g(α) = 2 log
(
αα(1− α)1−α)− (√(1− α)2 + α2 − 1 + α

)
log
(√

(1− α)2 + α2 − 1 + α
)

− 2
(

1−
√

(1− α)2 + α2
)

log
(

1−
√

(1− α)2 + α2
)

−
(√

(1− α)2 + α2 − α
)

log
(

2
√

(1− α)2 + α2 − 2α
)
.

This expression is not, however, terribly instructive.
The quantity q is also the edge-density of GV,d,k. When |V | = n, the appropriate ran-

dom graph to compare and contrast it with is thus an Erdős–Rényi random graph G(n, q)
with edge probability q. However GV,d,k displays some significant clustering : our results
can be used to show for instance that dependencies between the edges cause triangles to
appear well before we see a linear number of edges, in contrast to the Erdős–Rényi model
G(n, q).

The edge-density of the binomial model GV,d,p is easy to compute: it is exactly(
1− (1−p)2

2

)d
= e

−d log
(

2
1+2p−p2

)
. The degree distribution of GV,d,p is more complicated,

however. Increasing the dimension of a subcube by 1 doubles its volume inside Qd, so
that larger subcubes expect much larger degrees. The number of feature subcubes from
our graph met by a fixed subcube of dimension αd is a binomial random variable with

parameters |V | − 1 and
(

1+p
2

)(1−α)d
. The number of vertices in V whose feature sub-

cubes have dimension αd is itself a binomial random variable with parameters |V | and(
d
αd

)
pαd(1− p)(1−α)d. As in this paper we will typically be interested in the case where d

is large and V has size exponential in d, we will expect to see some feature subcubes with
dimension much larger or much smaller than pd. This will have a noticeable effect on the
properties of the graph GV,d,p.

Among the random graph models studied in the literature, GV,d,p in many ways re-
semble the multi-type inhomogeneous random graphs studied in [10], which also have
vertices of several different types and differing edge probabilities, though we should point
out there are significant differences. First of all some ‘types’ corresponding to vertices
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Figure 1: An example of the binomial random subcube intersection graph model GV,d,p

with |V | = 200, d = 20 and p = 0.35. The row of vertices at the bottom right are all
isolated.

with unusually large or unusually small feature subcubes will have only a sublinear (and
random) number of representatives. Secondly, the binomial model shares the clustering
behaviour of the uniform model (see Remark 2.3), differentiating it from the models con-
sidered in [10]. We note that a further general model for inhomogeneous random graphs
with clustering was introduced by Bollobás, Janson and Riordan in [11], for which this
second point does not apply.

Finally, let us mention the standard models of random intersection graphs. Write [m]
for the discrete interval {1, 2, . . .m}. In the binomial random intersection graph model
G(V, [m], p), each vertex v ∈ V is independently assigned a random feature set f(v) ⊆ [m].
This feature set is obtained by including j ∈ [m] into f(v) with probability p and leaving
it out otherwise independently at random for each feature j ∈ [m]. Edges are then
added between all pairs of vertices u, v ∈ V with f(u) ∩ f(v) 6= ∅ to obtain a random
intersection graph on V . A variant on this model is to choose feature sets f(v) uniformly
at random from the k-subsets of [m]; this yields the uniform random intersection graph
model G(V, [m], k).

While these two random intersection graph models bear some resemblance (in terms
of clustering, for example) to our random subcube intersection graph models, there are
also some significant differences due to the underlying structure of our feature sets. Let
us note amongst other things that subsets of [m] do not have the Helly property, and that
the effects on the degree of increasing the size of a feature set by 1 in a binomial random
intersection graph are far less dramatic than the effects of increasing the dimension of
a feature subcube by 1 in a binomial random subcube intersection graph. In particular,
the binomial random subcube intersection graph model GV,d,p has a much more dramatic
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variation of degrees than its non-structured counterpart G(V, [m], p).
We end this section by noting that there has been some interest in another model of

‘structured’ random intersection graphs, namely random interval graphs. The idea here is
to associate to each vertex v ∈ V a feature interval f(v) = Iv = [av, bv] ⊆ [0, 1] at random
and to set an edge between u, v ∈ V whenever Iu ∩ Iv 6= ∅. Here ‘at random’ means
the intervals are generated by independent pairs of uniform U(0, 1) random variables,
which serve as the endpoints. A d-dimensional version of this model also exists, where
we associate to each vertex a d-dimensional box lying inside [0, 1]d. This gives rise to
(random) d-box graphs.

In the setting of intervals and d-boxes, we do have the Helly property. The random
interval and random d-box graph models are however quite different from the random
subcube intersection graphs we study in this paper.

1.3 Previous work on random intersection graphs and subcube intersection
graphs

Subcube intersection graphs were introduced by Johnson and Markström [25], with moti-
vation coming from the example in social choice theory we discussed above. They studied
cliques in subcube intersection graphs from an extremal perspective, obtaining a number
of results on Ramsey- and Turán-type problems and providing a counterpoint to the prob-
abilistic perspective of the work undertaken in this paper. Subcube intersection graphs
have also appeared in connection with biclique covers — the old and well-studied problem
of covering the edges of a graph with as few complete bipartite subgraphs as possible —
see the work of Pinto [36] on the subject.

The random intersection graph models G(V, [m], p) and G(V, [m], k) we presented in the
previous subsection have for their part received extensive attention from the research com-
munity since they were introduced by Karoński, Scheinerman and Singer-Cohen [26] and
Singer-Cohen [42]. By now, many results are known on their connectivity [6, 24, 37, 42],
hamiltonicity [9, 18], component evolution [3, 7, 37], clique number [8, 26, 39], indepen-
dence number [33], chromatic number [4, 34], degree distribution [43] and near-equivalence
to the Erdős–Rényi model Gn,p for some range of the parameters [21, 38], amongst other
properties. Even more recently, there has been interest in obtaining versions of the results
cited above for inhomogeneous random intersection graph models.

Finally there has been some work on random intersection graphs and d-box graphs
that runs somewhat parallel to the work of Johnson and Markström and of this paper.
From an extremal perspective, sufficient conditions for the existence of large cliques in
d-box graphs were investigated by Berg, Norine, Su, Thomas and Wollan [5] in the context
of models for social agreement and approval voting, while random interval graphs were
introduced by Scheinerman [40], and have been extensively studied [16, 23, 35, 41].

1.4 Results of this paper

In this paper we study the behaviour of the binomial and uniform subcube intersection
models when d is large (see Remark 1.8 below for a discussion of the constant d case).

the electronic journal of combinatorics 23(3) (2016), #P3.43 6



We study two main properties, that of containing a clique of size s = s(d), and that of
covering the entirety of the underlying hypercube Qd with the union

⋃
v∈V f(v) of the

feature subcubes.
Both of these properties are closed under the addition of vertices to V (or, equivalently,

of subcubes f(v) to the family of feature subcubes). The question is then how large V
needs to be for these properties to hold with high probability (whp), that it to say with
probability tending to 1 as d→∞.

In the case of covering, this question can be thought of as a structured variant of the
classical coupon collector problem, Problem 2.15, which had not been considered before.
This problem is discussed in greater detail in Section 2.3, and further investigated in the
preprint [20], but is still at present far from settled.

Returning to our random subcube intersection graphs, we formally take a dynamic
view of our models: for fixed p, α ∈ [0, 1] we consider a nested sequence of vertex sets V1 ⊂
V2 ⊂ . . ., with |Vn| = n, and corresponding nested sequences of binomial random subcube
intersection graphs Bn = GVn,d,p and uniform random subcube intersection graphs Un =
GVn,d,bαdc.

Definition 1.6. Let P be a property of subcube intersection graphs that is closed with
respect to the addition of vertices. The hitting time N b

P = N b
P(d, p) for P for the binomial

sequence (Bn)n∈N is
N b
P := min {n ∈ N : Bn ∈ P} .

Further, the hitting time Nu
P = Nu

P(d, α) for P for the uniform sequence (Un)n∈N is

Nu
P := min {n ∈ N : Un ∈ P} .

In this paper, we restrict our attention to the binomial model GV,d,p with p ∈ (0, 1)
fixed, and to the uniform model GV,d,k with k = k(d) = bαdc for α ∈ (0, 1) fixed. In both
cases, the interesting behaviour occurs when |V | = exd for x bounded away from 0. We
thus typically use this number x as a parameter, rather than the actual number n = |V |
of vertices in the graph. Our aim is to establish concentration of the exponent of the
hitting time. We thus make the following definitions:

Definition 1.7. Let P be a property of subcube intersection graphs that is closed with
respect to the addition of vertices. A real number t > 0 is a threshold for P in the
binomial model (with parameter p) if

log
(
N b
P(d, p)

)
d

→ t

in probability as d→∞.
Further,a real number t > 0 is a threshold for P in the uniform model (with parameter

k = bαdc) if
log (Nu

P(d, α))

d
→ t

in probability as d→∞.
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In other words, t > 0 is a threshold for the property P in the binomial model if for
any sequence of vertex sets V = V (d)

lim
d→∞

P(GV,d,p ∈ P) =

{
0 if |V (d)| 6 exd for some x < t,
1 if |V (d)| > exd for some x > t,

Similarly, t > 0 is a threshold for P in the uniform model if for any sequence of vertex
sets V = V (d),

lim
d→∞

P(GV,d,k ∈ P) =

{
0 if |V (d)| 6 exd for some x < t,
1 if |V (d)| > exd for some x > t.

Our main results are determining the thresholds for the appearance of cliques and for
covering the ambient hypercube in both the binomial and the uniform model. In most
cases we also give some slightly more precise information about the thresholds, going into
the lower order terms. We show in particular that around the covering threshold, the
clique number of our models undergoes a transition: below the covering threshold, the
clique number is whp of order O(1); close to the covering threshold, it is whp of order a
power of d; finally above the covering threshold, it is whp of order exponential in d.

Our paper is structured as follows. In Section 2, we state and prove our results for the
binomial model. In Section 3 we use these to obtain our results for the uniform model.
Finally in Section 4 we discuss small p and large p behaviour, and end with a number of
open problems and conjectures concerning random subcube intersection graphs.

Remark 1.8. In this paper, as we have said, we are focussing on our models in the case
where d→∞. What happens when d is fixed and the number of vertices goes to infinity?
In some applications, this may be a more relevant choice of parameters. The asymptotic
behaviour in this case is however much simpler. Indeed, let d be fixed and let U be the
family of all subcubes of Qd. We may define a subcube intersection graph Gd on U by
setting an edge between two subcubes if their intersection is non-empty. The binomial
model G|V |,d,p is then just a random weighted blow-up of Gd: each vertex v of Gd is replaced
by a clique with a random size cv, where

∑
v cv = |V |, and by standard Chernoff bounds

cv = (1 + o(1))pv|V | for every v, where pv is the probability that a binomial random
cube is equal to v. Thus knowledge of the finite graph Gd will give us essentially all the
information we could require concerning the graph GV,d,p as |V | → ∞.

Similarly, the asymptotic behaviour of GV,d,k for d fixed can be inferred from the
properties of the intersection graph Gd

k of the k-dimensional subcubes of Qd. We note
that this latter graph Gd

k may be thought of as a subcube analogue of (the complement of)
a Kneser graph, and is an interesting graph theoretic object in its own right. Along with
related constructions, it appears for example in the aforementioned work of Pinto [36] on
biclique covers.

1.5 A note on approximations and notation

Throughout this paper we shall need some standard approximations. In particular we

shall often use
(
m
βm

)
= e−m log(ββ(1−β)1−β)+O(logm) (for β ∈ (0, 1) fixed) and (1 − η)m =
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e−ηm+O(η2m) (for η = o(1)). We will also use the notation f(n) � g(n) to denote that
f(n) = o(g(n)), and f(n)� g(n) to denote that g(n) = o(f(n)).

2 The binomial model

2.1 Summary

In this section, we prove our results for the binomial model. Denote by Ks the complete
graph on s vertices. Recall that the clique number ω(G) of a graph G is the largest s such
that G contains a copy of Ks as a subgraph.

Theorem 2.1. Let p ∈ (0, 1) and ε > 0 fixed. Let s = s(d) be a sequence of non-negative

integers with s(d) = o
(

d
log d

)
. Set

ts(p) = −1

s
log

(
2

(
1 + p

2

)s
− ps

)
.

Then for every sequence of vertex sets V (d) with x(d) = 1
d

log |V (d)|,

lim
d→∞

P (GV,d,p contains a Ks) =

{
0 if x(d) 6 ts(p) + log s

d
− ε log d

d

1 if x(d) > ts(p) + 2 log s
d

+ ε log d
d
.

Corollary 2.2. Let p ∈ (0, 1) and s ∈ N be fixed. The threshold for the appearance of
s-cliques in GV,d,p is

ts(p) = log
2

1 + p
− 1

s
log

(
2−

(
2p

1 + p

)s)
.

Remark 2.3. As we shall see in the proof of Theorem 2.1, from the moment it be-
comes non-zero, the number of edges in GV,d,p remains concentrated about its expectation
e2(x−t2)d+o(d). If there was no clustering in GV,d,p, that is, if cliques appeared no earlier
than they would in the Erdős–Rényi model with parameter e−2t2d, then we would expect
s-cliques to appear roughly when x = (s− 1)t2.

However, it is the case that ts < (s − 1)t2 for all p ∈ [0, 1) and all s > 3. This is
an exercise in elementary calculus. In particular, s-cliques appear much earlier than we
would expect them to given the edge-density of our binomial random subcube intersection
graphs. Indeed, letting p→ 0, we have by Corollary 2.2 that for s > 3

ts(p) =

(
1− 1

s

)
log 2− p+O(p2),

while the threshold for having a linear number of edges is 2t2 = log 2− 2p+O(p2), which
is strictly larger provided p is chosen sufficiently small. Thus for every s ∈ N, there exists
ps ∈ [0, 1] such that for all fixed p ∈ [0, ps], whp we see s-cliques appear in GV,d,p before
we have a linear number of edges. This stands in stark contrast to the situation for the
Erdős–Rényi model.
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Theorem 2.4. Let p ∈ (0, 1) and ε > 0 be fixed. Let V = V (d) be a sequence of vertex
sets with x(d) = 1

d
log |V (d)|. Then, for the binomial model GV,d,p,

lim
d→∞

P

(⋃
v∈V

f(v) = Qd

)
=

{
0 if x(d) 6 log 2

1+p
+ log d

d
+ log(log 2−ε)

d

1 if x(d) > log 2
1+p

+ log d
d

+ log(log 2+ε)
d

.

Corollary 2.5. Let p ∈ (0, 1) be fixed. Then the threshold for covering the ambient
hypercube Qd with the feature subcubes from GV,d,p is

tcover(p) = log
2

1 + p
.

Remark 2.6. lims→∞ ts(p) = tcover(p).

Theorem 2.7. Let p ∈ (0, 1) and ε > 0 be fixed, and let s = s(d) be a sequence of integers
with s� d/ log d. Then for every sequence of vertex sets V (d) with x(d) = 1

d
log |V (d)|,

lim
d→∞

P (GV,d,p contains a Ks) =

{
0 if x(d) 6 log 2

1+p
+ log s

d
− ε log d

d

1 if x(d) > log 2
1+p

+ log s
d

+ ε
d
.

Further, if s(d)
d
→∞ as d→∞, then we may improve the lower bound on the appearance

of s-cliques to x(d) 6 log 2
1+p

+ log s
d
− ε

d
.

Theorem 2.1 is proved in Section 2.2, where in addition we prove some key results on
the dimension of the feature subcubes of the vertices in the first s-clique to appear in our
graph. These will be needed in Section 3 when we study the uniform model. Theorem 2.4
is proved in Section 2.3, while Theorem 2.7 is proved in Section 2.4. Our results give whp
lower and upper bounds on certain hitting times, and their proofs are split accordingly
into two parts, one for each direction.

Before we proceed to the proofs, let us remark that our results imply that the clique
number ω(GV,d,p) undergoes a transition around the covering threshold.

Corollary 2.8. Let p ∈ (0, 1). Let V = V (d) be a sequence of vertex-sets and x(d) =
1
d

log |V (d)|. The following hold:

• if there is s ∈ N and ε > 0 such that ts + ε < x < ts+1, then whp ω(GV,d,p) = s;

• if there is s ∈ N such that x = ts + o(1), then whp ω(GV,d,p) ∈ {s, s− 1};

• if there is γ > 0 such that x = x(d) = tcover + γ log d
d

+ o
(

log d
d

)
, then whp ω(GV,d,p)

has order dγ+o(1);

• if there is c > 0 such that x = x(d) = tcover + c+ o(1), then whp ω(GV,d,p) has order
ecd+o(d).
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2.2 Below the covering threshold

Proof of Theorem 2.1. Without loss of generality we may assume V = [n]. Set x =
1
d

log n, and let ε > 0 be fixed. Let s = s(d) be a sequence of non-negative integers with
s(d) = o (d/ log d).

Let q(s, d) denote the probability that a given s-set of vertices induces an s-clique in
G[n],d,p. By Remark 1.5, we have that

q(s, d) = q(s, 1)d =

(
2

(
1 + p

2

)s
− ps

)d
= exp (−sdts(p)) .

Let X = X(d) be the random variable denoting the number of copies of Ks in G[n],d,p.

Lower bound: suppose x 6 ts(p) + log s
d
− ε log d

d
. Then

EX =

(
n

s

)
q(s, d) = exp (sdx− s log s− sdts(p) +O(s))

6 exp (−εs log d+O(s)) = o(1).

It follows by Markov’s inequality that whp X = 0 and G[n],d,p contains no s-clique, proving
the first part of the theorem.
Upper bound: suppose x > ts(p) + 2 log s

d
+ ε log d

d
. We have

EX =

(
n

s

)
q(s, d) >

(n
s

)s
q(s, d) > exp (εs log d)� 1.

We use Chebyshev’s inequality to show that X is concentrated about this value (and
hence that whp G[n],d,p contains an s-clique).

Fix i : 0 6 i 6 s. Let A,B be two s-sets of vertices meeting in exactly i vertices.
Using Remark 1.5 and the inclusion-exclusion principle, we compute the probability bi
that both A and B induce a copy of Ks in G[n],d,p:

bi =

(
2

(
1 + p

2

)2s−i

+ 2

(
1 + p

2

)2s−2i

pi − 4

(
1 + p

2

)s−i
ps + p2s−i

)d

=

(
1 + p

2

)(2s−i)d
(

2 + 2

(
2p

1 + p

)i
− 4

(
2p

1 + p

)s
+

(
2p

1 + p

)2s−i
)d

.

(Note b0 = q(s, d)2 and bs = q(s, d).) Now,

EX2 =

(
n

s

) s∑
i=0

(
n− s
s− i

)(
s

i

)
bi.
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We claim that the dominating contribution to this sum comes from the i = 0 term.

Indeed, for s(d) = o
(

d
log d

)
, d large and x > ts + 2 log s

d
+ ε log d

d
,(

n−s
s−i

)(
s
i

)(
n−s
s

) bi
b0

6
2s2i

ni
bi
b0

(provided d is sufficiently large)

= 2s2i exp
(
d
[
−ix− (2s− i) log

2

1 + p

+ log

(
2 + 2

(
2p

1 + p

)i
− 4

(
2p

1 + p

)s
+

(
2p

1 + p

)2s−i
)

+ 2s log
2

1 + p
− log

((
2−

(
2p

1 + p

)s)2
)])

(the second and third term in the exponent coming from log bi and the last two terms
coming from log b0 = log (q(s, d)2))

6
2

diε
exp
(
d
[
log

(
2 + 2

(
2p

1 + p

)i
− 4

(
2p

1 + p

)s
+

(
2p

1 + p

)2s−i
)

−
(

2− i

s

)
log

(
2−

(
2p

1 + p

)s)])
, (2.1)

with the inequality in the last line coming from substituting ts(p) + 2 log s
d

+ ε log d
d

for x,
and rearranging terms. We now resort to the following technical lemma.

Lemma 2.9. For all y ∈ [0, 1] and all integers 0 6 i 6 s, the following inequality holds:(
2 + 2yi − 4ys + y2s−i)s 6 (2− ys)2s−i .

We defer the proof of Lemma 2.9 (which is a simple albeit lengthy exercise) to Ap-

pendix A. Set y =
(

2p
1+p

)
. As 0 < p < 1, we have y ∈ (0, 1). Applying Lemma 2.9, we

have

log
(
2 + 2yi − 4ys + y2s−i)− (2− i

s

)
log (2− ys) < 0.

Substituting this into the expression inside the exponential in (2.1), we get(
n−s
s−i

)(
s
i

)(
n−s
s

) bi
b0

6
2

diε
.

Thus

E
(
X2
)
6

(
n

s

)(
n− s
s

)
b0

(
1 +

2

dε

(
1 +

1

dε
+

1

d2ε
+ · · ·

))
= (EX)2 (1 + o(1)).

In particular, Var(X) = o
(
(EX)2), and by Chebyshev’s inequality whp X is at least

1
2
EX > 0. Thus whp G[n],d,p contains (many) s-cliques.
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Remark 2.10. We have shown that the transition between whp no s-cliques and whp
many s-cliques in G[n],d,p takes place inside a window of width (with respect to x) of order

O
(

log d
d

)
. In the case when s is bounded, s(d) = O(1), it is easy to run through the proof

of Theorem 2.1 again and show that in fact we may replace ε log d in the statement of the
Theorem by any function h = h(d) tending to infinity with d, so that the width of the
window may be reduced to O

(
h
d

)
.

Having proven Theorem 2.1, we now turn our attention to the following question. Let
s ∈ N be fixed. What is the dimension of the features subcubes in the first s-clique to
appear in G[n],d,p?

As always, write x for 1
d

log n. Let Sα be a subcube of dimension αd. Suppose Sα is
the feature subcube of some v ∈ [n], f(v) = Sα. Then the expected number of s-cliques
involving v is

E#{Ks−1 meeting Sα} =

(
n− 1

s− 1

)(
1 + p

2

)(s−1)(1−α)d
(

2

(
1 + p

2

)s−1

− ps−1

)αd

An application of Wald’s equation yields that the expected number Es
α of pairs (v,S) for

which (i) v ∈ [n] is a vertex with a feature subcube f(v) of dimension αd, and (ii) S is
an s-set of vertices from [n] containing v and inducing an s-clique in G[n],d,p, is:

Es
α = E#{αd-dimensional feature subcubes} × E#{Ks−1 meeting Sα}

= n

(
d

αd

)
pαd(1− p)(1−α)d

(
n− 1

s− 1

)(
1 + p

2

)(s−1)(1−α)d
(

2

(
1 + p

2

)s−1

− ps−1

)αd

= exp
(
d
[
sx+ α log

(( p
α

)(
2

(
1 + p

2

)s−1

− ps−1

))

+ (1− α) log

((
1− p
1− α

)(
1 + p

2

)s−1
)]

+ o(d)
)
.

Define

tαs : = −1

s

(
α log

(
p

α
·

(
2

(
1 + p

2

)s−1

− ps−1

))

+ (1− α) log

((
1− p
1− α

)
·
(

1 + p

2

)s−1
))

.

The expression above can then be rewritten as Es
α = esd(x−tαs +o(1)). Set

αs = αs(p) := p

(
2
(

1+p
2

)s−1 − ps−1

2
(

1+p
2

)s − ps
)
.
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Remark 2.11. The quantity αs is exactly the probability that a given vertex receives
colour ? in G[n],1,p conditional on it forming an s-clique with a fixed (s−1)-set of vertices.
In particular it follows from Remark 1.5 that αsd is the expected dimension of feature
subcubes in an s-clique in G[n],d,p.

Remark 2.12. For 0 < p < 1 fixed, the sequence (αs)s∈N is strictly increasing and tends
to 2p

1+p
as s→∞. Note in particular that for all s > 1, αs(p) > α1(p) = p.

Proposition 2.13. Let p ∈ (0, 1) be fixed. Then for every s ∈ N the following equality
holds:

ts = tαss .

Moreover, as a function of α, tαs is strictly decreasing for α ∈ [0, αs) and strictly increasing
for α ∈ (αs, 1]. In particular, αs is the unique minimum of tαs over all α ∈ [0, 1].

Proof. The first part of our proposition is a simple calculation. Recall from the proof of
Theorem 2.1 that q(s, 1) = 2

(
1+p

2

)s − ps is the probability that a given s-set of vertices
forms an s-clique in G[n],d,1. Note that

ts = −1

s
log q(s, 1), αs =

pq(s− 1, 1)

q(s, 1)
and

q(s, 1)− pq(s− 1, 1) = (1− p)
(

1 + p

2

)s−1

.

Thus,

tαss = −1

s

(
αs log

((
p

αs

)(
2

(
1 + p

2

)s−1

− ps−1

))

+ (1− αs) log

((
1− p
1− αs

)(
1 + p

2

)s−1
))

= −1

s

(
αs log

(
q(s, 1)

q(s− 1, 1)
q(s− 1, 1)

)
+ (1− αs) log

(
(1− p)q(s, 1)

q(s, 1)− pq(s− 1, 1)

(
1 + p

2

)s−1
))

= −1

s
(αs log q(s, 1) + (1− αs) log q(s, 1))

= −1

s
log q(s, 1) = ts,

as required.
Now, let us show that tαss is in fact the unique minimum of tαs over α ∈ [0, 1]. Making

use of our observations above, we may write stαs as

stαs = α log

(
α

q(s, 1)αs

)
+ (1− α) log

(
1− α

q(s, 1)(1− αs)

)
.
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The derivative with respect to α is

s
d

dα
(tαs ) = log

(
α

q(s, 1)αs

)
− log

(
1− α

q(s, 1)(1− αs)

)
,

which is strictly negative for 0 6 α < αs, zero for α = αs and strictly positive for
1 > α > αs, establishing our claim.

Used in conjunction with Theorem 2.1 (or more precisely Corollary 2.2), Proposi-
tion 2.13 enables us to identify with quite some precision the dimension of the feature
subcubes of the vertices which witness the emergence of s-cliques in G[n],d,p. Formally we
return to our dynamic view of the model, and we consider the graph Bn = G[n],d,p at the
hitting time n = N b

s for the property of containing a clique on s vertices. By definition of
the hitting time, G[n],d,p contains at least one Ks-subgraph. Set Ws = Ws(d, p) to be the
set of all vertices in [n] which are contained in such a Ks-subgraph.

Proposition 2.14. Whp, all feature subcubes of vertices contained in Ws(d, p) have di-
mension (αs + o(1)) d.

Proof. Fix ε > 0. By Proposition 2.13, there exists δ > 0 such that if tαs 6 ts+δ = tαss +δ,
then |α − αs| < ε. By Corollary 2.2, whp the hitting time N b

s for containing an s-clique

satisfies etsd−
δ
2
d 6 N b

s 6 etsd+ δ
2
d. We show that for |V | = exd and |x − ts| < δ

2
whp no

vertex in GV,d,p with a feature subcube of dimension αd with |αs − α| > ε is contained in
a copy of Ks. Since ε > 0 was arbitrary, this is enough to establish the proposition.

Set Iε =
{
i
d

: i ∈ {0, 1, . . . d}
}
\ (αs − ε, αs + ε). The expected number of pairs (v, S)

where v ∈ V has a feature subcube of dimension αd for some α ∈ Iε, v ∈ S and S ⊆ V
induces a copy of Ks in GV,d,p is:∑

α∈Iε

Es
α =

∑
α∈Iε

esd(x−tαs ) 6 desd(x−ts−δ+o(1)) 6 e−
sδ
2
d+o(d) = o(1).

Markov’s inequality thus implies that whp no such pair (v, S) exists in GV,d,p. In particular
all vertices of GV,d,p which are contained in a copy of Ks must have dimension αd for some
α : |α− αs| < ε, as claimed.

2.3 The covering threshold

We may view the question of covering the hypercube Qd with randomly selected subcubes
as an instance of the following problem.

Problem 2.15 (Generalised Coupon Collector Problem). Let Ω be a (large) finite set,
and let X be a random variable taking values in the subsets of Ω. Suppose we are given a
sequence of independent random variables X1, X2, . . . , Xn with distribution given by X.
When (for which values of n) do we have

⋃n
i=1Xi = Ω holding whp?
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When X is obtained by selecting a singleton from Ω uniformly at random, Prob-
lem 2.15 is the classical coupon collector problem (see [19] and [32] for early incar-
nations of the problem). Much is known about the distribution of the covering time
T = min{n :

⋃
i6nXi = V } in the case of k-uniform coupon collectors, when X is a k-

subset of V selected uniformly at random, for some fixed set-size k = o(n). Problem 2.15
asks us to determine the distribution of T for more general distributions X. In particular,
we would like to understand how the eventual structure in the distribution of X may
affect the location of T and allow for behaviour deviating from that typically seen in k-
uniform coupon collectors. Problem 2.15 is investigated in much more depth in [20]. For
the purposes of the present paper, we therefore restrict ourselves to making the following
simple observation, before specializing to the case of subcubes.

Proposition 2.16. Set |Ω| = m. Suppose X is such that for every ω, ω′ ∈ Ω, P(ω ∈
X) = P(ω′ ∈ X). Then, for every fixed ε > 0,

lim
m→∞

P

(
n⋃
i=1

Xi = Ω

)
=

{
0 if n� m

E|X|
1 if n > (1 + ε)m logm

E|X|

Proof. For any fixed ω ∈ Ω,

P

(
ω /∈

n⋃
i=1

Xi

)
= (1− P(ω ∈ X))n =

(
1− E|X|

m

)n
.

Thus if n = o
(

m
E|X|

)
, the probability that ω /∈

⋃n
i=1 Xi is e−o(1) = 1 − o(1), whence whp⋃n

i=1Xi 6= Ω. On the other hand, if n > (1 + ε)m logm
E|X| , then

E

∣∣∣∣∣Ω \
m⋃
i=1

Xi

∣∣∣∣∣ =
∑
ω∈Ω

P

(
ω /∈

n⋃
i=1

Xi

)
= m

(
1− E|X|

m

)n
= o(1)

so that by Markov’s inequality whp there are no uncovered elements and
⋃n
i=1 Xi = Ω.

The bounds we give in Proposition 2.16 are crude, but also essentially sharp (see [2,
20]). In our setting, we have Ω = Qd, and the (Xi)

n
i=1 are the feature subcubes of vertices

in the binomial random subcube intersection graph G[n],d,p. Note that the expected volume
of a feature subcube f(v) is:

E|f(v)| =
d∑
i=0

P(f(v) has dimension i)2i =
d∑
i=0

(
d

i

)
(1− p)d−i(2p)i = (1 + p)d,

while on the other hand typical feature subcubes have dimension pd + o(d) and thus
volume 2pd+o(d). Since 2p < 1+p for all p ∈ (0, 1), typical feature subcubes have a volume
much smaller than the expected volume. In particular, the variance of the volume of a
feature subcube is large, and our covering problem differs significantly from the classical
coupon collector problem.

We need to make one more definition before proceeding to the proof of Theorem 2.4.
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Definition 2.17. The Hamming distance dist(y, y′) between two elements y, y′ of Qd is
the number of coordinates in which they differ.

Proof of Theorem 2.4. Without loss of generality, we may assume that V = [n], and that
we are working with the binomial random subcube intersection graph G[n],d,p. Let 0 denote
the all zero element (0, 0, . . . 0) from Qd. The expected number of elements of Qd = {0, 1}d
not covered by the union of the feature subcubes

⋃n
v=1 f(v) is

E|Qd \
n⋃
v=1

f(v)| = |Qd|P

(
0 /∈

n⋃
v=1

f(v)

)
= 2d

(
1−

(
1 + p

2

)d)n

= exp

(
d log 2− n

(
1 + p

2

)d(
1 +O

(
1 + p

2

)d))

Now let ε be fixed with 0 < ε < log 2.

Upper bound: suppose n = exd >
(

2
1+p

)d
d (log 2 + ε). Then the expected number of

uncovered elements of Qd is at most e−εd+o(d) = o(1), whence we deduce from Markov’s
inequality that whp

⋃n
v=1 f(v) = Qd.

Lower bound: suppose n = exd = b
(

2
1+p

)d
d (log 2− ε)c. Then the expected number

of uncovered elements of Qd is eεd+o(d), which is large. We use Chebyshev’s inequality to
show the actual number of uncovered elements is concentrated about this value.

For 1 6 i 6 d, let e[i] denote the element of Qd = {0, 1}d with its first i coordinates
equal to 1 and its last d− i coordinates equal to 0. Clearly we have dist(0, e[i]) = i. The
probability that neither of 0, e[i] is covered is:

P

(
0, e[i] /∈

n⋃
v=1

f(v)

)
=

(
1− 2

(
1 + p

2

)d
+ pi

(
1 + p

2

)d−i)n

= exp

(
−n

[
2

(
1 + p

2

)d
− pi

(
1 + p

2

)d−i]
+O

(
n

(
1 + p

2

)2d
))

= exp

(
− (log 2− ε) d

(
2−

(
2p

1 + p

)i)
+ o(1)

)
.

Thus

E

∣∣∣∣∣Qd \
n⋃
v=1

f(v)

∣∣∣∣∣
2
 = 2d

d∑
i=0

(
d

i

)
P

(
0, e[i] /∈

n⋃
v=1

f(v)

)

= e2εd

d∑
i=0

(
d
i

)
2d

exp

((
2p

1 + p

)i
(log 2− ε) d+ o(1)

)
. (2.2)
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Pick η : 0 < η < 1/2 sufficiently small such that

ε > η log
1

η
+ (1− η) log

1

1− η
is satisfied. Then∑

06i6ηd

(
d
i

)
2d

exp

((
2p

1 + p

)i
(log 2− ε) d

)
< ηd

(
d
ηd

)
2d

exp ((log 2− ε) d)

= ηd

(
d

ηd

)
e−εd = o(1). (2.3)

On the other hand, for i > ηd we have
(

2p
1+p

)i
(log 2− ε) d = o(1), since 2p

1+p
< 1, so that

∑
i>ηd

(
d
i

)
2d

exp

((
2p

1 + p

)i
(log 2− ε) d+ o(1)

)

6
∑
i>ηd

(
d
i

)
2d
eo(1) 6 1 + o(1). (2.4)

Substituting the bounds (2.3) and (2.4) into (2.2), we get

E

∣∣∣∣∣Qd \
n⋃
v=1

f(v)

∣∣∣∣∣
2
 6 e2εd(1 + o(1)) = (1 + o(1))

(
E

∣∣∣∣∣Qd \
n⋃
v=1

f(v)

∣∣∣∣∣
)2

,

whence Var|Qd \
⋃n
v=1 f(v)| = o

(
E |Qd \

⋃n
v=1 f(v)|2

)
. It follows by Chebyshev’s in-

equality that whp
⋃n
v=1 f(v) leaves (1 + o(1))eεd elements of Qd uncovered when n 6(

2
1+p

)d
d (log 2− ε), as claimed.

2.4 Above the covering threshold

Proof of Theorem 2.7. Without loss of generality, we may assume that V = [n]. Fix
ε > 0, and let s = s(d) be a sequence of natural numbers with s log d

d
→∞ as d→∞.

Upper bound: Here, unlike in the proof of Theorem 2.1, we eschew estimates of the
total number of s-cliques present in Gv,d,p, but proceed instead via a covering argument.
Indeed, by the Helly property of subcubes of Qd, G[n],d,p contains an s-clique if and only
if some element of the ambient hypercube Qd is contained in at least s feature subcubes.
Denote by

Vol[n] :=
n∑
v=1

|f(v)|

the sum of the sizes of the feature subcubes. By linearity of expectation,

EVol[n] = nE|f(1)| = n(1 + p)d.
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Set x = log 2
1+p

+ log s
d

+ ε
d
. For n > dexde, we have EVol[n] > eεs2d, which means

that elements of the ambient hypercube are expected to be contained in eεs > s feature
subcubes. Thus, to show that G[n],d,p whp contains (many) s-cliques for this value of
n, it is enough to show that Vol[n] is concentrated about its mean. Again, we use the
second-moment method to do this. By linearity of variance we have

VarVol[n] = nVar(f(1)) = n

((
d∑
i=1

(
d

i

)
(1− p)d−ipi22i

)
− (1 + p)2d

)
= n

(
(1 + 3p)d − (1 + 2p+ p2)d

)
.

Applying Chebyshev’s inequality,

P
(
Vol[n] < s2d

)
= P

(
Vol[n] < e−εEVol[n]

)
6

VarVol[n]

(1− e−ε)2 (EVol[n])2

<
(1 + 3p)d

(1− e−ε)2 n(1 + p)2d

6
1

(1− e−ε)2

(1 + 3p)d

2d(1 + p)d
(substituting in the value of n)

=
1

(1− e−ε)2

(
1−

(
1− p

2(1 + p)

))d
= o(1).

In particular,

P
(
G[n,d,p] contains an s-clique

)
> 1− P

(
Vol[n] < s2d

)
= 1− o(1),

proving the claimed upper bound on the threshold for the emergence of s-cliques.

Remark 2.18. The proof above actually shows a little more: for x > log
(

1+3p
(1+p)2

)
, we

have VarVol[n] = o
(
(EVol[n])2) and thus by Chebyshev’s inequality whp Vol[n] = (1 +

o(1))n(1 + p)d. In other words there are sufficiently many feature subcubes at this point
that the large variance of their individual volumes ceases to matter. Note that this occurs

before the covering threshold, since log
(

1+3p
(1+p)2

)
< log 2

1+p
.

Lower bound when s = O(d): in this case we use Markov’s inequality just as in the
proof of Theorem 2.1. Set x = log 2

1+p
+ log s

d
− ε log d

d
, and let n = bexdc. Let X = X(d) be

the number of s-cliques in the graph. Then

EX =

(
n

s

)(
2

(
1 + p

2

)s
− ps

)d
= exp

(
sxd− s log s− ds log

2

1 + p
+ d log

(
2−

(
2p

1 + p

)s)
+O (s)

)
= exp (−sε log d+O (max(s, d))) = o(1) (since s log d� max(s, d))
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so that whp X = 0 and G[n],d,p contains no s-clique.

Lower bound when s � d: here we use a covering idea. Suppose n = e−εs
(

2
1+p

)d
.

The number C0 of feature subcubes containing the element 0 = (0, 0 . . . 0) is the sum of

n independent identically distributed Bernoulli random variables with parameter
(

1+p
2

)d
.

We have EC0 = n
(

1+p
2

)d
6 e−εs. Applying a Chernoff bound, we deduce that

P(C0 > s) 6 e−
ε2

3
s.

In particular the expected number of elements of Qd contained in at least s feature sub-

cubes is |Qd|P(C0 > s) 6 2de−
ε2

3
s, which is o(1) for s � d. It follows by Markov’s

inequality that whp there is no such element, and thus, by the Helly property for subcube
intersections, that whp G[n],d,p contains no copy of Ks. Further by monotonicity of the
property of containing an s-clique, whp G[n′],d,p fails to contain a Ks for any n′ 6 n.

3 The uniform model

In this section, we prove our results for the uniform model. We note that these are
generally less precise than those we obtained for the binomial model, owing to the greater
difficulty of performing clique computations.

3.1 Summary

Fix s ∈ N. We established in Section 2 (Proposition 2.14) that in GV,d,p, whp the fea-
ture subcubes of the vertices in the first s-cliques to appear as we increase |V | all have
dimension (αs + o(1))d, where αs is the function

αs : p 7→
p
(

2
(

1+p
2

)s−1 − ps−1
)

(
2
(

1+p
2

)s − ps) .

We show in Proposition 3.9 that αs is a bijection from (0, 1) to itself. This will allow us
to determine the threshold for the appearance of s-cliques in the uniform model.

Theorem 3.1. Let α ∈ (0, 1) and s ∈ N be fixed, and let k(d) = bαdc. Set p = αs
−1(α).

Then, the threshold for the appearance of s-cliques in GV,d,k is

Ts(α) = ts(p) + α log
p

α
+ (1− α) log

1− p
1− α

.

Theorem 3.2. Let α ∈ (0, 1) and ε > 0 be fixed, and let k(d) = bαdc. Let V = V (d) be
a sequence of vertex sets with |V (d)| = exd. Then, for the uniform model GV,d,k,

lim
d→∞

P

(⋃
v∈V

f(v) = Qd

)
=

{
0 if x(d) 6 (1− α) log 2 + log d

d
+ log(log 2−ε)

d

1 if x(d) > (1− α) log 2 + log d
d

+ log(log 2+ε)
d

.
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Corollary 3.3. Let α ∈ (0, 1) be fixed, and let k(d) = bαdc. Then the threshold for
covering the ambient hypercube Qd with the feature subcubes from GV,d,k is

Tcover(α) = (1− α) log 2.

Remark 3.4. As we observed in Remark 2.12, we have lims→∞ αs(p) = 2p
1+p

. From this we

deduce that for large s, we have α−1
s (α) = α

2−α + o(1). Substituting this into Ts(α), we
see that

Ts(α)→ Tcover(α)

as s→∞, mirroring our observation in Remark 2.6 for the binomial model.

Theorem 3.5. Let α ∈ (0, 1) and ε > 0 be fixed, and let k(d) = bαdc. Let s = s(d) be a
sequence of natural numbers with s

d
→∞ as d→∞. Suppose V = V (d) is a sequence of

vertex sets. Then,

lim
d→∞

P (GV,d,k contains an s-clique) =

{
0 if |V (d)| 6 (1− ε)s2d−k
1 if |V (d)| > (s− 1)2d−k + 1.

Remark 3.6. Theorem 3.1 and Corollary 3.3 show how significant ‘outliers’ (subcubes
with unusually high dimension) are for the behaviour of the binomial model. Indeed,
Proposition 2.14 tells us that for 0 < p < 1 fixed and s > 3, the vertices in the first s-clique
to appear in GV,d,p have feature subcubes of dimension (αs(p) + o(1)) d. Since αs(p) > p it
shall follow straightforwardly from the proof of Theorem 3.1 that ts(p) < Ts(p). Similarly,
by Corollaries 2.4 and 3.3, we have for 0 < p < 1 fixed that

tcover(p) = log
2

1 + p
< (1− p) log 2 = Tcover(p).

From the covering threshold upwards, Corollary 3.3 and Theorem 3.5 suggest that,
when considering questions about cliques and covering, the right instance of the binomial
model to compare GV,d,bαdc with is GV,d,p with p = 2α − 1 (rather than p = α as we
might have expected). For these two models, the covering threshold and the thresholds
for higher order cliques coincide. Since both models have the same expected volume of
feature subcubes, this vindicates the use of volume/covering arguments for determining
the thresholds for higher order cliques. Note however that GV,d,bαdc and GV,d,2α−1 have
different thresholds for lower order cliques. Our binomial model and uniform model
thus behave differently, and there is no good coupling between them below the covering
threshold.

Finally, let us add that, just as in the binomial model, the clique number ω(GV,d,k) in
the uniform model undergoes a transition around the covering threshold.

Corollary 3.7. Let α ∈ (0, 1) be fixed and let k = k(d) = bαdc. Let V (d) be a sequence
of vertex-sets and x(d) = 1

d
log |V (d)| as usual. The following hold:

• if there is s ∈ N and ε > 0 such that Ts + ε < x < Ts+1, then whp ω(GV,d,k) = s;
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• if there is s ∈ N such that x = Ts + o(1), then whp ω(GV,d,k) ∈ {s, s− 1};

• if there is γ > 1 such that x = x(d) = Tcover + γ log d
d

+ o
(

log d
d

)
, then whp ω(GV,d,k)

has order dγ+o(1);

• if there is c > 0 such that x = x(d) = Tcover + c+ o(1), then whp ω(GV,d,k) has order
ecd+o(d).

Remark 3.8. There is a gap here: we do not know what the order of the clique number is
when x = x(d) = Tcover + γ log d

d
+ o( log d

d
) for a fixed real γ with 0 < γ 6 1. We make the

natural conjecture that for this value of x(d), we should have ω(GV,d,k) = dγ+o(1), similarly
to the binomial model.

Theorems 3.1, 3.2 and 3.5 are proved in Sections 3.2, 3.3 and 3.4 respectively. Our
results give whp lower and upper bounds on certain hitting times for the uniform model,
and we often split their proofs accordingly into two parts.

3.2 Below the covering threshold

Proposition 3.9. The function αs is a bijection from [0, 1] to itself, and has a continuous
inverse over its domain.

Proof. Since αs(0) = 0 and αs(1) = 1, all we have to do is show that the derivative of αs
with respect to p is strictly positive in [0, 1], whence we are done by the inverse function
theorem.

Setting y = 2p
1+p

, we can rewrite αs(p) as αs(y) = 2y−ys
2−ys . By the chain rule,

dαs
dp

(p) =

(
dy

dp
(p)

)(
dαs
dy

(y(p))

)
=

2

(1 + p)2

(4− 2sys−1 + 2(s− 1)ys)

(2− ys)2
.

The derivative, with respect to y, of the numerator in the expression above is

2
(
−2s(s− 1)(1− y)ys−2

)
6 0 (since y ∈ [0, 1]).

Thus the minimum of the numerator is attained when y(p) = 1. In particular,

dαs(p)

dp
(p) >

2

(1 + p)2

2

(2− ys)2
> 0,

as required.

In general, computing an explicit closed-form expression for the inverse of αs is difficult,
reflecting the fact that computing the probability that the intersection of an s-set of k-
dimensional subcubes chosen uniformly at random is non-empty is difficult (or at least
unpleasant). It is for this reason that in Theorem 3.1 we give the thresholds for the
uniform model in terms of the thresholds for the binomial model.
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Proof of Theorem 3.1. The key observation is that we can view the binomial model as the
result of a two stage random process. In the first stage we randomly partition the set of
vertices V into sets V0, V1 . . . Vd, where v ∈ V is included in Vi with probability

(
d
i

)
pi(1−

p)d−i independently at random for each v, i. In the second stage for each k we associate
independently to each vertex in Vk a feature subcube of dimension k chosen uniformly
at random, and then build the subcube intersection graph as normal. In particular, the
restriction of GV,d,p to the (random) subset Vk is exactly (an instance of) the uniform
model GVk,d,k. We shall use this to pull results back from the binomial model to the
uniform model.

Let ε > 0 and α ∈ (0, 1) be fixed, and let k(d) = bαdc. Let p = (αs)
−1 (α).

Upper bound: Pick η with 0 < η < α. Let p′ = p′(α − η) = (αs)
−1 (α − η). Consider

the binomial random subcube intersection graph G[N ],d,p′ , and let X = logN
d

.
Suppose X = ts(p

′)+ε+o(1). By Corollary 2.2, G[N ],d,p′ then whp contains an s-clique.
Further, by Proposition 2.14, whp there exists such a clique in which all subcubes have
dimension at least k− = d(α− 2η)de and at most k+ = bαdc.

Let V ′ denote the set of vertices in G[N ],d,p whose feature subcubes have dimension
in the range [k−, k+]. Since the number of vertices with a feature subcube of a given
dimension is a binomial random variable, a standard Chernoff bound shows that, for d
large enough, the size of V ′ is whp at most

N ′ 6 3ηdN

(
d

b(α− η)dc

)
p′
b(α−η)dc

(1− p′)d−b(α−η)dc

For each v ∈ V ′ with a feature subcube of dimension k′ with k− 6 k′ 6 k+, select a
(k+ − k′)-subset of its fixed coordinates uniformly at random from all possibilities, and
change those coordinates to wildcards ? (i.e. to free coordinates). This gives a new feature
subcube f ′(v) with dimension exactly k+.

We now restrict our attention to the subcube intersection graph G defined by V ′ and
the ‘lifted’ feature subcubes (f ′(v))v∈V ′ . Observe that the distribution on k+-dimensional
subcubes given by f ′ is exactly the uniform distribution. Thus G is in fact an instance
of the uniform model GV ′,d,k+ . Furthermore the ‘lifting’ procedure we performed on the
feature subcubes (f(v))v∈V ′ has not destroyed any edge — indeed increasing the dimension
of feature subcubes can only add edges — so that whp G contains an s-clique.

It follows that the threshold for the whp appearance of s-cliques in the uniform model
with parameter k+ = bαdc is at most

logN ′

d
6

logN

d
+ (α− η) log

p′

α− η
+ (1− α + η) log

1− p′

1− α + η
+ o

(
log d

d

)
= ts(p

′) + (α− η) log
p′

α− η
+ (1− α + η) log

1− p′

1− α + η
+ ε+ o(1).

Since ε, η > 0 were arbitrary, and since both p′ and ts are continuous functions (of α− η
and p′ = (αs)

−1 (α− η) respectively), the threshold for the appearance of s-cliques in the
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k+-uniform model is at most

lim
ε,η→0+

ts(p
′) + (α− η) log

p′

α− η
+ (1− α + η) log

1− p′

1− α + η
+ ε

= ts(p) + α log
p

α
+ (1− α) log

1− p
1− α

,

proving the claimed upper bound on Ts(α). (Recall that p = (αs)
−1 (α) = limη→0 p

′.)
Lower bound: consider the binomial random subcube intersection graph G[N ],d,p, and

let X = logN
d

.
Suppose X = ts(p)− ε+ o(1). By Corollary 2.2, whp G[N ],d,p contains no s-clique. In

particular the subgraph of G[N ],d,p induced by the set of vertices V ′ whose feature subcube
have dimension bαdc is also Ks-free. As we observed, this random subgraph is identical
in distribution to the random uniform subcube intersection graph GV ′,d,k. Let N ′ = |V ′|
be the number of vertices it contains.

By a standard Chernoff bound, whp

N ′ >
1

2
N

(
d

bαdc

)
pbαdc(1− p)d−bαdc.

It follows that the threshold for the whp appearance of s-cliques in the uniform model
GV,d,k is at least

ts(p)− ε+ α log
p

α
+ (1− α) log

1− p
1− α

+ o(1).

Since ε > 0 was arbitrary, the claimed lower bound on Ts(α) follows.

3.3 The covering threshold

Proof of Theorem 3.2. This is very similar to the proof of Theorem 2.3. Assume without
loss of generality that V = [n]. We let α ∈ (0, 1) be fixed, set k = k(d) = bαdc and
consider the uniform random subcube intersection graph G[n],d,k.

Let 0 denote the all zero element (0, 0, . . . , 0) from Qd. The expected number of
elements of Qd = {0, 1}d not covered by the union of the feature subcubes

⋃n
v=1 f(v) is

E

∣∣∣∣∣Qd \
n⋃
v=1

f(v)

∣∣∣∣∣ = |Qd|P

(
0 /∈

n⋃
v=1

f(v)

)
= 2d

(
1− 1

2d−k

)n
= exp

(
d log 2− n

2d−k
(1 + o(1))

)
.

Now let ε be fixed with 0 < ε < log 2.
Upper bound: suppose n = exd > 2d−kd(log 2 + ε). Then the expected number of
uncovered elements of Qd is e−εd+o(d) = o(1), whence by Markov’s inequality we have that
whp

⋃n
v=1 f(v) = Qd, as desired.
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Lower bound: suppose n = exd = b2d−kd(log 2 − ε)c. Then the expected number of
uncovered elements of Qd is eεd+o(d), which is large, and we use Chebyshev’s inequality
to show the actual number of uncovered elements is concentrated about this value. As
before we compute the expectation of the square of the number of uncovered elements by
considering pairs of points lying at Hamming distance i from one another. Let e[i] denote
the element of Qd with 1 in the first i coordinates and 0 otherwise. In the following we
take binomial coefficients of negative values to be 0.

E

∣∣∣∣∣Qd \
n⋃
v=1

f(v)

∣∣∣∣∣
2
 = 2d

d∑
i=0

(
d

i

)
P

(
0, e[i] /∈

n⋃
v=1

f(v)

)

= 2d
d∑
i=0

(
d

i

)(
1− 2

2d−k
+

(
d−i
k−i

)(
d
k

) 1

2d−k

)n

= e2εd

d∑
i=1

(
d
i

)
2d

exp

((
d−i
k−i

)(
d
k

) d(log 2− ε) + o(1)

)
.

We now bound the sum above just as we did in the proof of Theorem 2.3, to show

E

∣∣∣∣∣Qd \
n⋃
v=1

f(v)

∣∣∣∣∣
2
 = (1 + o(1))e2εd.

Since the details are similar, we omit them. We deduce just as in Theorem 2.3 that

Var |Qd \
⋃n
v=1 f(v)| = o

(
E |Qd \

⋃n
v=1 f(v)|2

)
. By Chebyshev’s inequality whp at least

eεd+o(d) � 1 elements of Qd are not covered by
⋃n
v=1 f(v), as required.

3.4 Above the covering threshold

Proof of Theorem 3.5. This is similar to the proof of Theorem 2.7. Without loss of gen-
erality, we may assume that V = [n]. Fix ε > 0 and α ∈ (0, 1). Let k = k(d) = bαdc, and
consider the random subcube intersection graph G[n],d,k.
Upper bound: this case is in fact easier than for the binomial model. By the Helly
property, G[n],d,k contains an s-clique if and only if some element x of the ambient hyper-
cube Qd is contained in at least s feature subcubes. Now in G[n],d,k every feature subcube

has dimension k, thus certainly if n > (s−1)|Qd|
2k

+ 1 = (s − 1)2d−k + 1, we have by the
pigeon-hole principle that some x ∈ Qd is contained in at least s feature subcubes, and
thus G[n],d,k contains a copy of Ks.
Lower bound: suppose n 6 (1 − ε)s2d−k. Let 0 be the all zero element from Qd. The
number C0 of feature subcubes containing 0 is the sum of n independent identically dis-
tributed Bernoulli random variables with parameter 2−(d−k). We have EC0 = n2−(d−k) 6
(1− ε)s. Applying a Chernoff bound, we deduce that

P(C0 > s) 6 e−
ε2

3
s.
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In particular the expected number of elements of Qd contained in at least s feature sub-

cubes is at most 2de−
ε2

3
s, which is o(1) for s � d. It follows by Markov’s inequality and

the Helly property for subcube intersections that whp G[n],d,k contains no copy of Ks.

4 Concluding remarks

4.1 Small p and large p

In this paper we focussed on the case where p ∈ (0, 1) is fixed (in the binomial model).
Let us make here a few remarks about the small p and large p case.
Small p: note first of all that the proofs of Theorems 2.1, 2.4 and 2.7 all extend to the
case when p = p(d) → 0 as d → ∞. Similarly, Theorems 3.2 and 3.5 for the uniform
model also hold when α = α(d) → 0 as d → ∞. The proof of Theorem 3.1 does not,
however, go through as it is stated in the paper — it needs stronger concentration for the
dimension of the feature subcubes in Proposition 2.14.

There are two further remarks worth making concerning the small p case. First of
all, as p (or α) tends to 0, the covering results Theorems 2.4 and 3.2 ‘converge’ to the
classical coupon collector problem. Taking Ω = Qd and independently drawing random
elements from Ω, we expect to make roughly |Ω| log |Ω| = 2dd log 2 draws before we cover

Ω, and this is the limit of
(

2
1+p

)d
d log 2 as p → 0 (binomial model) and of 2(1−α)dd log 2

as α→ 0 (uniform model).
Secondly, for the uniform model with constant parameter k = 1, the uniform model

is closely related to bond percolation on the hypercube, which is a well-studied random
graph model in its own right (see e.g. [12, 13]). On the other hand, the binomial model
with parameter p = 1

d
is different: the dimension of its feature subcubes have an ap-

proximatively Poisson distribution, and one does see feature subcubes of large bounded
dimension. These will have an impact on the thresholds for lower-order cliques — indeed,
a quick calculation shows that for s fixed, the expected dimension of feature subcubes in
s-cliques of GV,d, 1

d
is 2− 1

d
+O( 1

d2
).

Large p: in this case, we expect quasirandom behaviour from GV,d,p (behaviour ‘like an
Erdős–Rényi random graph’). We establish it below in the special case when p = 1−ε(d),
with ε(d) of order 1√

d
, when the edge-density is of constant order.

Proposition 4.1. Let ε(d) be a sequence of reals from the interval [0, 1] with ε2d bounded
away from both 0 and +∞. Then for p = 1− ε, with probability tending to 1 as n → ∞
the graph G[n],d,p is quasirandom with parameter e−

ε2d
2 .

Proof. We shall use the celebrated quasirandomness theorem of Chung, Graham and
Wilson [14], which states (amongst other things) that if the number of K2 (edges) and
the number of C4 (4 − cycles) contained in a graph are ‘what you would expect if the
graph was a typical Erdős–Rényi random graph with parameter q’, then G is quasirandom
with parameter q (we refer the reader to [14] for a formal definition of quasirandomness).
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Let ε(d) be sequence of positive real numbers as in the statement of the proposition,

and let q = e−
ε2d
2 . Set p = 1 − ε, and consider a labelled 4-set {v1, v2, v3, v4} of vertices

from G[n],d,p. The probability that v1v2 forms an edge of the graph is

P(edge) =

(
1− (1− p)2

2

)d
= e−

ε2

2
d+O(ε3d) = q(1 + o(1)),

while the probability that all of the edges v1v2, v2v3, v3v4 and v4v1 are present in the
graph is

P(4-cycle) =

(
2

(
1 + p

2

)4

− p4 + p2(1− p)2

)d

= e−2ε2d+O(ε3d) = q4(1 + o(1)).

We now verify that the numbers of edges #{K2} and of 4-cycles #{C4} are concen-
trated about their respective expectations. We appeal to the second moment method once
more. For the edge K2 we already established that Var#{K2} = o

(
(E#{K2})2) in the

proof of Theorem 2.1. Thus by Chebyshev’s inequality, we have the required concentra-
tion: whp G[n],d,p contains (1 + o(1))E#{K2} = (1 + o(1))

(
n
2

)
q edges. Regarding 4-cycles,

we have

E (#{C4})2 =

(
n

4

)
3

((
n− 4

4

)
3P (4-cycle)2 +O(n3)

)
= (E#{C4})2 (1 + o(1)),

by using in the second line the fact that P (4-cycle)2 = e−2ε2d � 1
n
. We deduce that

Var#{C4} = o
(
(E#{C4})2) and that the number of 4-cycles in G[n],d,p is concentrated

about its mean: whp

#{C4} = (1 + o(1))
n(n− 1)(n− 2)(n− 3)

8
q4.

Our proposition then follows from the quasirandomness theorem of Chung, Graham and
Wilson [14].

Thus in this case the binomial model behaves like an Erdős–Rényi random graph. It
is not hard to use this to show that the uniform model with parameter k = d−O(

√
d) is

also quasirandom. As such, there is nothing very novel about our models in this range.

4.2 Further questions

There are a number of natural questions to ask about our models.
Connectivity: when do random subcube intersection graphs become whp connected?
In the binomial model with p 6 1

3
, it can be shown that tconnected = log 2

1+p
, coinciding

with the covering threshold. For the upper bound, the rough idea is to show that above
the covering threshold, whp every 1-dimensional subcube of Qd is covered by a feature
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subcube, which implies connectivity of the intersection graph. For the lower bound, on
the other hand, one uses standard probabilistic techniques to establish the whp existence
of isolated feature subcubes of small dimension.

On the other hand for p > 1
3

the situation becomes more complicated, and one will
have to analyse the structure of GV,d,p in greater detail. Indeed, the lower bound ceases
to be valid, as ‘small’ feature subcubes do not appear fast enough to provide us with
isolated vertices. We believe that in this case the connectivity threshold of GV,d,p will be
determined by the disappearance of isolated vertices from the subgraph GVk,d,k induced by
the set Vk of vertices with feature subcubes of dimension k = (2p/(1 + 2p− p2) + o(1)) d.

The heuristic behind this belief is that the binomial model GV,d,p has a kind of ‘jellyfish’
structure, with strands of vertices with ‘small’ feature subcubes hanging off a ‘head’ of
vertices with ‘large’ feature subcubes. More precisely, consider an αd-dimensional subcube
S, and let S ′ be a binomial random subcube of Qd with parameter p. A quick calculation
tells us that conditional on S ∩ S ′ 6= ∅, the expected dimension of S ′ is in fact

pαd+
2p

1 + p
(1− α)d =

(
p+

p(1− p)
1 + p

(1− α)

)
d := (p+ hp(α))d.

Thus we have a ‘dimensional bonus’ in GV,d,p: the expected dimension of the feature
subcube of a neighbour of a vertex v is significantly larger than the average dimension pd.
This ‘bonus’ hp(α)d decreases monotonically as the dimension αd of f(v) increases, with
limα→1 hp(α) = 0. The unique solution to α = p + hp(α) is attained at α = α?(p) given
by

α? :=
2p

1 + 2p− p2
.

The picture we have then of GV,d,p is of feature subcubes of dimension less than α?d
hanging off feature subcubes of dimension greater than α?d. We expect therefore the
connectivity of the vertices with roughly α?d-dimensional feature subcubes to determine
the connectivity of the entire graph.

In particular, to understand the connectivity of the binomial model with p > 1/3
we shall first need to understand the connectivity of the uniform model with parameter
k = α?d, for which our best guess is that connectivity occurs as soon as the last isolated
vertex has acquired a neighbour.
Component evolution: in our random subcube intersection graph models, how does
the order of a largest connected component evolve as we add vertices? when does a
giant component (i.e. a component containing a fixed proportion ε > 0 of the vertices)
emerge? For the binomial model, we expect that ‘jellyfish’ structure of our random graphs
shall play an important role here again. Most feature subcubes in GV,d,p have dimension
(p+ o(1))d, and most of their neighbours have feature subcubes of dimension (β+ o(1))d,
where β = p + p(1 − p)2/(1 + p). Thus we would expect that the component evolution
inside the uniform model with parameters d and k = βd will essentially determine the
component evolution of the binomial model GV,d,p.

Regarding the uniform model, a reasonable guess would be that, following the Erdős–
Rényi random graph paradigm, a giant component emerges around the same time as

the electronic journal of combinatorics 23(3) (2016), #P3.43 28



the average degree in the graph hits 1. Such a phenomenon is known to hold for site
percolation on many families of graphs; see the recent work of Krivelevich [28] on the
subject, whose tools may prove relevant to our problem.

Motivation for considering the connectivity and the component evolution of random
intersection graphs comes from the study of the geometry of the solution space in random
k-SAT.
Independence and chromatic numbers: it remains a completely open problem to
understand graph-theoretic independence in random subcube intersection graphs. We do
not know how to track the independence number (the size of a largest independent set
of vertices) in our models, and more generally we do not know how to perform anything
but the most basic computations involving non-edges. Perhaps recent development in
the theory of containers together with an analysis of the graph-theoretic properties of
Gk
d, the intersection graph of all k-dimensional subcubes of Qd, could lead to progress

on this question. Further afield, we have a lower bound on the chromatic number of
random subcube intersection graphs coming from the clique number, but no non-trivial
upper bound. It would be nice to have a better understanding of the behaviour of these
standard graph parameters for our models.
Bias: given our motivation for studying subcube intersection graphs, it would be desirable
to allow some bias in the distribution of the feature subcubes. For instance, in a polarised
society with two-party politics it is likely citizens will have either mostly zeroes (‘left-
wing opinions’) or mostly ones (‘right-wing opinions’) amongst their opinions. It would
be interesting to study the change in the behaviour of our models as the polarisation
becomes stronger. Some progress on the covering problem in the presence of bias was
recently made by Larsson and Markström [29].
Generalised coupon collector: our generalised version of the coupon collector, Prob-
lem 2.15, has been investigated in [20], but many questions remain open. How does the
structure of the distribution of the coupon sets X determine the distribution of the cov-
ering time T? While the paper [20] gives several criteria for behaviour like/unlike that of
a uniform coupon collector, we are still far from a complete answer to this question.
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Appendix A: proof of Lemma 2.9

Lemma 2.9. For all y ∈ [0, 1] and all integers 0 6 i 6 s, the following inequality holds:(
2 + 2yi − 4ys + y2s−i)s 6 (2− ys)2s−i .

Proof. This is a simple (albeit lengthy) exercise in calculus. Let h1(y) = 2 + 2yi − 4ys +
y2s−i. Since we may write h1(y) as

h1(y) = 2(1− ys) + 2yi(1− ys−i) + y2s−i,

we have h1(y) > 0 for y ∈ [0, 1]. The function

g(y) =
(2− ys)2s−i

(2 + 2yi − 4ys + y2s−i)s

is thus well-defined and differentiable in the interval [0, 1].
We want to show that g(y) > 1 for all y ∈ [0, 1]. If i = s or if i = 0 the function

g is identically 1 on the interval [0, 1], in which case we have nothing to prove. Assume
therefore in what follows that 0 < i < s. We have g(0) = 2s−i > 1 and g(1) = 1, so we
will be done if we can show that the function g is monotone decreasing in the interval
[0, 1]. We compute the derivative of g:

g′(y) =
1

(h1(y))s+1

(
−s(h1(y))′(2− ys)2s−i + h1(y)((2− ys)2s−i)′

)
=
−syi−1(2− ys)2s−i−1

(h1(y))s+1

(
4i− (4s+ 2i)ys−i + (4s− 2i)y2s−2i

+ (4s− 4i)ys − (4s− 4i)y2s−i
)

= −sy
i−1(2− ys)2s−i−1(1− ys−i)

(h1(y))s+1

(
4i− (4s− 2i)ys−i + (4s− 4i)ys

)
.
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We claim g′(y) 6 0 for all y ∈ [0, 1]. Clearly

−sy
i−1(2− ys)2s−i−1(1− ys−i)

(h1(y))s+1
6 0

for all y ∈ [0, 1]. Thus the only factor we have left to consider is

h2(y) = 4i− (4s− 2i)ys−i + (4s− 4i)ys.

Claim. h2(y) > 0 for all y ∈ [0, 1].

The claim above implies that g′(y) 6 0 for all y ∈ [0, 1], whence g(y) > g(1) = 1 for
all y ∈ [0, 1], as desired.

Proof of Claim. We have h2(0) = 4i and h(1) = 2i, both of which are strictly positive.
We differentiate h2 to check for other extrema inside the interval [0, 1].

h′2(y) = (s− i)ys−i−1
(
−(4s− 2i) + 4syi

)
.

In addition to y = 0, h′2 has one root in the interval [0, 1], namely

y? =

(
1− i

2s

) 1
i

.

At y?, we have

h2(y?) = 4i

(
1−

(
1− i

2s

) s
i

)
> 0.

Thus for all y ∈ [0, 1],

h2(y) > min
(
h2(0), h2(y?), h2(1)

)
> 0,

establishing the claim.

This completes the proof of Lemma 2.9.
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