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Abstract

The 4 Color Theorem (4CT) implies that every n-vertex planar graph has an
independent set of size at least n

4 ; this is best possible, as shown by the disjoint union
of many copies of K4. In 1968, Erdős asked whether this bound on independence
number could be proved more easily than the full 4CT. In 1976 Albertson showed
(independently of the 4CT) that every n-vertex planar graph has an independent
set of size at least 2n

9 . Until now, this remained the best bound independent of the
4CT. Our main result improves this bound to 3n

13 .

1 Introduction

An independent set is a subset of vertices that induce no edges. The independence num-
ber α(G) of a graph G is the size of a largest independent set in G. Determining the
independence number of an arbitrary graph G is widely-studied and well-known to be
NP-complete. In fact, this problem remains NP-complete, even when restricted to planar
graphs of maximum degree 3 (see, for example, [5, Lemma 1]). Thus, much work in this
area focuses on proving lower bounds for the independence number of some special class
of graphs, often in terms of |V (G)|. The independence ratio of a graph G is the quantity
α(G)
|V (G)| .

An immediate consequence of the 4 Color Theorem [2, 3] is that every planar graph
has independence ratio at least 1

4
; simply take the largest color class. In fact, this bound

is best possible, as shown by the disjoint union of many copies of K4. In 1968, Erdős [4]
suggested that perhaps this corollary could be proved more easily than the full 4 Color
Theorem. And in 1976, Albertson [1] showed (independently of the 4 Color Theorem)
that every planar graph has independence ratio at least 2

9
. Our main theorem improves

this bound to 3
13

.

Theorem 1. Every planar graph has independence ratio at least 3
13

.
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The proof of Theorem 1 is heavily influenced by Albertson’s proof. One apparent
difference is that our proof uses the discharging method, while his does not. However,
this distinction is largely cosmetic. To demonstrate this point, we begin with a short
discharging version of the final step in Albertson’s proof, which he verified using edge-
counting. Although the arguments are essentially equivalent, the discharging method is
somewhat more flexible. In part it was this added flexibility that allowed us to push his
ideas further.

The proof of our main result has the following outline. The bulk of the work consists
in showing that certain configurations are reducible, i.e., they cannot appear in a minimal
counterexample to the theorem. The remainder of the proof is a counting argument
(called discharging), where we show that every planar graph contains one of the forbidden
configurations; hence, it is not a minimal counterexample.

In the discharging section, we give each vertex v initial charge d(v)− 6, where d(v) is
the degree of v. By Euler’s formula the sum of the initial charges is −12. Our goal is to
redistribute charge, without changing the sum, (assuming that G contains no reducible
configuration) so that every vertex finishes with nonnegative charge. This contradiction
proves that, in fact, G must contain a reducible configuration. To this end, we want to
show that G contains a reducible configuration whenever it has many vertices of degree at
most 6 near each other, since vertices of degree 5 will need to receive charge and vertices
of degree 6 will have no spare charge to give away. (We will see in Lemma 6 that G must
have minimum degree 5.) Most of the work in the reducibility section goes into proving
various formalizations of this intuition.

Typically, proofs like ours present the reducibility portion before the discharging por-
tion. However, because many of our reducibility arguments are quite technical, we make
the unusual choice to give the discharging first, with the goal of providing context for the
reducible configurations. (Usually the process of finding a proof switches back and forth
between discharging and reducibility. By necessity, though, the proof must present one
of these first.)

We start with definitions. A k-vertex is a vertex of degree k; similarly, a k−-vertex
(resp. k+-vertex) has degree at most (resp. at least) k. A k-neighbor of a vertex v is a k-
vertex that is a neighbor of v; and k−-neighbors and k+-neigbors are defined analogously.
A k-cycle is a cycle of length k. A vertex set V1 in a connected graph G is separating if
G \ V1 has at least two components. A cycle C is separating if V (C) is separating. An
independent k-set is an independent set of size k. When vertices u and v are adjacent,
we write u↔ v; otherwise u 6↔ v.

For a vertex v, let Hv denote the subgraph induced by the 5-neighbors and 6-neighbors
of v. Throughout the proof we consider a (hypothetical) minimal counterexampleG, which
will be a triangulation. In Lemma 2, we show that G has no separating 3-cycle. These
properties together imply that, for every vertex v, the subgraph induced by the neighbors
of v is a cycle. If some w ∈ V (Hv) has dHv(w) = 0, then w is an isolated neighbor of v;
otherwise w is a non-isolated neighbor. A non-isolated 5-neighbor of a vertex v is crowded
(with respect to v) if it has two 6-neighbors in Hv. We use crowded 5-neighbors in the
discharging proof to help ensure that 7-vertices finish with sufficient charge, specifically
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to handle the configuration in Figure 1.
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Figure 1: A 7-vertex v gives no charge to any crowded 5-neighbor.

2 Discharging: A Warmup

As a warmup to our main proof, in this section we give a short discharging proof that
every planar triangulation with minimum degree 5 and no separating 3-cycle must contain
a certain configuration, which Albertson showed could not appear in a minimal planar
graph with independence ratio less than 2

9
. (In fact, finding this proof helped encourage

us to begin work on the present paper.)

Lemma A. Let u and v be adjacent vertices, such that uvw and uvx are 3-faces and
d(w) = 5 and d(x) 6 6; call this configuration H. (See Figure 2.) If G is a plane
triangulation with minimum degree 5 and no separating 3-cycle, then G contains a copy
of H.

Proof. Assume that G has minimum degree 5 and no separating 3-cycle, but also has no
copy of H. This assumption leads to a contradiction, which implies the result. An imme-
diate consequence of this assumption (by Pigeonhole) is that the number of 5-neighbors

of each vertex v is at most
⌊
d(v)
2

⌋
. Below, when we verify that each vertex finishes with

nonnegative charge, we consider both the degree of v and its number of 5-neighbors. We
write (a, b)-vertex to denote a vertex of degree a that has b 5-neighbors.

v

u

w x

(a) Adjacent vertices u and v, with nonadjacent com-
mon 5-neighbors w and x.

u

v

xw

(b) Adjacent vertices u and v, with nonadjacent com-
mon neighbors w and x, of degree 5 and 6.

Figure 2: The two instances of configuration H.
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We assign to each vertex v a charge ch(v), where ch(v) = d(v) − 6. Note that∑
v∈V ch(v) = 2|E(G)|−6|V (G)|. Since G is a plane triangulation, Euler’s formula implies

that 2|E(G)| − 6|V (G)| = −12. Now we redistribute the charge, without changing the
sum, so that each vertex finishes with nonnegative charge. This redistribution is called
discharging, and we write ch∗(v) to denote the charge at each vertex v after discharg-
ing. Since each vertex finishes with nonnegative charge, we get the obvious contradiction
−12 =

∑
v∈V ch(v) =

∑
v∈V ch∗(v) > 0. We redistribute the charge via the following three

discharging rules, which we apply simultaneously everywhere they are applicable.

(R1) Each 7+-vertex gives charge 1
3

to each 5-neighbor.

(R2) Each 7+-vertex gives charge 1
7

to each 6-neighbor that has at least one 5-neighbor.

(R3) Each 6-vertex gives charge 2
7

to each 5-neighbor.

We now verify that after discharging, each vertex v has nonnegative charge. We
repeatedly use that G has no copy of configuration H. In particular, this implies that the
number of 5-neighbors for each vertex v is at most d(v)

2
.

d(v) = 5: Each (5, 0)-vertex v has five 6+-neighbors, so ch∗(v) > −1 + 5
(
2
7

)
> 0.

Each (5, 1)-vertex v has four 6+-neighbors, at least two of which are 7+-neighbors; so
ch∗(v) > −1 + 2

(
1
3

)
+ 2

(
2
7

)
> 0. Each (5, 2)-vertex v has three 7+-neighbors (otherwise

G contains a copy of H), so ch∗(v) = −1 + 3
(
1
3

)
= 0.

d(v) = 6: Each (6, 0)-vertex v has ch∗(v) = ch(v) = 0. Each (6, 1)-vertex v has at
least two 7+-neighbors, so ch∗(v) > 0 + 2

(
1
7

)
−
(
2
7

)
= 0. Each (6, 2)-vertex v has four

7+-neighbors, so ch∗(v) = 0 + 4
(
1
7

)
− 2

(
2
7

)
= 0.

d(v) = 7: Each (7, 0)-vertex v has ch∗(v) > 1−7
(
1
7

)
= 0. Each (7, 1)-vertex v has six

6+-neighbors, at least two of which are 7+-vertices (namely, the neighbors that are two
further clockwise and two further counterclockwise around v from the 5-vertex; otherwise
G has a copy of H). So ch∗(v) > 1 − 1

(
1
3

)
− 4

(
1
7

)
> 0. Each (7, 2)-vertex has five

6+-neighbors, at least three of which are 7+-vertices; so ch∗(v) > 1 − 2
(
1
3

)
− 2

(
1
7

)
> 0.

Each (7, 3)-vertex has four 7+-neighbors, so ch∗(v) = 1− 3
(
1
3

)
= 0.

d(v) = 8: Now v has at most four 5-neighbors, and gives each of these charge 1
3
; also

v gives each other neighbor charge at most 1
7
. Thus ch∗(v) > 8− 6− 4(1

3
)− 4(1

7
) > 0.

d(v) > 9: Now v gives each neighbor charge at most 1
3
, so ch∗(v) > d(v)−6−d(v)(1

3
) =

2
3
(d(v)− 9) > 0.

Thus −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) > 0. This contradiction implies the result.

3 Discharging

In this section we present the discharging argument for the proof of Theorem 1. It is
convenient to collect all of the reducibitiy lemmas that we use to analyze the discharging
(but prove later).
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Lemma 8. Every independent set J in a minimal G with |J | = 2, satisfies |N(J)| > 9.

Lemma 9. A minimal G cannot have two nonadjacent 5-vertices with at least two common
neighbors. In particular, each vertex v in G has 1

2
d(v) or more 6+-neighbors.

Lemma 17. Every minimal G has no 6-vertex v with 6−-neighbors u1, u2, and u3 that
are pairwise nonadjacent.

Lemma 18. Every minimal G has no 6-vertex v with pairwise nonadjacent neighbors u1,
u2, and u3, where d(u1) = 5, d(u2) 6 6, and d(u3) = 7.

Lemma 19. Let u1 be a 6-vertex with nonadjacent vertices u2 and u3 each at distance
two from u1, where u2 is a 5-vertex and u3 is a 6−-vertex. A minimal G cannot have u1
and u2 with two common neighbors, and also u1 and u3 with two common neighbors.

Lemma 20. Every minimal G has no 7-vertex v with a 5-neighbor and two other 6−-
neighbors, u1, u2, and u3, that are pairwise nonadjacent.

Lemma 21. Let v1, v2, v3 be the corners of a 3-face, each a 6+-vertex. Let u1, u2, u3 be
the other pairwise common neighbors of v1, v2, v3, i.e., u1 is adjacent to v1 and v2, u2 is
adjacent to v2 and v3, and u3 is adjacent to v3 and v1. We cannot have |N({u1, u2, u3})| 6
13. In particular, we cannot have d(u1) = d(u2) = 5 and d(u3) 6 6.

Lemma 22. Let u1 be a 7-vertex with nonadjacent 5-vertices u2 and u3 each at distance
two from u1. A minimal G cannot have u1 and u2 with two common neighbors and also
u1 and u3 with two common neighbors.

Lemma 23. Suppose that a minimal G contains a 7-vertex v with no 5-neighbor. Now v
cannot have at least five 6-neighbors, each of which has a 5-neighbor.

Theorem 1. Every planar graph G has independence ratio at least 3
13

.

Proof. We assume that the theorem is false, and let G be a minimal counterexample to
the theorem; by “minimal” we mean having the fewest vertices and, subject to that, the
fewest non-triangular faces (thus, G is a triangulation). We will use discharging with
initial charge ch(v) = d(v) − 6. We use the following five discharging rules to guarantee
that each vertex finishes with nonnegative charge, which yields a contradiction.

(R1) Each 6-vertex gives 1
2

to each 5-neighbor unless either they share a common 6-
neighbor and no common 5-neighbor or else the 5-neighbor receives charge from at
least four vertices; in either of these cases, the 6-vertex gives the 5-neighbor 1

4
.

(R2) Each 8+-vertex v gives 1
4

+ hw
8

to each 6−-neighbor w where hw is the number of
7+-vertices in N(v) ∩N(w).

(R3) Each 7-vertex gives 1
2

to each isolated 5-neighbor; gives 0 to each crowded 5-neighbor;
gives 1

4
to each other 5-neighbor; and gives 1

4
to each 6-neighbor unless neither the

7-vertex nor the 6-vertex has a 5-neighbor.
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(R4) After applying (R1)–(R3), each 5-vertex with positive charge splits it equally among
its 6-neighbors that gave it 1

2
.

(R5) After applying (R1)–(R4), each 6-vertex with positive charge splits it equally among
its 6-neighbors with negative charge.

Now we show that after applying these five discharging rules, each vertex v finishes
with nonnegative charge, i.e., ch∗(v) > 0. (It is worth noting that if some vertex v has
nonnegative charge after applying only (R1)–(R3), then v also has nonnegative charge
after applying (R1)–(R5), i.e., ch∗(v) > 0. In fact, the analysis for most cases only needs
(R1)–(R3). The final two rules are used only in Cases (iv)–(vi), near the end of the
proof.) Since the sum of the initial charges is −12, this contradicts our assumption that
G was a minimal counterexample. Subject to proving the needed reducibility lemmas,
this contradiction completes the proof of Theorem 1.

d(v) > 8: We will show that v gives away charge at most d(v)
4

. To see that it does,
let v first give charge 1

4
to each neighbor. Now let each 6−-neighbor w take 1

8
from each

7+-vertex in N(v)∩N(w). Since G[N(v)] is a cycle, each 7+-neighbor gives away at most
the 1

4
it got from v. Each neighbor of v has received at least as much charge as by rule

(R2) and v has given away charge d(v)
4

. Now ch∗(v) > ch(v)− 1
4
d(v) = d(v)− 6− 1

4
d(v) =

3
4
(d(v)− 8) > 0.

d(v) = 7: Let u1, . . . , u7 denote the neighbors of v in clockwise order. First suppose
that v has an isolated 5-neighbor. By Lemma 20, the subgraph induced by the remaining
6−-neighbors must have independence number at most 1. Hence v gives away charge
at most either 1

2
+ 1

2
or 1

2
+ 2(1

4
); in either case, ch∗(v) > ch(v) − 1 = 0. Assume

instead that v has no isolated 5-neighbor. Suppose first that v has a (non-isolated) 5-
neighbor. Now v has at most five total 6−-neighbors, again by Lemma 20. If v has at
most four 6− neighbors, then, since each 6−-neighbor receives charge at most 1

4
, we have

ch∗(v) > ch(v)− 4(1
4
) = 0. By Lemma 20, if v has exactly five 6−-neighbors, then one is

a crowded 5-neighbor, which receives no charge from v. So, again, ch∗(v) > 1− 4(1
4
) = 0.

Finally, suppose that v has only 6+-neighbors. By Lemma 23, v gives charge to at most
four 6-neighbors, so ch∗(v) > ch(v)− 4(1

4
) = 0.

d(v) = 5: Since ch(v) = −1, we must show that v receives total charge at least 1.
Let u1, . . . , u5 be the neighbors of v. First suppose that v has five 6+-neighbors. Now v
will receive charge at least 4(1

4
) unless exactly two of these neighbors are 7-vertices for

which v is a crowded 5-neighbor. However, in this case the other three neighbors are
all 6-neighbors, so ch∗(v) > −1 + 2(1

4
) + 1

2
= 0. Now suppose that v has exactly four

6+-neighbors, say u1, . . . , u4. If v receives charge from each, then ch∗(v) > −1 + 4(1
4
) = 0;

so suppose that v receives charge from at most three neighbors. In total, v receives charge
at least 1

2
from u1 and u2: at least 2(1

4
) if u1 is not a 6-vertex and at least 1

2
+0 if u1 is a 6-

vertex. Similarly, v receives at least 1
2

in total from u3 and u4; so, ch∗(v) > −1+2(1
2
) = 0.

Now suppose that v has exactly three 6+-neighbors, say u1, u2, u3. Lemma 9 implies that
u1, u2, u3 are consecutive neighbors of v. If u1 and u3 are both 6-vertices, then v receives
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u6
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w1 w3

w4

w5

w6

Figure 3: The closed neighborhood of v and some nearby vertices.

charge 1
2

from each. If both are 7+-vertices, then v receives charge 1
4

from each and charge
1
2

from u2. So assume that exactly one of u1 and u3 is a 6-vertex, say u1. Now v receives
charge 1

2
from u1 and charge 1

4
from each of u2 and u3, for a total of 1

2
+ 2(1

4
). In every

case ch∗(v) > ch(v) + 1 = 0.

d(v) = 6: Note that (R5) will never cause a 6-vertex to have negative charge. Thus,
in showing that a 6-vertex has nonnegative charge, we need not consider it.

Clearly, a 6-vertex with no 5-neighbor finishes (R1)–(R3) with nonnegative charge.
Suppose that v is a 6-vertex with exactly one 5-neighbor. We will show that v finishes
(R1)–(R3) with charge at least 1

4
. Let u1, . . . , u6 denote the neighbors of v and assume

that u1 is the only 5-vertex. By Lemma 17, at least one of u1, u3, u5 is a 7+-vertex, so
it gives v charge 1

4
. If one of u6 and u2 is a 6-vertex, then v gives charge only 1

4
to u1,

finishing with charge at least 2(1
4
)− 1

4
. Otherwise, v receives charge at least 1

4
from each

of u6 and u2, so finishes with charge at least 3(1
4
) − 1

2
. Similarly, if v has no 5-neighbor

and at least one 8+-neighbor, then v finishes (R1)–(R3) with charge at least 1
4
.

Now suppose that v has at least two 5-neighbors. By Lemma 9, At most one of
u1, u3, u5 can be a 5-vertex. Similarly, for u2, u4, u6; hence, assume that v has exactly two
5-neighbors. These 5-neighbors can either be “across”, say u1 and u4, or “adjacent”, say
u1 and u2.

Suppose that v has 5-neighbors u1 and u4. Note that all of its remaining neighbors
must be 6+-vertices. At least one of u1, u3, u5 must be a 7+-vertex; similarly for u2, u4, u6.
Now we show that the total net charge that v gives to u3, u4, u5 is 0. Similarly, the total
net charge that v gives to u6, u1, u2 is 0. If both u3 and u5 are 7+-vertices, then v gets 1

4

from each and gives 1
2

to u4. Otherwise, one of u3 and u5 is a 6-vertex and the other is a
7+-vertex; now v gets 1

4
from the 7+-vertex and gives only 1

4
to u4. The same is true for

u6, u1, u2. Thus, v finishes with charge 0.
Suppose instead that v has 5-neighbors u1 and u2. By Lemmas 17 and 18 either

both of u3 and u5 are 7+-vertices or one is a 6-vertex and the other an 8+-vertex. The
same holds for u4 and u6. Let w1, . . . , w6 be the common neighbors of successive pairs of
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vertices in the list u6, u1, u2, u3, u4, u5, u6. Note that w1 ↔ w2, since u1 is a 5-vertex and
{v, u6, w1, w2, u2} ⊆ N(u1). Similarly, w2 ↔ w3. (See Figure 3.) By Lemma 9, since G
has no separating 3-cycle, w1 and w3 are 6+-vertices. Consider the possible degrees for u3,
u4, u5, u6. Up to symmetry, they are (i) 7+, 7+, 7+, 7+, (ii) 7+, 8+, 7+, 6, (iii) 8+, 7+, 6, 7+,
(iv) 8+, 6, 6, 8+, (v) 6, 6, 8+, 8+, and (vi) 6, 8+, 8+, 6.

In Case (i), v receives charge at least 4(1
4
), so ch∗(v) > 0. In Case (ii), v receives

charge at least 1
4

+ (1
4

+ 1
8

+ 1
8
) + 1

4
, so ch∗(v) > 1− (1

2
+ 1

4
) > 0. In Case (iii), v receives

charge at least (1
4

+ 1
8
) + 1

4
+ 1

4
= 7

8
. Recall that w3 is a 6+-vertex, by Lemma 9. If w2

is a 6+-vertex, then v gives only 1
4

to u2, so ch∗(v) > 7
8
− (1

4
+ 1

2
) = 0. So suppose that

w2 is a 5-vertex. Now in each case v gets charge at least 1
8

back from u2, via (R4). If
w3 is a 6-vertex, then u2 receives charge 2(1

2
) + 1

4
and sends back 1

8
to each of v and w3.

Otherwise, w3 is a 7+-vertex, so u3 sends u2 charge at least 3
8
, and v gets back at least 1

8
.

Thus, in each instance of Case (iii), we have ch∗(v) > 0. So we are in Cases (iv), (v), or
(vi).

Case (iv): 8+, 6, 6, 8+. If w2 is a 6+-vertex, then both u1 and u2 are sent charge by
four vertices and hence v gives away at most 2(1

4
). Since v gets at least 1

4
from each of u3

and u6, we have ch∗(v) > 2(1
4
)− 2(1

4
) = 0. Hence, we assume that w2 is a 5-vertex.

Now if w1 is a 6-vertex, then u1 receives charge 5
4
, so gives back 1

8
to v. If instead w1

is a 7+-vertex, then u1 receives charge at least 3
4

from v and w1 together and then charge
at least 1

4
+ 1

8
from u6 for a total of 9

8
. Since u1 has only one 6-neighbor, it gives the extra

1
8

back to v by (R4). The same holds for u2, so v gets 1
8

back from each of u1 and u2. So,
the total charge that v gets from u6, u1, u2, u3 is at least 1

4
+ 1

8
+ 1

8
+ 1

4
= 3

4
.

Suppose that u4 has at least two 5-neighbors. Now one of them, call it x, is a common
neighbor with either u3 or u5, so we can apply Lemma 19 to {v, w2, x} (again x 6↔ w2,
since w2 has two other 5-neighbors; x cannot be identified with one of these other 5-
neighbors, since G has no separating 3-cycle). Similarly, u5 has at most one 5-neighbor.
Hence, by our argument above, both u4 and u5 finish (R1)–(R3) with charge at least 1

4
.

Now we show that u4 has at most three 6-neighbors; similarly for u5.
Suppose that u4 has at least four 6-neighbors. Define y by

N(u4) = {v, u3, w3, y, w4, u5}.

Recall that w2 ↔ w1 and w2 ↔ w3, as noted before Case (i). If y is a 6-vertex, then we can
apply Lemma 19 to {u5, y, u1}. (We cannot have y = w1, since letting J = {u2, u5, w1}
gives |J | = 3 and |N(J)| 6 6 + 6 + 5− 1− 2− 3 = 11, which contradicts Lemma 6.) So
instead, both w4 and w5 must be 6-vertices. We can apply Lemma 19 to {v, w2, w5} unless
w2 ↔ w5, so assume this. Also, we can apply Lemma 19 to {v, w2, w4} unless w2 ↔ w4;
so assume this. Hence, N(w2) ⊇ {u1, u2, w1, w3, w4, w5}, which is a contradiction since
d(w2) = 5.

Thus, we conclude that u4 has at most two 6-neighbors other than u5, so at most two
6-neighbors that finish (R1)–(R3) with negative charge. An analogous argument holds for
u5. Hence v gets at least 1

8
from each of u4 and u5 via (R5), so ch∗(v) > 0−2(1

2
)+ 3

4
+2(1

8
) =

0.
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Case (v): 6, 6, 8+, 8+. Note that v receives charge at least 2(3
8
) = 3

4
from u5 and u6.

If w2 is a 6+-vertex, then u1 receives charge from four neighbors, so v gives away charge
at most 1

4
+ 1

2
. Thus ch∗(v) > 0. So assume w2 is a 5-vertex. First, we show that v gets

back at least 1
8

from u1. If d(w1) = 6, then u1 gets charge 1
2

+ 1
4

+ 1
2

= 5
4
, so returns charge

1
8

to each of v and w1. Otherwise w1 is a 7+-vertex, so u6 sends charge 3
8

to u1, and u1
returns at least 1

8
to v. Thus, the total charge that v gets from u5, u6, and u1 is at least

2(3
8
) + 1

8
= 7

8
.

If w3 is a 6-vertex, then v gets back charge 1
8

from u2, via (R4), so ch∗(v)0 − 2(1
2
) +

7
8

+ 1
8

= 0. Instead, assume w3 is a 7+-vertex. Now we show that v gets charge at least
1
8

from u3 by (R5). Let y be the neighbor of u3 other than v, u2, w3, w4, u4. Applying
Lemma 18 to {u2, u4, y}, shows that y is an 8+-vertex. If w4 is a 5-vertex, then we apply
Lemma 19 to {v, w2, w4} to get a contradiction (w4 cannot be adjacent to w2, since w2

already has two other 5-neighbors, and w4 cannot be identified with u1 or w2, since G has
no separating 3-cycles). Hence w4 is a 6+-vertex. So u3 receives charge at least 1

4
from w3

and at least 1
4

+ 1
8

from y. After u3 gives charge 1
4

to u2, it has charge at least 3
8
. So, by

(R5), u3 gives each of its at most three 6-neighbors (including v) charge at least 1
3
(3
8
) = 1

8
.

Thus, ch∗(v) > −1 + 7
8

+ 1
8

= 0.
Case (vi): 6, 8+, 8+, 6. First suppose that w2 is a 6+-vertex. Note that v gets

charge at least 2(3
8
) from u4 and u5, so it suffices to show that v gives net charge at

most 3
8

to each of u1 and u2. We consider u1; the case for u2 is symmetric. If w1 gives
charge to u1, then u1 receives charge from four neighbors, so it gets charge only 1

4
from

v. Recall that w1 must be a 6+-vertex, as noted before Case (i). Thus w1 fails to give
charge to u1 only if u1 is a crowded 5-neighbor of w1; suppose this is the case. So w1 is
a 7-vertex and w2 is a 6-vertex. Now u1 gets charge 1

2
+ 1

4
+ 1

2
= 5

4
, so u1 returns charge

1
8

to each of w2 and v, via (R4), as desired. By symmetry, u2 also returns 1
8

to v. Thus
ch∗(v) > 0− 2(1

2
) + 2(3

8
) + 2(1

8
) = 0. So instead, assume that w2 is a 5-vertex.

Now we show that u2 returns 1
8

to v via (R4). By symmetry the same is true of u1. If
w3 is a 6-vertex, then v gets back 1

8
from u2, since u2 receives 1

2
+ 1

4
+ 1

2
and returns 1

8
to

each of w3 and v. So assume, that w3 is a 7+-vertex. If w4 ↔ w2, then we apply Lemma 8
to {w2, u3}; so w4 6↔ w2. If w4 is a 6−-vertex, then we apply Lemma 19 to {v, w2, w4}
to get a contradiction (as above, w4 cannot be identified with u1 or w2, since G has no
separating 3-cycle). Thus, w4 is a 7+-vertex. So u3 has at least three 7+-neighbors and
at most two 6-neighbors. Thus, after u3 gives charge 1

4
to u2, by (R5) it gives charge

1
2
(1
2
) = 1

4
to v. So in each case, u3 gives at least 1

8
to v via (R5). Since the same is true

of u6, we have ch∗(v) > 0− 2(1
2
) + 2(3

8
) + 2(1

8
) = 0.

4 Reducibility

It is quite useful to know that a minimal counterexample has no separating 3-cycle; we
prove this in Lemma 2. When proving coloring results, such a lemma is nearly trivial.
However, for independence results, it requires much more work. Albertson proved an
analogous lemma when showing that planar graphs have independence ratio at least 2

9
.

Our proof generalizes his to the broader context of showing that a minor-closed family of
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graphs has independence ratio at least c for some rational c. We will apply this lemma
to planar graphs and will let c = 3

13
.

Lemma 2. Let c > 0 be rational. Let G be a minor-closed family of graphs. If G
is a minimal counterexample to the statement that every n-vertex graph in G has an
independent set of size at least cn, then G has no separating 3-cycle.

Proof. Suppose to the contrary that G has a separating 3-cycle X. Let A1 and A2 be
induced subgraphs of G with V (A1) ∩ V (A2) = X and A1 ∪ A2 = G.

Our plan is to find big independent sets in two smaller graphs in G (by minimality)
and piece those independent sets together to get an independent set in G of size at least
c|G| (for brevity, we write |G| for |V (G)|). More precisely, we consider independent sets
in each Ai, either with X deleted, or with some pair of vertices in X identified. In Claims
1–3, we prove lower bounds on α(G) in terms of |A1| and |A2|. In Claim 4, we examine
|A1| and |A2| modulo b, where c = a

b
in lowest terms. In each case, we show that one of

the independent sets constructed in Claims 1–3 has size at least c|G|. Our proof relies
heavily on the fact that α(H) is an integer (for every graph H), which often allows us to
gain slightly over c|H|.
Claim 1. α(G) > dc(|A1| − 3)e+ dc(|A2| − 3)e.

The union of the independent sets obtained by applying minimality of G to A1 \ X
and A2 \X is independent in G.
Claim 2. α(G) > dc(|Ai| − 2)e+ dc|Aj|e − 1 whenever {i, j} = {1, 2}.

For concreteness, let i = 1 and j = 2; the other case is analogous. Apply minimality to
A2 to get an independent set I2 in A2 with |I2| > dc|A2|e. Form A′1 from A1 by contracting
X to a single vertex u. Apply minimality to A′1 to get an independent set I1 in A′1 with
|I1| > dc(|A1| − 2)e. If u ∈ I1, then I1 ∪ I2 \ {u} is independent in G and has the desired
size. Otherwise, I1 ∪ I2 \X is an independent set of the desired size in G.
Claim 3. α(G) > dc(|A1| − 1)e+ dc(|A2| − 1)e − 1.

Let X = {x1, x2, x3}. For each k ∈ {1, 2} and t ∈ {2, 3}, form Ak,t from Ak by
contracting x1xt to a vertex xk,t. Applying minimality to Ak,t gives an independent set
Ik,t in Ak,t with |Ik,t| > dc(|Ak| − 1)e.

If at most one of I1,t and I2,t contains a vertex of X (or a contraction of two vertices
in X), then to get a big independent set, we take their union, discarding this at most one
vertex. Formally, if {xk,t, x5−t} ∩ Ik,t = ∅, then (I1,t ∪ I2,t) \X is an independent set in G
of the desired size. So assume that each of I1,t and I2,t contains a vertex (or a contraction
of an edge) of X.

Now we look for a vertex x` of X such that each of I1,t and I2,t contains x` or a
contraction of x`. Formally, if x5−t ∈ I1,t∩I2,t, then (I1,t∪I2,t)\X is an independent set inG
of the desired size. Similarly, if x1,t ∈ I1,t and x2,t ∈ I2,t, then (I1,t∪I2,t∪{x1})\{x1,t, x2,t}
is an independent set in G of the desired size.

So, by symmetry, we may assume that x1,2 ∈ I1,2 and x3 ∈ I2,2. Also, either x1,3 ∈ I1,3
or x2,3 ∈ I2,3. If x1,3 ∈ I1,3, then (I2,2 ∪ I1,3) \ {x1,3} is an independent set in G of the
desired size. Otherwise, x2,3 ∈ I2,3 and (I1,2 ∪ I2,3 ∪ {x1}) \ {x1,2, x2,3} is an independent
set in G of the desired size.
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Claim 4. The lemma holds.
Let a and b be positive integers such that c = a

b
and gcd(a, b) = 1. For each i ∈ {1, 2},

let Ni = |Ai| − 3 and for each j ∈ {0, 1, 2, 3}, choose kji such that 1 6 kji 6 b and

kji ≡ a(Ni + j) (mod b). In other words, dc(Ni + j)e = a
b
(Ni + j) +

b−kji
b

. Intuitively, if

there exist i and j such that kji is small compared to b, then we improve our lower bound
on the independence number (in some smaller graph) by the fact that the independence
number is always an integer. In the present claim, we show that if some kji is small, then
G has an independent set of the desired size. In contrast, if all kji are big, then we get a
contradiction.

By symmetry, we may assume that k01 6 k02.
Subclaim 4a. k01 + k02 > 2b+ 1− 3a and k11 + k32 > b+ a+ 1 and k31 + k12 > b+ a+ 1 and
k21 + k22 > b+ a+ 1.

If any independent set constructed in Claims 1–3 has size at least c|G|, then we are
done. So we assume not; more precisely, we assume that each of these independent sets
has size at most a|G|−1

b
. Each of the four desired bounds follow from simplifying the

inequalities in Claims 1–3. Note that |G| = N1 +N2 + 3.

By Claim 1, we have α(G) > dc(|A1| − 3)e+dc(|A2| − 3)e = a
b
(N1+N2)+

b−k01
b

+
b−k02
b

=
a
b
|G|+ 2b−3a−k01−k02

b
. Hence k01 + k02 > 2b+ 1− 3a.

By Claim 2, we have α(G) > dc(|A1| − 2)e+ dc|A2|e−1 = a
b
(N1 + 1 +N2 + 3) +

b−k11
b

+
b−k32
b
−1 = a

b
|G|+ 2b+a−k11−k32

b
−1. Hence k11 +k32 > b+a+ 1. Similarly, k31 +k12 > b+a+ 1.

By Claim 3, we have α(G) > dc(|A1| − 1)e+ dc(|A2| − 1)e− 1 > a
b
(N1 + 2 +N2 + 2) +

b−k21
b

+
b−k22
b
− 1 = a

b
|G|+ 2b+a−k21−k22

b
− 1. Hence k21 + k22 > b+ a+ 1.

Now to get a contradiction, it suffices to show that kji 6 a for some i ∈ {1, 2} and
some j ∈ {1, 2, 3}; since kji 6 b for all i and j, this will contradict one of the equalities
above.
Subclaim 4b. Either k12 6 a or k22 6 a. In each case we get a contradiction, so the
claim is true, and the lemma holds.

By Subclaim 4a, we have k01 + k02 > 2b + 1− 3a. By symmetry, we assumed k02 > k01,
so we have k02 > 2b+1−3a

2
. Since, k22 ≡ k02 + 2a (mod b) and 2b+1−3a

2
+ 2a > b, we have

k22 6 k02 + 2a − b. Now we consider two cases, depending on whether k02 6 b − a or
k02 > b−a+ 1. If k02 6 b−a, then k22 6 k02 + 2a− b 6 (b−a) + 2a− b = a, a contradiction.
Suppose instead that k02 > b− a+ 1. Now k12 ≡ k02 + a (mod b). Since k02 > b− a+ 1, we
see that k02 + a > b+ 1, so k12 6 k02 + a− b 6 a, a contradiction.

Now we turn to proving a series of lemmas showing that G cannot have too many 6−-
vertices near each other. Many of these lemmas will rely on applications of the following
result, which we think may be of independent interest. The idea for the proof is to find big
independent sets for two smaller graphs, and piece them together to get a big independent
set in G.

For S ⊆ V (G), let the interior of S be I(S) = {x ∈ S | N(x) ⊆ S}. For vertex sets
V1, V2 ⊂ V (G) we write V1 ↔ V2 if there exists an edge v1v2 ∈ E(G) with v1 ∈ V1 and
v2 ∈ V2; otherwise, we write Vi 6↔ Vj.
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Lemma 3. Let G be a minor-closed family of graphs. Let G be a minimal counterexample
to the statement that every n-vertex graph in G has an independent set of size at least
cn (for some fixed c > 0). Let S1, . . . , St be pairwise disjoint subsets of a nonempty set
S ⊆ V (G) such that t < |S| and G[Si] is connected for all i ∈ {1, . . . , t}. Now there exists
X ⊆ {1, ..., t} such that Si 6↔ Sj for all distinct i, j ∈ X and α

(
G
[
I(S) ∪

⋃
i∈X Si

])
<

|X|+ dc(|S| − t)e.

Proof. Suppose to the contrary that α
(
G
[
I(S) ∪

⋃
i∈X Si

])
> |X| + dc(|S| − t)e for all

X ⊆ {1, ..., t} such that Si 6↔ Sj for all distinct i, j ∈ X. Create G′ from G by contracting
Si to a single vertex wi for each i ∈ {1, . . . , t} and removing the rest of S. (Note that
we allow t = 0.) Since t < |S|, we have |G′| < |G| and hence minimality of G gives an
independent set I in G′ with |I| > c|G′| = c(|G| − |S|+ t). Let W = I ∩{w1, . . . , wt}. By
assumption, we have α

(
G
[
I(S) ∪

⋃
wi∈W Si

])
> |W | + dc(|S| − t)e. If T is a maximum

independent set in G
[
I(S) ∪

⋃
wi∈W Si

]
, then (I \W ) ∪ T is an independent set in G of

size at least |I| − |W | + |T | > c(|G| − |S| + t) − |W | + (|W | + dc(|S| − t)e) > c|G|, a
contradiction.

We will often apply Lemma 3 with S = J ∪ N(J) for an independent set J . In this
case, we always have J ⊆ I(S). We state this case explicitly in Lemma 4

Lemma 4. Let G be a minor-closed family of graphs. Let G be a minimal counterex-
ample to the statement that every n-vertex graph in G has an independent set of size at
least cn (for some fixed c > 0). No independent set J of G and nonnegative integer k
simultaneously satisfy the following conditions.

1. |J | > c(|N(J)|+ k).

2. For at least |J | − k vertices x ∈ J , there is an independent set {ux, vx} of size 2 in

N(x) \
⋃

y∈J\{x}

N(y).

Proof. Suppose the lemma is false. Let S = J ∪N(J) and t = |J |−k. Pick x1, . . . , xt ∈ J
satisfying condition (2). For i ∈ {1, . . . , t}, let Si = {xi, uxi , vxi}. Applying Lemma 3, we
get X ⊆ {1, . . . , t} such that Si 6↔ Sj for all distinct i, j ∈ X and α

(
G
[
J ∪

⋃
i∈X Si

])
<

|X| + dc(|S| − t)e. By (2), we have α
(
G
[
J ∪

⋃
i∈X Si

])
> |(J \ X) ∪

⋃
x∈X {ux, vx} | >

(|J | − |X|) + 2|X| = |X|+ |J |. Hence |X|+ dc(|S| − t)e > |X|+ |J |, giving dc(|S| − t)e >
|J | > dc(|N(J)|+ k)e by (1). But |S| − t = (|J | + |N(J)|) − (|J | − k) = |N(J)| + k; so
dc(|S| − t)e = dc(|N(J)|+ k)e, contradicting the previous inequality. This contradiction
finishes the proof.

As a simple example of how to apply Lemma 4, we note that it immediately implies
that every planar graph G has independence ratio at least 1

5
. By Euler’s theorem, G has a

5−-vertex v. If d(v) 6 4, then let G′ = G \ (v ∪N(v)). Let I ′ be an independent set in G′

of size at least (n− 5)/5, and let I = I ′ ∪ {v}. If instead d(v) = 5, then apply Lemma 4,
with c = 1

5
, J = {v}, and k = 0; since K6 is nonplanar, v has some pair of nonadjacent

neighbors. This completes the proof.
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Lemma 5. Let G be a minor-closed family of graphs. Let G be a minimal counterexample
to the statement that every n-vertex graph in G has an independent set of size at least cn
(for some fixed c > 0). For any non-maximal independent set J in G, we have

|N(J)| >
⌊

1− c
c
|J |
⌋

+ 2.

Proof. Assume the lemma is false and choose a counterexample J minimizing |J |. Suppose
G[J ∪ N(J)] is not connected. Now we choose a partition {J1, . . . , Jk} of J , minimizing
k, such that k > 2 and G[Ji ∪ N(Ji)] is connected for each i ∈ {1, . . . , k}. Applying
the minimality of |J | to each Ji we conclude that |N(Ji)| >

⌊
1−c
c
|Ji|
⌋

+ 2 for each i ∈
{1, . . . , k}. The minimality of k gives |N(J)| =

∣∣∣⋃k
i=1N(Ji)

∣∣∣ =
∑k

i=1 |N(Ji)|, so |N(J)| >
2k+

∑k
i=1

⌊
1−c
c
|Ji|
⌋
> k+

∑k
i=1

1−c
c
|Ji| > 2 + 1−c

c
|J |, a contradiction. Hence, G[J ∪N(J)]

is connected.
Let S = J ∪ N(J). Apply Lemma 3 with t = 1 and S1 = S. This shows that

either |J | 6 α(G[I(S)]) < dc(|S| − 1)e or α(G[S]) < 1 + dc(|S| − 1)e, since the only
possibilities are X = ∅ and X = {1}. By assumption J is a counterexample, so |N(J)| 6⌊
1−c
c
|J |
⌋

+ 1, which implies that |S| = |J |+ |N(J)| 6 |J |+
⌊
1−c
c
|J |
⌋

+ 1 =
⌊
|J |
c

⌋
+ 1. Now

dc(|S| − 1)e 6
⌈
c((
⌊
|J |
c

⌋
+ 1)− 1)

⌉
=
⌈
c
⌊
|J |
c

⌋⌉
6 d|J |e = |J |. Hence, we cannot have

X = ∅ in Lemma 3.
Instead, we must have X = {1}, which implies that α(G[S]) < 1 + dc(|S| − 1)e.

Since J is non-maximal, we have S 6= V (G), so we may apply minimality of G to G[S] to
conclude that α(G[S]) > dc|S|e. Combining this inequality with the previous one, we have
dc|S|e = dc(|S| − 1)e. Now the upper bound on dc(|S| − 1)e from the previous paragraph
gives dc|S|e = dc(|S| − 1)e 6 |J |. Finally, applying Lemma 3 with t = 0 (simply deleting
J ∪ N(J)) shows that |J | < dc(|S|)e. These two final inequalities contradict each other,
which finishes the proof.

Lemmas 2–5 hold in a more general setting than just c = 3
13

, as we showed. In the
rest of this section, we consider only a planar graph G that is minimal among those with
independence ratio less than 3

13
. To remind the reader of this, we often call it a minimal

G. Applying Lemma 5 with c = 3
13

gives the following corollary.

Lemma 6. For any non-maximal independent set J in a minimal G, we have

|N(J)| >
⌊

10

3
|J |
⌋

+ 2.

In particular, if |J | = 1, then |N(J)| > 5; if |J | = 2, then |N(J)| > 8; and if |J | = 3,
then |N(J)| > 12.

The case |J | = 1 shows that G has minimum degree 5, and this is the best we can
hope for when |J | = 1. Recall that G is a planar triangulation, since we chose it to have
as few non-triangular faces as possible. As a result, we can improve the bound when
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|J | = 2 to |N(J)| > 9. Similarly, in many cases we can improve the bound when |J | = 3
to |N(J)| > 13. These improvements are the focus of the next ten lemmas. In many
instances, the proofs are easy applications of Lemma 3. First, we need a few basic facts
about planar graphs.

Lemma 7. If G is a plane triangulation with no separating 3-cycle and δ(G) = 5, then

(a) If v ∈ V (G), then G[N(v)] is a cycle; and

(b) G is 4-connected with |V (G)| > 12; and

(c) If v, w ∈ V (G) are distinct, then G[N(v) ∩N(w)] is the disjoint union of copies of
K1 and K2.

Proof. Plane triangulations are well-known to be 3-connected. Property (a) follows by
noting that G \ {v} is 2-connected and hence each face boundary is a cycle; so G[N(v)]
has a hamiltonian cycle. This cycle must be induced since G has no separating 3-cycle.

For (b), suppose that G has a separating set {x, y, z}. Since G has no separating
3-cycle, we assume that xy 6∈ E(G). By (a), N(x) induces a cycle C. Since G is 3-
connected, x must have a neighbor in each component of G \ {x, y, z}. So C has a vertex
in each component of G \ {x, y, z} and hence C \ {x, y, z} is disconnected. But x 6∈ V (C)
and since xy 6∈ E(G), also y 6∈ V (C). So, C \ {z} is disconnected, which is impossible.
Since G is a plane triangulation and δ(G) = 5, we have 5|G| 6 2|E(G)| = 6|G| − 12, so
|G| > 12.

By (a) and δ(G) = 5, it follows that no neighborhood contains K3 or C4. If G[N(v)∩
N(w)] had an induced P3 (path on 3 vertices), then the neighborhood of the center of
this P3 would contain K3 or C4. This proves (c).

Lemma 8. Every independent set J in a minimal G with |J | = 2, satisfies |N(J)| > 9.

Proof. By Lemma 7(b), |G| > 12; so J cannot be a maximal independent set when
|N(J)| 6 7. Hence, by Lemma 6, we may assume |N(J)| = 8. Let J = {x, y}. If we can
apply Lemma 4 with k = 0, then we are done. If we cannot, then by symmetry we may
assume that there is no independent 2-set in N(x) \ N(y). So N(x) \ N(y) is a clique.
Since d(x) > 5 and N(x) induces a cycle, |N(x) \N(y)| 6 2. Now, since x is a 5+-vertex,
G[N(x) ∩N(y)] induces P3; this contradicts Lemma 7(c).

A direct consequence of Lemma 8 is the following useful fact.

Lemma 9. A minimal G cannot have two nonadjacent 5-vertices with at least two common
neighbors. In particular, each vertex v in G has d(v)

2
or more 6+-neighbors.

Proof. The first statement follows immediately from Lemma 8. Now we consider the
second. Let v be a vertex with d(v) = k and neighbors u1, . . . , uk in clockwise order. If
more than k/2 neighbors of v are 5-vertices, then (by Pigeonhole) there exists an integer i
such that ui and ui+2 are 5-vertices (subscripts are modulo k). Now we apply Lemma 8 to
ui and ui+2. Recall that ui and ui+2 are nonadjacent, since G has no separating 3-cycle,
as shown in Lemma 2.
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Now we consider the case when |J | = 3. Lemma 6 gives |N(J)| > 12. Our next few
lemmas show certain conditions under which we can conclude that |N(J)| > 13.

Lemma 10. Let J be an independent set in a minimal G with |J | = 3 and |N(J)| > 12.
Choose S1, S2 ⊆ J ∪N(J) such that S1 ∩ S2 = ∅ and both G[S1] and G[S2] are connected.
If α(G[Si ∪ J ]) > 4 for each i ∈ {1, 2}, then |N(J)| > 13.

Proof. Suppose not and choose a counterexample minimizing |J∪N(J)|−|S1∪S2|. Clearly
|N(J)| = 12. First we show that S1∪S2 = J ∪N(J). It suffices to show that G[J ∪N(J)]
is connected, since then we can add to either S1 or S2 any vertex in N(S1∪S2)\ (S1∪S2).
In particular, we show that every x ∈ J satisfies (x ∪N(x)) ∩ (∪y∈(J\{x})(y ∪N(y))) 6= ∅.
Suppose not. By Lemma 8, we have |∪y∈J\{x}N(y)| > 9. Now |∪y∈JN(y)| > 9+d(x) > 14,
a contradiction. Now we must have G[J ∪N(J)] connected, so we can assume S1 ∪ S2 =
J ∪N(J). Similarly, we assume S1 ↔ S2.

Now we apply Lemma 3 with S = J ∪ N(J), t = 2, and S1 and S2 as above. Since
S1 ↔ S2, we have |X| 6 1. We cannot have |X| = 1 since, by hypothesis, α(G[Si∪J ]) > 4
for each i ∈ {1, 2}. So suppose that X = ∅. Now we have α(G[J ]) > |J | = 3 =⌈

3
13

(|J ∪N(J)| − 2)
⌉

=
⌈

3
13

(3 + 12− 2)
⌉
. This contradiction completes the proof.

Lemma 11. Let J = {u1, u2, u3}. If J is an independent set in a minimal G where

1. N(u1) \ (N(u2) ∪N(u3)) contains an independent 2-set; and

2. α(G[J ∪N(u2) ∪N(u3)]) > 4,

then |N(J)| > 13.

Proof. Since G is a planar triangulation with minimum degree 5 and at least three 6+-
vertices by Lemma 9, we have 5|G|+ 3 6 2|E(G)| = 6|G| − 12 and hence |G| > 15. Thus
J cannot be a maximal independent set when |N(J)| 6 11. So, by Lemma 6, we know
that |N(J)| > 12. Let I be an independent set of size 2 in N(u1) \ (N(u2) ∪N(u3)).

First, suppose N(u2) ∩ N(u3) 6= ∅. We apply Lemma 10 with S1 = {u1} ∪ I and
S2 = {u2, u3}∪N(u2)∪N(u3). Clearly, G[S1] is connected. Also, G[S2] is connected since
N(u2)∩N(u3) 6= ∅, by assumption. The set I ∪{u2, u3} shows that α(G[S1∪J ]) > 4 and
hypothesis (2) shows that α(G[S2∪J ]) > 4. So the hypotheses of Lemma 10 are satisfied,
giving |N(J)| > 13.

Instead, suppose N(u2)∩N(u3) = ∅. This implies N(u2) \ (N(u1)∪N(u3)) = N(u2) \
N(u1). If N(u2) \ N(u1) contains an independent 2-set as well, then applying Lemma 4
with k = 1 gives |N(J)| > 13, as desired. Otherwise, |N(u2) \N(u1)| 6 2, so G[N(u2) ∩
N(u1)] contains P3, contradicting Lemma 7(c).

One particular case of Lemma 11 is easy to verify in our applications, so we state it
separately, as Lemma 13. First, we need the following lemma.

Lemma 12. Let v be a 7+-vertex in G. If S ⊆ V (G) with {v} ∪N(v) ⊆ S and |S| > 10,
then α(G[S]) > 4.
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Proof. If d(v) > 8, then the neighbors of v induce an 8+-cycle (by Lemma 7(a)), which
has independence number at least 4; so we are done. So suppose d(v) = 7. Let u1, . . . , u7
denote the neighbors of v in clockwise order; note that G[N(v)] is a 7-cycle, again by
Lemma 7(a). Pick w1, w2 ∈ S \ ({v} ∪N(v)). Let Hi = G[N(v) \ N(wi)] for each
i ∈ {1, 2}. If Hi contains an independent 3-set J for some i ∈ {1, 2}, then J ∪ {wi} is
the desired independent 4-set, so we are done. Therefore, we must have |Hi| 6 4 for each
i ∈ {1, 2}. So, |N(v) ∩N(wi)| > 3 and hence Lemma 7(c) shows that N(v) ∩N(wi) has
at least two components; therefore, so does Hi. It must have exactly two components or
we get an independent 3-set in Hi. Similarly, if |Hi| = 4, then Hi has no isolated vertex.
So, either Hi is 2K2 or |Hi| 6 3. Now in each case we get a subdivision of K3,3; the branch
vertices of one part are v, w1, w2 and the branch vertices of the other are three of the ui.
This contradiction finishes the proof.

Lemma 13. Let J = {u1, u2, u3}. If J is an independent set in a minimal G where

1. N(u1) \ (N(u2) ∪N(u3)) contains an independent 2-set; and

2. G[J ∪N(u2) ∪N(u3)] contains a 7+-vertex and its neighborhood,

then |N(J)| > 13.

Proof. We apply Lemma 11 using Lemma 12 to verify hypothesis (2). To do so, we let
S = {u1, u2, u3}∪N(u2)∪N(u3), and we need that |{u1, u2, u3}∪N(u2)∪N(u3)| > 10. This
is immediate from Lemma 8, since |S| > |{u1, u2, u3}|+ |N(u2)∪N(u3)| > 3+9 = 12.

Lemma 14. Let J be an independent 3-set in G. Choose S1, S2, S3 ⊆ J ∪N(J) such that
G[Si] is connected and Si ∩ Sj = ∅ for all distinct i, j ∈ {1, 2, 3}. If |N(J)| 6 13, then
either

1. Si 6↔ Sj for some {i, j} ⊆ {1, 2, 3}; or

2. α(G[Si ∪ J ]) 6 3 for some i ∈ {1, 2, 3}.

Proof. This is an immediate corollary of Lemma 3 with S = J ∪ N(J) and t = 3. If
Si ↔ Sj for all {i, j} ∈ {1, 2, 3}, then in Lemma 3 either |X| = 1 or |X| = 0. We cannot
have |X| = 0, since α(G[I(S)]) > α(G[J ]) > |J | = 3 =

⌈
3
13

(13 + 3− 3)
⌉
. Hence |X| = 1,

which implies (2).

The next lemma can be viewed as a variant on the result we get by applying Lemma 4
with |J | = 3 and k = 0 (and c = 3

13
). As in that case, we require that each of N(u1) \

(N(u2)∪N(u3)) and N(u2)\(N(u1)∪N(u3)) contains an independent 2-set. However, here
we do not require that N(u3) \ (N(u1) ∪N(u2)) contains an independent 2-set. Instead,
we have hypothesis (2) below. Not surprisingly, the proof is similar to that of Lemma 4.

Lemma 15. Let J = {u1, u2, u3}. If J is an independent set in a minimal G such that

1. N(ui) \ (N(uj) ∪N(u3)) contains an independent 2-set Mi for all {i, j} = {1, 2},
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2. α(G[J ∪ V (H)]) > 4, where H is u3’s component in G[{u3} ∪N(J)] \ (M1 ∪M2),

then |N(J)| > 14.

Proof. First, we show that u3 is distance two from each of u1 and u2. Suppose not;
by symmetry, assume that u3 is distance at least three from u1. Now N(u3) \ (N(u1) ∪
N(u2)) = N(u3)\N(u2). By Lemma 7, N(u3)∩N(u2) consists of disjoint copies of K1 and
K2. Thus, since d(u3) > 5, we see that N(u3) \ (N(u1)∪N(u2)) contains an independent
2-set. Now, if |N(J)| 6 13, then applying Lemma 4 with k = 0 gives a contradiction.
Hence, u3 is distance two from each of u1 and u2.

Choose disjoint subsets S1, S2, S3 ⊂ J ∪ N(J) where G[Si] is connected for all i ∈
{1, 2, 3} and {ui} ∪Mi ⊆ Si for each i ∈ {1, 2} and u3 ∈ S3, first maximizing |S3| and
subject to that maximizing |S1| + |S2| + |S3|. Since J ⊆ S1 ∪ S2 ∪ S3, maximality of
|S1|+ |S2|+ |S3| gives S1 ∪ S2 ∪ S3 = J ∪N(J).

Now we apply Lemma 3, with S = S1 ∪ S2 ∪ S3. To get a contradiction, we need only
verify, for each possible X, that α(G[I(S) ∪

⋃
i∈X Si]) > |X|+

⌈
3
13

(|S| − |J |)
⌉

= |X|+ 3.
Since S3 ↔ S1 and S3 ↔ S2, either |X| 6 1 or else X = {1, 2}. In the latter case,
M1 ∪M2 ∪ {u3} is the desired independent 5-set. If instead X = ∅, then J is the desired
independent 3-set.

So we must have X = {i} for some i ∈ {1, 2, 3}. If i ∈ {1, 2}, then Mi ∪ {u3, u3−i}) is
the desired independent set. So instead assume that X = {3}. But, by the maximality of
|S3|, G[J ∪S3] contains u3’s component in G[{u3}∪N(J)]\M1 \M2. So by (2), G[J ∪S3]
has an independent 4-set, as desired.

Again, one particular case of Lemma 15 is easy to verify, so we state it separately.

Lemma 16. Let J = {u1, u2, u3}. If J is an independent set in a minimal G such that

1. N(ui) \ (N(uj) ∪ N(u3)) contains an independent 2-set Mi for all {i, j} = {1, 2};
and

2. u3’s component H in G[{u3} ∪ N(J)] \ (M1 ∪M2) satisfies |J ∪ V (H)| > 10 and
G[J ∪ V (H)] contains a 7+ vertex and its neighborhood,

then |N(J)| > 14.

Proof. We apply Lemma 15, using Lemma 12 to verify hypothesis (2).

Thus far, our lemmas have not focused much on the actual planar embedding of G.
At this point we transition and start analyzing the embedding, as well.

Lemma 17. Every minimal G has no 6-vertex v with 6−-neighbors u1, u2, and u3 that
are pairwise nonadjacent.

Proof. Lemma 6, applied with J = {u1, u2, u3}, yields 12 6 |N({u1, u2, u3})| 6 d(u1) +
d(u2) + d(u3) − 5. Hence, by symmetry, assume that the vertices are arranged as in
Figure 4(a) with all vertices distinct as drawn or as in Figure 4(b) with at most one pair
of vertices identified.
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u1

3
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2

12

(a) A 6-vertex, v, with non-adjacent neighbors
u1, u2, and u3 such that d(u1) = 5 and d(u2) =
d(u3) = 6.

v

u2

1

1

u31

u1

3

3

2

12

4

4

(b) A 6-vertex, v, with non-adjacent 6-
neighbors u1, u2, and u3.

Figure 4: The two cases of Lemma 17.

The first case is impossible by Lemma 4 with k = 1, using the vertices labeled 2
for u2 and those labeled 3 for u3. When the vertices in Figure 4(b) are distinct as
drawn, we apply Lemma 4 with k = 0, using the vertices labeled 2 for u2, the vertices
labeled 3 for u3, and those labeled 4 for u1. Instead, by symmetry and the fact that G
contains no separating 3-cycle, assume that the vertices labeled 2 and 3 that are drawn
at distance four are identified; so |N({u1, u2, u3})| = 12. Now the pairs of vertices labeled
1 each have a common neighbor, so the vertices labeled 1 must be an independent set,
to avoid a separating 3-cycle. Now, we apply Lemma 11, using the vertices labeled 4 for
the independent 2-set. This implies that |N({u1, u2, u3})| > 13, which contradicts our
conclusion above that |N({u1, u2, u3})| = 12.

Lemma 18. Every minimal G has no 6-vertex v with pairwise nonadjacent neighbors u1,
u2, and u3, where d(u1) = 5, d(u2) 6 6, and d(u3) = 7.

Proof. Let J = {u1, u2, u3}. By Lemma 6, 12 6 |N(J)| 6 5 + 6 + 7− 5 = 13, so at most
one pair of vertices in Figure 5(a) are identified.

First, suppose the vertices in the figure are distinct as drawn. Suppose x 6↔ y, as
in Figure 5(b). For each i ∈ {1, 2, 3}, let Si consist of the vertices labeled i. Now for
each i ∈ {1, 2, 3}, G[Si] is connected. Clearly, for each i ∈ {1, 2} the vertices labeled Ii
form an independent 4-set. Since x 6↔ y, the vertices labeled I3 also form an independent
4-set. Note that S1 ↔ S3 and S2 ↔ S3; however, possibly S1 6↔ S2. If S1 ↔ S2, then we
can apply Lemma 14 to get a contradiction. So, we assume that S1 6↔ S2. But now we
have an independent 5-set consisting of u1, the two vertices labeled {1, I1} and the two
vertices labeled {2, I2}; hence α(G[S1 ∪ S2 ∪ J ]) > 5. So, we can apply Lemma 3 to get a
contradiction. So, instead we assume x↔ y.
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(b) The x 6↔ y case.
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(c) The x↔ y and w 6↔ z case.
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2, I3
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2, I2

3, I1
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1 3, I3
3
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1, I1
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(d) The x↔ y and w ↔ z case.
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u2

1

u3

1

Q Q

Q

1

2a

2b 2a

2b

(e) The case of one identified pair.

Figure 5: The case of Lemma 18.
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Suppose w 6↔ z, as in Figure 5(c). For each i ∈ {1, 2, 3}, let Si consist of the vertices
labeled i . Clearly G[Si] is connected for each i ∈ {2, 3}. Also, G[S1] is connected because
x ↔ y. Note that for each i ∈ {1, 3}, the vertices labeled Ii form an independent 4-set.
Since x ↔ y and w 6↔ z, the vertices labeled I2 also form an independent 4-set. Note
that S1 ↔ S2 and S2 ↔ S3; however, possibly S1 6↔ S3. If S1 ↔ S3, then we apply
Lemma 14 to get a contradiction. So instead we assume that S1 6↔ S3. But now we again
have an independent 5-set, consisting of u1, the two vertices labeled {1, I1}, and the two
vertices labeled {3, I3}; hence α(G[S1 ∪ S3 ∪ J ]) > 5. So, again we apply Lemma 3 to get
a contradiction. Thus, we instead assume w ↔ z.

Now consider Figure 5(d). For each i ∈ {1, 2, 3}, let Si consist of the vertices labeled
i. Note that G[Si] is connected for each i ∈ {2, 3}. Also, G[S1] is connected because
x ↔ y and w ↔ z. Clearly, the vertices labeled Ii form an independent 4-set for each
i ∈ {1, 3}. Since x↔ y, the vertices labeled I2 also form an independent 4-set. Note that
S1 ↔ S2 and S2 ↔ S3; however, possibly S1 6↔ S3. If S1 ↔ S3, then we apply Lemma
14 to get a contradiction. So, instead we assume that S1 6↔ S3. But now we have an
independent 5-set, consisting of u1, the two vertices labeled {1, I1}, and the two vertices
labeled {3, I3}; hence α(G[S1∪S3∪J ]) > 5. So, we apply Lemma 3 to get a contradiction.

Hence, we may assume that exactly one pair of vertices in Figure 5(a) is identified.
No neighbor of u1 can be identified with a neighbor of u3, since then u1 and u3 would
have three common neighbors, violating Lemma 8. Hence, to avoid separating 3-cycles,
we assume that a vertex labeled 2a is identified with a vertex labeled Q (the case where
a vertex labeled 2b is identified with a vertex lableled Q is nearly identical, so we omit
the details). But now the rightmost vertex labeled 1 and the leftmost vertex labeled 1
are on opposite sides of a separating cycle and hence nonadjacent. Therefore, u2 together
with the vertices labeled 1 is an independent 4-set. So, now we apply Lemma 11 to get a
contradiction, using the vertices labeled 2b for the independent 2-set.

Lemma 19. Let u1 be a 6-vertex with nonadjacent vertices u2 and u3 each at distance
two from u1, where u2 is a 5-vertex and u3 is a 6−-vertex. A minimal G cannot have u1
and u2 with two common neighbors, and also u1 and u3 with two common neighbors.

Proof. Figure 6 shows the possible arrangements when u3 is a 6-vertex. The case when
u3 is a 5-vertex is similar, but easier. In particular, when u3 is a 5-vertex, we already
know |N({u1, u2, u3})| 6 12, so all vertices in the corresponding figures must be distinct
as drawn. Furthermore, it now suffices to apply Lemma 4 with k = 1. We omit further
details. So suppose instead that d(u3) = 6.

First, suppose all vertices in the figures are distinct as drawn. Now Figures 6(a,c) are
impossible by Lemma 4 with k = 0; for each i ∈ {1, 2, 3}, we use the vertices labeled i as
the independent 2-set for ui. For Figure 6(b), let I1 be the vertices labeled u2 or 1a and
let I2 be the vertices labeled u2 or 1b. To avoid a separating 3-cycle, at least one of I1
or I2 is independent. Hence Figure 6(b) is impossible by Lemma 15; for the independent
4-set, use I1 or I2 and for each i ∈ {2, 3}, use the vertices labeled i as the independent
2-set for ui.
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(a) Here u2 and u3 have a common neighbor
in N(u1).

u3

1a, 1b

u2
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u1

2
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35a, 5b

1a, 5b

(b) Here u2 and u3 have adjacent neighbors
in N(u1).

u3u2 u1

2

2

3
3b

3
3b1

1

(c) Here u2 and u3 have neighbors at distance 2 in
N(u1).

Figure 6: The cases of Lemma 19. The three possibilities for an independent 3-set
{u1, u2, u3} where d(u1) = 6, d(u2) 6 6, d(u3) = 5, and each of u2 and u3 has two
neighbors in common with u1.
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By Lemma 6, |N(J)| > 12, so exactly one pair of vertices is identified in one of
Figures 6(a,b,c). First, consider Figures 6(a,c) simultaneously. Since G has no separating
3-cycle, the identified pair must contain a vertex labeled 3. Now we apply Lemma 4 with
k = 1, using the vertices labeled 3b in place of those labeled 3.

Finally, for Figure 6(b), we apply Lemma 11. For the independent 2-set we use either
the vertices labeled 3 or the vertices labeled 4; at least one of these pairs contains no
identified vertex. For the independent 4-set, we use either u3 and the vertices labeled 5a
or else u3 and the vertices labeled 5b. Since G has no separating 3-cycle, at least one of
these 4-sets will be independent.

Lemma 20. Every minimal G has no 7-vertex v with a 5-neighbor and two other 6−-
neighbors, u1, u2, and u3, that are pairwise nonadjacent. In other words, Figures 7(a–e)
are forbidden.

Proof. Lemma 6 yields 12 6 |N({u1, u2, u3})| 6 d(u1)+d(u2)+d(u3)−4 6 5+6+6−4 6
13. In Figure 7(a), |N({u1, u2, u3})| = 11. So, by symmetry, we assume that the vertices
are arranged as in Figures 7(b,c) with all vertices distinct as drawn or as in Figures 7(d,e)
with at most one pair of vertices identified.

First suppose the vertices are disinct as drawn. For Figures 7(b,c,d), we apply
Lemma 4; for (b) and (c) we use k = 1, and for (d) we use k = 0. For Figure 7(e),
we apply Lemma 16, using the vertices labeled 1 for M1 and the those labeled 2 for M2.
Now |N({u1, u2, u3})| > 14 is a contradiction.

So, instead suppose that a single pair of vertices is identified in one of Figures 7(d,e).
First consider (d). If a vertex labeled 1 is identified with another vertex, then we apply
Lemma 13 using the vertices labeled 2 for the independent 2-set (vertices labeled 1 and 2
cannot be identified, since they are drawn at distance at most 3). Otherwise, the identified
vertices must be those labeled 2 and 3 that are drawn at distance four. Now the vertices
labeled 4 are pairwise at distance two, so must be an independent 4-set. Now we get
a contradiction, by applying Lemma 11 using the vertices labeled 1 for the independent
2-set.

Finally, consider Figure 7(e), with a single pair of vertices identified. Again we apply
Lemma 4, with k = 1. Since u1 has three possibilities for its pair of nonadjacent neigh-
bors, and no neighbor of u1 appears in all three of these pairs, u1 satisfies condition (2).
Similarly, u3 also satisfies condition (2).

Lemma 21. Let v1, v2, v3 be the corners of a 3-face, each a 6+-vertex. Let u1, u2, u3 be
the other pairwise common neighbors of v1, v2, v3, i.e., u1 is adjacent to v1 and v2, u2 is
adjacent to v2 and v3, and u3 is adjacent to v3 and v1. We cannot have |N({u1, u2, u3})| 6
13. In particular, we cannot have d(u1) = d(u2) = 5 and d(u3) 6 6.

Proof. If the only pairwise common neighbors of the ui are the vi, then two ui are 5-
vertices and the third is a 6−-vertex. The case where the ui have more pairwise common
neighbors is nearly identical, and we remark on it briefly at the end of the proof. So
suppose that d(u1) = d(u2) = 5 and d(u3) = 6, as shown in Figure 8; the case where
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(a) A 7-vertex, v, with non-adjacent 5-
neighbors, u1, u2, and u3.

v
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u1

u2

1 2

2

(b) A 7-vertex, v, with a 6-neighbor, u3, and
two 5-neighbors, u1 and u2.
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(c) A 7-vertex, v, with a 6-neighbor, u2, and
two 5-neighbors, u1 and u3.
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(d) A 7-vertex, v, with a 5-neighbor, u1, and
two 6-neighbors, u2 and u3.
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u1 u3
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1

1 2
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(e) A 7-vertex, v, with a 5-neighbor, u2, and
two 6-neighbors, u1 and u3.

Figure 7: The five cases of Lemma 20.
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(a) A 3-face v1v2v3, such that the pairwise com-
mon neighbors of v1, v2, v3 have degrees 5, 5,
and at most 6.

Figure 8: The key case of Lemma 21.

d(u3) = 5 is nearly identical. We will apply Lemma 4 with J = {u1, u2, u3} and k = 0.
Clearly, J is an independent set. Now we verify that each vertex of J satisfies condition
(2). Since G has no separating 3-cycle, the two vertices in each pair with a common
label (among {1, 2, 3}) are distinct and nonadjacent. Similarly, the vertices with labels in
{1, 2, 3} are distinct, since they are drawn at pairwise distance at most three, and G has
no separating 3-cycle. Thus, we can apply Lemma 4, as desired.

In the more general case where the ui have pairwise common neighbors in addition to
the vi, the argument above still shows that the vertices with labels in {1, 2, 3} are distinct.
So again, we can apply Lemma 4 with k = 0.

Lemma 22. Let u1 be a 7-vertex with nonadjacent 5-vertices u2 and u3 each at distance
two from u1. A minimal G cannot have u1 and u2 with two common neighbors and also
u1 and u3 with two common neighbors.

Proof. This situation is shown in Figures 9(a,b,c), possibly with some vertices identified.
Let J = {u1, u2, u3}. Suppose that more than a single pair of vertices is identified,
which implies |N(J)| 6 11. If J is a non-maximal independent set, then this contradicts
Lemma 6. So suppose that J is a maximal independent set. If |N(J)| 6 10, then |G| 6 13,
so J is the desired independent set of size 3

13
|G|. Otherwise, |G| = 14, so exactly three

vertices are identified. Now we find an independent 4-set. Either we can take the four
vertices labeled 4, or the two labeled i, together with J \ {ui}, for some i ∈ {1, 2, 3}.
Thus, at most one pair of vertices drawn as distinct are identified.

If all vertices labeled 2 or 3 are distinct as drawn, then we apply Lemma 16 and get a
contradiction. By Lemma 6, the only other possibility is that exactly one pair of vertices is
identified. Such a pair must consist of vertices labeled 2 and 3 that are drawn at distance
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(a) Here u2 and u3 have a common neighbor in
N(u1).
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(b) Here u2 and u3 have adjacent neighbors in
N(u1).
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(c) Here u2 and u3 have neighbors at distance
2 in N(u1).

Figure 9: The cases of Lemma 22. The three possibilities for an independent 3-set
{u1, u2, u3} where d(u1) = 7, d(u2) = d(u3) = 5, and each of u2 and u3 has two neighbors
in common with u1.
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four (otherwise we apply Lemma 4, with k = 1). In Figure 9(a), this is impossible, since
the two 5-vertices u2 and u3 would have two neighbors in common, violating Lemma 9.

Now we consider the cases shown in Figures 9(b,c) simultaneously. We apply Lemma
11 using the vertices labeled 1 for the independent 2-set. Let I1 be the set of vertices
labeled 4. If I1 is independent, then we are done; so assume not. Recall that a vertex
labeled 2 is identified with a vertex labeled 3.

Suppose the vertices labeled 4 in N(u2) \N(u1) and N(u3) \N(u1) are not adjacent.
Now by symmetry, we may assume that the vertex labeled 4 in N(u1)∩N(u2) is adjacent
to the vertex labeled 4 in N(u3) \N(u1). Let I2 be the set made from I1 by replacing the
vertex labeled 4 in N(u1) ∩ N(u2) with the vertex labeled 4b. If I2 is independent, then
we are done; so assume not. Now the vertex labeled 4b must be adjacent to the vertex
labeled 4 in N(u3)\N(u1), but this makes a separating 3-cycle (consisting of two vertices
labeled 4 and one labeled 4b), a contradiction.

So, we may assume that the vertices labeled 4 in N(u2) \ N(u1) and N(u3) \ N(u1)
are adjacent. Suppose the topmost vertex labeled 2 is identified with the topmost vertex
labeled 3. Now again we are done; our independent 4-set consists of the two neighbors of
u1 labeled 4, together with an independent 2-set from among the two leftmost and two
rightmost vertices (by planarity, they cannot all four be pairwise adjacent).

The only remaining possibility is that the bottommost vertex labeled 2 is identified
with the bottommost vertex labeled 3 (since the two topmost vertices labeled 4 are ad-
jacent). If we are in Figure 9(b), then the vertex labeled 4b is a 5-vertex; since it shares
two neighbors with u3, another 5-vertex, we contradict Lemma 9. Hence, we must be in
Figure 9(c). Now our independent 4-set consists of the two neighbors of u1 labeled 4b
and 4c, together with an indpendent 2-set from among the four topmost vertices (again,
by planarity, they cannot all be pairwise adjacent).

Lemma 23. Suppose that a minimal G contains a 7-vertex v with no 5-neighbor. Now v
cannot have at least five 6-neighbors, each of which has a 5-neighbor.

Proof. Suppose to the contrary. Denote the neighbors of v in clockwise order by u1, . . . , u7.
Case 1: Vertices u1, u2, u3, u4 are 6-vertices, each with a 5-neighbor.
First, suppose that u2 and u3 have a common 5-neighbor, w2. Consider the 5-neighbor

w1 of u1. By Lemma 9, it cannot be common with u2; similarly, the 5-neighbor w4 of u4
cannot be common with u3. (We must have w1 and w4 distinct, since otherwise we apply
Lemma 21 to {u1, u4, w2}. Also, we must have w1 and w4 each distinct from w2, since G
has no separating 3-cycles.)

First, suppose that w1 has two common neighbors with u2. If w1 6↔ u4, then we apply
Lemma 19 to {w1, u2, u4}; so assume w1 ↔ u4. Now let J = {u1, u4, w2}. Clearly, J is an
independent 3-set. Also |N(J)| 6 6 + 6 + 5 − 4 = 13, so we are done by Lemma 21. So
w1 cannot have two common neighbors with u2. Similarly, w4 cannot have two common
neighbors with u3. Hence, w1 ↔ u7 and also w4 ↔ u5. Now we must have w1 ↔ w4;
otherwise we apply Lemma 22 to {v, w1, w4}. Similarly, we must have w1 ↔ w2 and
w2 ↔ w4; these edges cut off w4 from u1, so u1 6↔ w4. Since u1 and w4 are nonadjacent,
but have a 5-neighbor in common, they must have two neighbors in common. So we apply
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Lemma 19 to {u1, u3, w4}. Hence, we conclude that the common neighbor of u2 and u3 is
not a 5-neighbor.

Since u1 and u3 are 6−-vertices, by Lemma 17, vertex u2 cannot have another 6−-vertex
that is nonadjacent to u1 and u3. Thus, a 5-neighbor of u2 must be a common neighbor of
u1; call this 5-neighbor w1. Similarly, the common neighbor w4 of u3 and u4 is a 5-vertex.
We must have w1 ↔ w4, for otherwise we apply Lemma 22. We may assume that u6 is a
6-vertex. If not, then v’s five 6-neighbors, each with a 5-neighbor, are successive; so, by
symmetry, we are in the case above, where u2 and u3 have a common 5-neighbor.

By planarity, either u1 6↔ w4 or else u4 6↔ w1; by symmetry, assume the former. Since
u1 and w4 share a 5-neighbor (and are nonadjacent), they have two common neighbors.
Now if u6 6↔ w4, then we apply Lemma 19 to {u1, u6, w4}. Hence, assume u6 ↔ w4.
This implies that u4 6↔ w1. Now, the same argument implies that u6 ↔ w1. Now let
J = {u1, u4, u6}. Lemma 6 gives 12 6 |N(J)| 6 6 + 6 + 6 − 6 = 12. Thus the vertices
of J have no additional pairwise common neighbors. Hence, we have an independent
2-set M1 in N(u1) \ (N(u4) ∪ N(u6)). Similarly, we have an independent 2-set M4 in
N(u4) \ (N(u1) ∪ N(u6)). Now we apply Lemma 10 with J = {u1, u4, u6} and S1 =
M1∪{u1} and S2 = M4∪{u4}. In each case, we have α(G[Si∪J ]) > |Mi∪{u5−i, u6} | = 4.
This implies that |N(J)| > 13, a contradiction. Hence, v cannot have four successive 6-
neighbors, each with a 5-neighbor.

Case 2: Vertices u1, u2, u3, u5, u6 are 6-vertices, each with a 5-neighbor.
Suppose that the common neighbor w5 of u5 and u6 is a 5-vertex. By symmetry

(between u1 and u3) and Lemma 17, assume that the common neighbor w2 of u2 and u3 is
a 5-vertex. If w2 6↔ w5, then we apply Lemma 22; so assume that w2 ↔ w5. If u6 6↔ w2,
then apply Lemma 19 to {u6, u1, w2} (note that u6 and w2 have two common neighbors,
since they have a common 5-neighbor). So assume that u6 ↔ w2. Similarly, we assume
that u3 ↔ w5, since otherwise we apply Lemma 19 to {u3, u1, w5}. Now consider the
5-neighbor w1 of u1. By Lemma 9, it cannot be a common neighbor of u2 (because of
w2). If it is a common neighbor of u7, then we apply Lemma 22 to {w1, w5, v}; note that
w1 6↔ w5, since they are cut off by edge w2u6. Hence, w1 is neither a common neighbor
of u7 nor of u2. Now we apply Lemma 19 to {u2, w1, w5}. Thus, we conclude that the
common neighbor of u5 and u6 is not a 5-vertex.

Let x denote the common neighbor of u5 and u6; as shown in the previous paragraph,
x must be a 6+-vertex. Suppose that the 5-neighbor w5 of u5 is also a neighbor of x. If
w5 6↔ u1, then we apply Lemma 19 to {u6, u1, w5}; so assume that w5 ↔ u1. Now if the
5-neighbor w6 of u6 is also adjacent to x, then we apply Lemma 19 to {u5, w6, u3} (we
must have w6 6↔ u3 due to edge w5u1). So, by symmetry (between u5 and u6), we may
assume that w5 ↔ u4. Now, by Lemma 17, the 5-neighbor w2 of u2 has is adjacent to
either u1 or u3. In either case, we must have w2 ↔ w5; otherwise, we apply Lemma 22 to
{v, w2, w5}. If w6 ↔ u7, then w6 ↔ w2 and w6 ↔ w5; otherwise, we apply Lemma 22 to
{v, w6, w2} or {v, w6, w5}. Now we apply Lemma 19 to {u5, u3, w6}. So instead w6 6↔ u7.
Finally, we apply Lemma 19 to {u5, w6, u3}. This completes the proof.
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