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Abstract

By δ and wk denote the minimum degree and minimum degree-sum (weight)
of a k-vertex path in a given graph, respectively. For every 3-polytope, w2 6 13
(Kotzig, 1955) and w3 6 21 (Ando, Iwasaki, Kaneko, 1993), where both bounds are
sharp. For every 3-polytope with δ > 4, we have sharp bounds w2 6 11 (Lebesgue,
1940) and w3 6 17 (Borodin, 1997).

Madaras (2000) proved that every triangulated 3-polytope with δ > 4 satisfies
w4 6 31 and constructed such a 3-polytope with w4 = 27.

We improve the Madaras bound w4 6 31 to the sharp bound w4 6 27.

Keywords: Plane graph, structural property, normal plane map, 4-path.

1 Introduction

The degree of a vertex or face x in a graph G, that is the number of edges incident with
x, is denoted by d(x). A k-vertex is a vertex v with d(v) = k. By k+ or k− we denote
any integer not smaller or not greater than k, respectively. Hence, a k+-face f satisfies
d(f) > k, etc.

Let δ(G) be the minimum vertex degree, and wk(G) be the minimum degree sum
(called weight) of a path on k vertices (k-path) in a graph G.
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By Gδ denote the class of plane graphs G with δ(G) > δ; it is trivial that δ 6 5. The
subset of 3-connected graphs in Gδ is denoted by Pδ. Given k, by wk denote the maximal
weight of k-paths over G ∈ Gδ or P ∈ Pδ.

Already in 1904, Wernicke [40] proved that every P ∈ P5 satisfies w2(P ) 6 11, which
is tight. It follows from Lebesgue’s [31] results of 1940 that P ∈ P3 implies w2(G) 6 14,
which was improved in 1955 by Kotzig [30] to the tight bound w2 6 13. In 1972, Erdős
(see [20]) conjectured that Kotzig’s bound w2 6 13 holds also in G3. Barnette (see [20])
announced to have proved this conjecture, but the proof has never appeared in print. The
first published proof of Erdős’ conjecture is due to Borodin [4].

A number of sharp upper bounds on w2 have been obtained as lemmas in numerous
papers on coloring sparse planar graphs (for a survey see Borodin [10]). A traditional
measure of sparseness of a planar graph G is its girth g(G), which is the length of the
shortest cycle in G. Another measure, suggested by Erdős (see [20]), is the absence of
cycles of length from 4 to a certain constant. More generally, given a set S of integers, a
graph is S-free if it has no cycle with length from S.

The first results of this type were known already to Lebesgue’s [31] for P3: if g > 4,
then w2 6 8, and if g > 5, then w2 = 6.

As for G2, we note that δ(K2,t) = 2 and w2(K2,t) = t + 2, so w2 is unbounded in G2

if g 6 4. In addition to forbidding certain collections S of cycle lengths, another way to
find subclasses of G2 with bounded w2 is to impose restrictions on the set of 2-vertices
in a graph. For example, forbidding 2-alternating cycles, which are cycles v1 . . . v2k with
d(v1) = d(v3) = . . . = d(v2k−1) = 2, we have w2 6 15 (Borodin [4]).

The first application of this fact was to show that the total choosability of planar graphs
with maximum degree ∆ at least 14 equals ∆+1 ( [4]). The notion of 2-alternating cycles,
along with its more sophisticated analogues, have appeared in dozens of papers, since it
sometimes provides crucial reducible configurations in coloring and partition problems
(more often, on sparse graphs).

Some other results concerning the structure of edge neighborhoods in plane graphs
can be found in [2, 5–7,10,14,15,18,28,29].

So far, not many precise results have been obtained on wk with k > 3. Back in 1922,
Franklin [19] strengthened Wernicke’s bound w2 6 11 for P5 in [40] to w3(G) 6 17.
Both bounds 11 and 17 are sharp, as shown by putting a vertex inside each face of the
dodecahedron and joining it with the five boundary vertices.

In 1993, Ando, Iwasaki, and Kaneko [3] proved that w3 6 21 holds in P3, which
is sharp due to the Jendrol’ construction in [23]. In 1997, Borodin [8] showed that P3

restricted to the graphs with w2 > 8 (in particular, to P4) satisfies w3 6 17, which extends
Franklin’s bound [19].

In 1996, Jendrol’ and Madaras [27] proved w4 6 23 in P5, which bound was extended
in 2003 by Mohar, Škrekovski, and Voss [37] to the part of P4 satisfying w2 > 9. For the
triangulations with δ = 5, Madaras [33] proved in 2000 that w5 6 29. Both bounds 23
and 29 are sharp.

For 4-connected planar graphs with at least k vertices and any natural number k,
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Mohar [36] nicely proved a sharp bound wk 6 6k − 1, using Tutte’s theorem [39] of 1956
that such graphs are hamiltonian.

We now consider sharp upper bounds on w3 for graphs in P2 with given girth g. It is
an old folkloric fact that g(G) > 16 implies w3(G) = 6, which probably first appeared in
print in Nešetřil, Raspaud, and Sopena [38].

Recently, Jendrol’ and Maceková [25] proved w3 6 7 if g > 10 and w3 6 9 if g > 8.
Aksenov, Borodin, and Ivanova [1] proved w3 6 9 for g = 7.

As observed in [25], w3 = ∞ if g 6 6, but if we forbid vertices with two neighbors
of degree 2, that is consider (2,∞, 2)-free planar graphs, then w3 6 10 for g > 5. The
sharpness of this bound 10 was later on confirmed in [1], where it was also proved that
w3 6 9 for g = 6. Jendrol’, Maceková, and Soták [26] soon after proved w3 6 12 if g = 4
(also for (2,∞, 2)-free graphs in P2).

Some other structural results on 3+-paths in plane graphs can be found in [1, 3, 8, 9,
11–13,16–18,21–28,32–38] and the informative survey by Jendrol’ and Voss [29].

In 2000, Madaras [33] proved for triangulations with δ = 4 that w4 6 31 and gave
a construction with w4 = 27 by putting a 3-cycle A1A3A3 into each face Z1Z2Z3 of the
icosahedron followed by adding the edges AiZj whenever 1 6 i, j 6 3 and i 6= j.

The purpose of our paper is to improve the bound w4 6 31 by Madaras [33] to the
sharp bound w4 6 27.

Theorem 1. Every plane triangulation with δ > 4 has a 4-path of weight at most 27,
which is tight.

2 Proving Theorem 1

Proof of Theorem 1. Suppose that G is a counterexample to Theorem 1. In the course of
the proof we should take care that a hypothetic 4-path P4 = v1v2v3v4 with w(P4) 6 27 in
G would not degenerate into a 3-cycle, which happens when v1 coincides with v4.

A k-component ck is a maximal connected subgraph of G that consists of k vertices
of degree at most 5. Clearly, any c1 is simply a 5−-vertex, c2 consists of two adjacent
vertices, and c3 = uvw is either a 3-path (when there is no edge uw in G) or a 3-cycle.
Furthermore, the following lemma shows, in particular, that if a 3-component c3 is a cycle,
then it is the boundary of a 3-face.

Lemma 2. No separating 3-cycle in G consists of three 5−-vertices or has two 4-vertices.

Proof of Lemma 2. Suppose G has a separating 3-cycle S = uvw, which means that at
least one vertex of G lies inside S and at least one outside S. Note that u has at least
one neighbor inside S and at least one outside S, for otherwise {v, w} is a separating set
in G, contrary to the 3-connectedness of G. The same is true for v and w.

First suppose that S consists of 5−-vertices, which implies that at most nine edges
join S to vertices not on S. By symmetry, we can assume that at most four edges lead
from S inside (rather than outside) S. Again by symmetry, we can assume that each of
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u and v has precisely one neighbor inside S. Since G is a triangulation, there are 3-faces
uvx, vwx, and wxu inside S. This implies that there is precisely one vertex x, necessarily
with d(x) = 3, inside S; a contradiction.

Now if d(u) = d(v) = 4, then the same argument works, which proves the second part
of Lemma 2.

Lemma 3. G has no k-component with k > 4.

Proof of Lemma 3. Suppose on the contrary that there is a connected subgraph H of G
on four 5−-vertices. Since G has no 4-path P4 with w(P4) 6 4 × 5, it follows that H
does not contain a 4-path. In turn, this means that H is a star, with three rays and a 5−

vertex as a center. However, the center forms a 3-face with two consecutive neighbors in
our triangulation G, which produces a 4-path on H, a contradiction.

2.1 Discharging

Euler’s formula |V | − |E|+ |F | = 2 for G may be written as∑
v∈V

(d(v)− 6) = −12, (1)

where V , E, and F are sets of vertices, edges, and faces of G, respectively. By V6+ and
V5− denote the sets of 6+-vertices and 5−-vertices in V , respectively, so (1) can be written
as follows. ∑

v∈V6+
(d(v)− 6) +

∑
v∈V5−

(d(v)− 6) = −12, (2)

By MC denote the set of minor components [mc] of G. It follows from Lemma 3 that
V5− is split into minor components, each of which is a k−-component with k 6 3.

Every vertex v contributes the initial charge µ(v) = d(v) − 6 to (2), so only the
charges of 5−-vertices are negative. The initial charge of a minor component [mc] is the
total initial charge of its vertices. Thus (2) can be rewritten as follows.∑

v∈V6+
µ(v) +

∑
[mc]∈MC

µ([mc]) = −12, (3)

Using the properties of M as a counterexample, we define a local redistribution of µ’s,
preserving their sum, such that the new charge µ′ is non-negative for all v ∈ V6+ and
[mc] ∈ MC. This will contradict the fact that the sum of the new charges is, by (3),
equal to −12.

For v ∈ V6+ , we put ξ(v) = d(v)−6
d(v)

and ξ(v) = min{ξ(v), 1
2
}. For an integer k with

k > 6, we put ψ(k) = k−6
k

.

Our rules of discharging are as follows (see Fig. 1):
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R1. For each 3-face f = xuv with d(u) 6 5, d(v) > 6, and d(x) > 6, the vertex u
receives ξ(v) and ξ(x) through f from v and x, respectively.

R2. For each 3-face f = xuv with d(u) 6 5, d(v) 6 5, and d(x) > 6, each of u and v

receives ξ(x)
2

from x through f , with the following exception:
(E) if d(u) = d(v) = 4 and there is a 3-face uvw with d(w) = 4, then (the 16+-vertex)

x gives 1
2
to each of u and v through f .

R3. For each 3-face f = xuv with d(u) = d(v) = 4 and 6 6 d(x) 6 7, each of u and
v receives 1

4
from x through f . In turn, x receives 1

12
from each adjacent 13+-vertex y

through each 3-face xyz such that d(z) > 13.

Concerning the second part of R3, we note that there are at least three 3-faces incident
with x and two 13+-vertices, so x receives at least 6× 1

12
through such faces.
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Figure 1: Rules of discharging.

2.2 Checking µ′(v) > 0 if d(v) 6 5 and v forms a 1-component

By definition, v is surrounded by 6+-neighbors, so only R1 is in action. Let S(v) =
{d1, . . . , dd(v)} be the multi-set of degrees of the neighbors of v, where d1 6 . . . 6 dd(v).
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For example, if v has one 6-neighbor, two 7-neighbors, and two 8-neighbors, then S(v) =
{6, 7, 7, 8, 8}. We note that d1 + d2 + d3 > 28− d(v), for otherwise G would have a 4-path
of weight at most 27, which is impossible.

Case 1. d(v) = 4. If d3 > 12, then µ′(v) > 4− 6 + 4× ψ(12) = 0 by R1.
If d3 = 11, then d2 > 7, since otherwise v has two 6-neighbors and an 11-neighbor,

which implies a 4-path of weight at most 6 + 6 + 11 < 28 − 4, a contradiction. So,
µ′(v) > −2 + 2ψ(7) + 4× ψ(11) = −2 + 2

7
+ 4×5

11
> −2 + 22

11
= 0, as desired.

If d3 = 10, then d1 + d2 > 14, so v receives at least 2 min{ψ(6) +ψ(8), ψ(7) +ψ(7)} =
1
2

from two neighbors of smallest degree and at least 4ψ(10) = 8
5

from the other two
neighbors. This implies that µ′(v) > −2 + 1

2
+ 8

5
> 0.

If d3 = 9, then d1 +d2 > 15, so v receives at least 2 min{ψ(6) +ψ(9), ψ(7) +ψ(8)} = 2
3

plus at least 4ψ(9) = 4
3

by R1, whence µ′(v) > 0.
Finally, d3 6 8 is possible only if d1 = . . . = d3 = 8, in which case µ(v) > −2+8ψ(8) =

0, as desired.

Case 2. d(v) = 5. Note that d3 > 8, for otherwise d1 + d2 + d3 6 3 × 7 < 28 − 5, a
contradiction. Hence µ′(v) > 5− 6 + 6× ψ(8) > 0 by R1, and we are done.

2.3 Checking µ′(c2) > 0 for a 2-component c2 = uv

Case 1. d(u) = d(v) = 4. Denote the external neighbors of u and v by z1, . . . , z4 as
shown in Fig. 2a. Due to Lemma 3 applied to z2 and z4 combined with the 3-connectedness
of G, all zi are distinct. Let zk have the smallest degree in Z = {z1, . . . , z4}, where
d(zk) > 6 by the definition of 2-component. Note that each other vertex in Z has degree
at least 20− d(zk) since w(P4) > 28 by assumption.

u u

u
z3

u uz2 z4

uz1

u

(a)

u u

u
z3

uz2

uz1

u

(b) u

u
z4

z5

v v u u

u

uz1

u

u

u

u

u

z2

z3 z4 z5

z6

v

(c)

Figure 2: Notation for 2-components.

Subcase 1.1. k ∈ {1, 3}. If d(zk) 6 7, then the three 13+-vertices in Z − zk together
give c2, through the incident faces, the charge 6× 1

2
by R1 and 2× 1

4
by R2, while zk gives

2ξ(v) by R1, 2× ξ(v)
2

by R2, and 2× 1
4

by R3, so µ′(c2) > 2(4− 6) + 6× 1
2

+ 4× 1
4

= 0.
If d(zk) = 8, then c2 receives the following charges by R1 and R2: 2× 1

4
+ 2× 1

8
from

zk, 2 × 1
2

+ 2 × 1
4

from z4−k, and 4 × 1
2

from z2 and z4 together, which yields µ′(c2) > 0.
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If d(zk) = 9, then we similarly have µ′(c2) > −4 + 6 × 5
11

+ 2 × 5
22

+ 2 × 1
3

+ 2 × 1
6
> 0.

Finally, if d(zk) > 10, then µ′(c2) > −4 + 8× 2
5

+ 4× 1
5

= 0.

Subcase 1.2. k ∈ {2, 4}. If d(zk) 6 8, then the three 12+-vertices in Z together give
6× 1

2
+ 4× 1

4
to c2 by R1 and R2, whence µ′(c2) > 0.

If d(zk) = 9, then we have µ′(c2) > −4 + 6× 5
11

+ 2× 5
22

+ 2× 1
3
> 0, and if d(zk) > 10,

then again µ′(c2) > −4 + 8× 2
5

+ 4× 1
5

= 0.

Case 2. d(u) = 4, d(v) = 5. Here, u and v have neighbors z1, . . . , z5 shown in Fig. 2b,
and c2 receives charge from Z by R1 and R2 through twelve faces. However, now Lemma 2
is not applied, thus the edge uv can belong to a separating 3-cycle z2uv, which is only
possible when z2 ∈ {z4, z5}. If so, then z2 appears twice in Z and can have a relatively
small degree, say 6 or 7, with no contradiction (since we are looking for a light 4-path
rather than a light 3-cycle). Still, c2 has at least three neighbors other than zk.

This time, we can ignore the donations from zk, since each neighbor other than zk has
degree at least 19 − d(zk) > 10. Indeed, otherwise we would have a 4-path of weight at
most 9 + 4 + 5 + 9 on {zk, u, v, zl} with zl 6= zk, which is impossible. Therefore, c2 has at
least three 10+-neighbors, and each of them gives at least 2

5
to c2 through each incident

face by R1 and R2. Altogether, such donations happen at least eight times, which results
in µ′(c2) > 4− 6 + 5− 6 + 8× 2

5
> 0.

Case 3. d(u) = d(v) = 5. Now u and v have six neighbors z1, . . . , z6 shown in Fig. 2c.
Again Lemma 2 is not applied, and it can happen that {z2, z3} ∩ {z5, z6} = zk. Since zk
can appear in the multi-set Z at most twice, it follows that c2 has at least four neighbors
different from zk and receives the charge by R1 and R2 from them at least ten times
through the incident faces. Indeed, there are fourteen faces incident with {u, v} and at
most four of them may be incident with zk. Since each vertex in Z − zk this time has
degree at least 18 − d(zk) > 9, it follows that µ′(c2) = 5 − 6 + 5 − 6 + 10 × 1

3
> 0, as

desired.

2.4 Checking µ′(c3) > 0 for a 3-component c3 = xuv

By definition, c3 is surrounded by 6+-neighbors, say zi.

Case 1. d(x) = d(u) = d(v) = 4. Now all zi’s are 16+-vertices, regardless of the
presence or absence of the edge xv in G. If xv ∈ E(G), then c3 is a 3-face due to Lemma 2
and receives 12× 1

2
by R1 and R2E, whence µ′(c3) = 3(4− 6) + 6 = 0. Otherwise, c3 is a

3-path and hence receives 12× 1
2

by R2, so again µ′(c3) = −6 + 6 = 0.

Case 2. d(x) = 5. Now all zi’s are 13+-vertices, for otherwise we would have a 4-path
of weight at most 5 + 5 + 5 + 12 on {u, v, x, zi}. Hence c3 receives at least 11× 1

2
by R1

and R2, whence µ′(c3) > −1− 2− 2 + 11
2
> 0.

2.5 Checking µ′(v) > 0 for a 6+-vertex v

Case 1. d(v) = 6. If v does not participate in R3, then µ′(v) = µ(v) = 0. Otherwise,
v has four 14+-neighbors and receives 6× 1

12
from them by R3. Also, v gives 1

2
to the only

2-component by R3, so again µ′(v) = 0.
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Case 2. d(v) = 7. If v does not participate in R3, then µ′(v) > 1− 7× 1
7

= 0 by R1
and R2. Otherwise, v has five 13+-neighbors, receives 8× 1

12
from them by R3, and gives

1
2

to the 2-component by R3 and 3× 1
7

by R1 and R2, whence µ′(v) > 1− 1
2
− 3

7
> 0.

Case 3. 8 6 d(v) 6 15. Now v can give charge away by R1, R2 and, if d(v) > 13,
by R3. Since the donation through each incident face is at most ξ(v), it follows that
µ′(v) > d(v)− 6− d(v)× ξ(v) = 0.

Case 4. d(v) > 16. Now v can participate in all the rules R1–R3. Since the donation
through each incident face is at most 1

2
except for R2E, and the donation of 4× 1

2
through

the three consecutive faces in R2E combined with R1 can be regarded as giving 2
3

per face,

we have µ′(v) > d(v)− 6− d(v)× 2
3

= d(v)−18
3

. Thus we are already done for d(v) > 18.
Suppose 16 6 d(v) 6 17. As we know, the (averaged) donation of 2

3
through a face

appears only in R2E, while the other, “individual,” donations by R1–R3 are of at most
1
2
. Furthermore, the faces receiving 2

3
on the average form disjoint triples.

If d(v) = 17, then at most fifteen faces conduct 2
3

from v each after averaging, so
µ′(v) > 17− 6− 15× 2

3
− 2× 1

2
= 0.

Finally, suppose d(v) = 16. If at most twelve faces conduct 2
3

each after averaging,
then µ′(v) > 16 − 6 − 12 × 2

3
− 4 × 1

2
= 0. If each of fifteen faces conducts 2

3
, then the

sixteenth face consists of 16+-vertices and does not receive any charge from v by R1–R3.
This implies that µ′(v) > 16− 6− 15× 2

3
= 0.

Thus we have proved that µ′(v) > 0 for every v ∈ V6+ and µ′([mc]) > 0 for every
[mc] ∈MC, which contradicts (3):

0 6
∑
v∈V6+

µ′(v) +
∑

[mc]∈MC

µ′([mc]) =
∑
v∈V6+

µ(v) +
∑

[mc]∈MC

µ([mc]) = −12.

This completes the proof of Theorem 1.
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