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Abstract

Let G be a graph with the usual shortest-path metric. A graph is δ-hyperbolic
if for every geodesic triangle T , any side of T is contained in a δ-neighborhood of
the union of the other two sides. A graph is chordal if every induced cycle has at
most three edges. In this paper we study the relation between the hyperbolicity of
the graph and some chordality properties which are natural generalizations of being
chordal. We find chordality properties that are weaker and stronger than being
δ-hyperbolic. Moreover, we obtain a characterization of being hyperbolic on terms
of a chordality property on the triangles.
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1 Introduction

The theory of Gromov hyperbolic spaces was introduced by M. Gromov for the study
of finitely generated groups (see [18]). Since then, this theory has been developed from
a geometric point of view to the extent of making hyperbolic spaces an important class
of metric spaces to be studied on their own (see, for example, [6, 9, 10, 20, 39]). In the
last years, Gromov hyperbolicity has been intensely studied in graphs (see [2, 3, 5, 11,
12, 14, 17, 21, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38]). Gromov hyperbolicity, specially
in graphs, has found applications in different areas such as phylogenetics (see [15, 16]),
complex networks (see [13, 24, 35, 36]) or the secure transmission of information and virus
propagation on networks (see [22, 23]).

Given a metric space (X, d), a geodesic from x ∈ X to y ∈ X is an isometry, γ, from a
closed interval [0, l] ⊂ R to X such that γ(0) = x, γ(l) = y. We will also call geodesic to
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the image of γ. X is a geodesic metric space if for every x, y ∈ X there exists a geodesic
joining x and y; any of these geodesics will be denoted as [xy] although this notation is
ambiguous since geodesics need not be unique.

By a metric graph we mean a graph G equipped with a length metric by considering
every edge e ∈ E(G) as isometric to an interval [0, le]. Thus, the interior points of the
edges are also considered points in G. Then, for any pair of points in x, y ∈ G, the
distance d(x, y) will be the length of the shortest path in G joining x and y. In this paper
we will assume that the graphs are connected and locally finite (i.e. each ball intersects
a finite number of edges) and there is no restriction on the length of the edges. In this
case, the metric graph is a geodesic metric space.

There are several definitions of Gromov δ-hyperbolic space which are equivalent al-
though the constant δ may appear multiplied by some constant (see [10]). We are going
to use the characterization of Gromov hyperbolicity for geodesic metric spaces given
by the Rips condition on the geodesic triangles. If X is a geodesic metric space and
x1, x2, x3 ∈ X, the union of three geodesics [x1x2], [x2x3] and [x3x1] is called a geodesic
triangle and will be denoted by T = {x1, x2, x3}. T is δ-thin if any side of T is contained
in the δ-neighborhood of the union of the two other sides. The space X is δ-hyperbolic if
every geodesic triangle in X is δ-thin. We denote by δ(X) the sharp hyperbolicity con-
stant of X, i.e. δ(X) := inf{δ | every triangle in X is δ-thin}. We say that X is hyperbolic
if X is δ-hyperbolic for some δ > 0. A triangle with two identical vertices is called a
“bigon”.

A graph G is chordal if every induced cycle has at most three edges. In [7], the authors
prove that chordal graphs are hyperbolic giving an upper bound for the hyperbolicity
constant. In [40], Wu and Zhang extend this result for a generalized version of chordality.
They prove that k-chordal graphs are hyperbolic where a graph is k-chordal if every
induced cycle has at most k edges. In [1], the authors define the more general properties
of being (k,m)-edge-chordal and (k, k

2
)-path-chordal and prove that every (k,m)-edge-

chordal graph is hyperbolic and that every hyperbolic graph is (k, k
2
)-path-chordal. Herein,

we continue this work and define being ε-densely (k,m)-path-chordal and ε-densely k-
path-chordal obtaining that (see Theorems 3, 4 and 8)

(k,m)-edge-chordal⇒ ε-densely (k,m)-path-chordal⇒ δ-hyperbolic

and
δ-hyperbolic⇒ ε-densely k-path-chordal⇒ k-path-chordal.

We also provide examples showing that all these implications are strict, this is, the
converse is not true.

Moreover, we give a characterization of hyperbolicity in terms of a chordality property
on the triangles: Theorem 13 states that a metric graph G is δ-hyperbolic if and only if
G is ε-densely (k,m)-path-chordal on the triangles.

The properties and implications studied in this paper are summarized in Figure 1.
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Figure 1: Chordality properties and δ-hyperbolicity on graphs.

2 ε-densely path-chordal graphs

Consider a metric graph (G, d). By a cycle in a graph we mean a simple closed curve,
this is, a path defined by a sequence of vertices which are all different except for the first
one and the last one which are the same. A shortcut in a cycle C is a path σ joining two
vertices p, q in C such that L(σ) < dC(p, q) where dC denotes the length metric on C.

Definition 1. A shortcut σ in a cycle C is strict if σ ∩ C = {p, q}. In this case, we say
that p, q are shortcut vertices in C associated to σ.

Let us recall two definitions from [1]:
Given two constants k,m > 0, a metric graph G is (k,m)-edge-chordal if for any cycle

C in G with length L(C) > k there exists an edge-shortcut e with length L(e) 6 m.
The graph G is edge-chordal if there exist constants k,m > 0 such that G is (k,m)-edge-
chordal. Notice that for a graph with edges of length 1, being chordal is equivalent to
being (4, 1)-edge-chordal and being k-chordal in the sense of [40] is equivalent to being
(k + 1, 1)-edge-chordal.

A metric graph G is (k,m)-path-chordal if for any cycle C in G with L(C) > k there
exists a shortcut σ of C such that L(σ) 6 m. Notice that in [1], a (k, k

2
)-path-chordal

graph is called simply k-path-chordal. However, new definitions are introduced herein
and this property has been renamed.

Given a metric space (X, d) and any ε > 0, a subset A ⊂ X is ε-dense if for every
x ∈ X there exist some a ∈ A such that d(a, x) < ε.

Definition 2. A metric graph (G, d) is ε-densely (k,m)-path-chordal if for every cycle C
with length L(C) > k, there exist strict shortcuts σ1, . . . , σr with L(σi) 6 m and such
that their associated shortcut vertices define an ε-dense subset in (C, dC).
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Theorem 3. If a metric graph G is (k,m)-edge-chordal, then it is ε-densely (k,m)-path-
chordal, with ε = k

2
.

Proof. Clearly, being (k,m)-edge-chordal implies being (k,m)-path-chordal. Thus, it suf-
fices to check that there is some ε > 0 such that, on every cycle C with length at least k,
the shortcut vertices associated to the edge-shortcuts with length at most m are ε-dense.

Let ε := k
2

and let p be any point in C. Since G is (k,m)-edge-chordal, there is an
edge xy with L(xy) 6 m which is a shortcut in C. If either x or y is in BC(p, k

2
), we are

done. Otherwise, let us define a cycle C1 by joining the path in C from x to y containing
p and the edge xy. Since x, y /∈ BC(p, k

2
), C1 has length at least k and there is another

edge, x′y′, with L(x′y′) 6 m which defines a shortcut in C1. Since xy is an edge, x′, y′ ∈ C
and x′y′ is also an edge-shortcut in C. If either x′ or y′ is in BC(p, k

2
), we are done. This

process can be repeated and, since V (C) is finite, we will finally obtain an edge-shortcut
in C such that one of its vertices is contained in BC(p, k

2
) finishing the proof.

The converse is not true. Let P3 be the path graph with (adjacent) vertices v1, v2, v3,
and G the Cartesian product graph G = Z�P3 with L(e) = 1 for every e ∈ E(G). As it
was shown in [1], G is not edge-chordal although it is 5

2
-hyperbolic and (5, 5

2
)-path chordal.

Let us see that G is 3-densely (5, 2)-path-chordal. Denote by zi the vertex in Z
corresponding to the integer i. Let C be any cycle in G with L(C) > 5 and let (zi, vj)
be any vertex in C. It suffices to check that there is a shortcut vertex in BC

(
(zi, vj),

5
2

)
associated to a shortcut with length at most 2.

Case 1. If (zi−1, vj)(zi, vj), (zi, vj)(zi+1, vj) ∈ C, then it is immediate to see that there
exist some vertex (zi, vk) ∈ C with k 6= j. Then, the geodesic [(zi, vj)(zi, vk)] contains a
strict shortcut σ with L(σ) 6 2 such that (zi, vj) is a shortcut vertex associated to σ.

Case 2. If (zi, vj−1)(zi, vj), (zi, vj)(zi, vj+1) ∈ C, then j = 2 and either (zi−1, v3)(zi, v3),
(zi−1, v1)(zi, v1) ∈ C or (zi, v3)(zi+1, v3), (zi, v1)(zi+3, v1) ∈ C. Suppose (zi−1, v3)(zi, v3),
(zi−1, v1)(zi, v1) ∈ C (the other case is equivalent by symmetry). Therefore, if the geodesic
γ = [(zi−1, v3)(zi−1, v1)] is contained in C, then σ = (zi−1, v2)(zi, v2) is a shortcut with
L(σ) = 1 and (zi, v2) is a shortcut vertex associated to σ. If γ 6⊂ C, then it contains
a strict shortcut σ with L(σ) 6 2 and either (zi−1, v3) or (zi−1, v1) is a shortcut vertex
associated to σ. Thus, there is a shortcut vertex associated to a shortcut σ with L(σ) 6 2
in BC

(
(zi, vj),

5
2

)
.

Case 3. (zi, vj) is a corner vertex in C. Let us suppose that it is an upper-left corner,
this is (zi, vj−1)(zi, vj), (zi, vj)(zi+1, vj) ∈ C (the other cases are equivalent by symmetry).

Case 3.1. If (zi+1, vj)(zi+1, vj−1) ∈ C, then, since L(C) > 5, σ = (zi, vj−1)(zi+1, vj−1) is
a shortcut and (zi, vj−1) is a shortcut vertex associated to σ. If (zi, vj−1)(zi+1, vj−1) ∈ C,
then, since L(C) > 5, σ = (zi+1, vj)(zi+1, vj−1) is a shortcut and (zi+1, vj) is a shortcut
vertex associated to σ. Therefore, there is a shortcut vertex associated to a shortcut σ
with L(σ) = 1 in BC

(
(zi, vj),

5
2

)
.

Case 3.2. Suppose (zi+1, vj)(zi+1, vj−1), (zi, vj−1)(zi+1, vj−1) /∈ C.
Case 3.2.1. If (zi, vj−1)(zi, vj−2) ∈ C, it is easy to check that (zi, vj−2)(zi+1, vj−2) ∈ C.

Now, if (zi+1, vj−2)(zi+1, vj−1) ∈ C, then σ = (zi, vj−1)(zi+1, vj−1) is a shortcut with
L(σ) = 1 and (zi, vj−1) is a shortcut vertex associated to σ and contained in BC

(
(zi, vj),

5
2

)
.
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Otherwise, if (zi+1, vj−2)(zi+1, vj−1) /∈ C, then σ = [(zi+1, vj−2)(zi+1, vj)] is a strict short-
cut with L(σ) = 2 and (zi+1, vj) is a shortcut vertex associated to σ and contained in
BC

(
(zi, vj),

5
2

)
.

Case 3.2.2. If (zi, vj−1)(zi, vj−2) /∈ C, then the only case left is: (zi−1, vj−1)(zi, vj−1) ∈
C. Then, either (zi, vj+1) ∈ C or (zi, vj−2) ∈ C.

If (zi, vj+1) ∈ C, then σ = (zi, vj+1)(zi, vj) is a shortcut σ with L(σ) = 1 and (zi, vj)
is a shortcut vertex associated to σ.

If (zi, vj−2) ∈ C, then σ = (zi, vj−1)(zi, vj−2) is a shortcut with L(σ) = 1 and (zi, vj−1)
is a shortcut vertex associated to σ and contained in BC

(
(zi, vj),

5
2

)
.

Theorem 4. If G is ε-densely (k,m)-path-chordal, then G is hyperbolic. Moreover,
δ(G) 6 max{k

4
, ε+m}.

Proof. Suppose that G is ε-densely (k,m)-path-chordal. Consider any geodesic triangle
T = {x, y, z} in G. If L(T ) < k, it follows that every side of the triangle has length at
most k

2
. Therefore, the hyperbolicity constant is at most k

4
. If L(T ) > k, let us prove

that T is (ε+m)-hyperbolic. Consider any point p ∈ T and let us assume that p ∈ [xy].
If d(p, x) < ε + m or d(p, y) < ε + m, we are done. Otherwise, there is a shortcut vertex
xi such that d(xi, p) < ε and a strict shortcut σi, with xi ∈ σi and L(σi) 6 m. Since [xy]
is a geodesic, σi is not contained in [xy] and d(p, [xz] ∪ [yz]) < ε+m.

The converse is not true. To build an example of a δ-hyperbolic graph which is
not ε-densely (k,m)-path-chordal let us recall here the construction of the hyperbolic
approximation of a metric space introduced by S. Buyalo and V. Schroeder in [10]. The
hyperbolic approximation of a metric space is a special kind of hyperbolic cone, see [8],
which is defined in general for non-necessarily bounded metric spaces.

A subset A in a metric space Z is called r-separated, r > 0, if d(a, a′) > r for any
distinct a, a′ ∈ A. Note that if A is maximal with this property, then the union ∪a∈ABr(a)
covers Z.

A hyperbolic approximation of a metric space Z is a graph X which is defined as
follows. Fix a positive r 6 1

6
which is called the parameter of X. For every k ∈ Z, let

Ak ∈ Z be a maximal rk-separated set. For every a ∈ Ak, consider the ball B(a, 2rk) ⊂ Z.
Let us define for every k, a set V ∗k := {B(a, 2rk) | a ∈ Ak} and a set Vk which has a vertex
corresponding to each ball in V ∗k . Then let V = ∪k∈ZVk be the set of vertices of the graph
X. Thus, every vertex v ∈ V corresponds to some ball B(a, 2rk) with a ∈ Ak for some k.
Let us denote the corresponding ball to v ∈ V simply by B(v).

Any two vertices v, v′ ∈ V are connected by an edge if and only if they either belong
to the same level, Vk, and the closed balls B̄(v), B̄(v′) intersect, B̄(v)∩ B̄(v′) 6= ∅, or they
lie on neighboring levels Vk, Vk+1 and the ball of the upper level, Vk+1, is contained in the
ball of the lower level, Vk.

An edge vv′ ⊂ X is called horizontal if its vertices belong to the same level, v, v′ ∈ Vk
for some k ∈ Z. Other edges are called radial. Consider the path metric on X for which
every edge has length 1. There is a natural level function l : V → Z defined by l(v) = k
for v ∈ Vk.
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Note that any (finite or infinite) sequence {vk} ∈ V such that vkvk+1 is a radial edge
for every k and such that the level function l is strictly monotone along {vk}, is the vertex
sequence of a geodesic in X. Such a geodesic is called radial.

Proposition 5. [10, Proposition 6.2.10] A hyperbolic approximation of any metric space
is a geodesic 3-hyperbolic space.

The following technical lemma is very useful to understand the geodesics in X.

Lemma 6. [10, Lemma 6.2.6] Any vertices v, v′ ∈ V can be connected in X by a geodesic
which contains at most one horizontal edge. If there is such an edge, then it lies on the
lowest level of the geodesic.

Now, let us consider the following hyperbolic approximation of the Euclidean real line.
Let r = 1

6
and Ak := {mrk : m ∈ Z}. By Proposition 5, the resultant hyperbolic

approximation G is 3-hyperbolic. Let us see that G is not ε-densely (k,m)-path-chordal.
Consider the cycle Cn ∈ G defined as follows. First, consider the vertices v0, v1, . . . , v6n

in V0 such that B(vi) = B(i, 2) for every 0 6 i 6 6n and the horizontal edges vi−1vi for
every 1 6 i 6 6n. Also, for every 0 < k < n consider the vertices v′k, v

′′
k in V−k such that

B(v′k) = B(6k, 2 · 6k) and B(v′′k) = B(6n− 6k, 2 · 6k). Then, consider the radial edges v0v
′
1,

v6nv
′′
1 and v′k−1v

′
k, v

′′
k−1v

′′
k for every 1 < k < n. Finally, to complete the cycle, consider the

horizontal edge v′n−1v
′′
n−1.

Let γ be the path in Cn from v0 to v6n given by the radial geodesic from v0 to v′n−1,
the horizontal edge v′n−1v

′′
n−1 and the radial geodesic from v′′n−1 to v6n . Let us prove that

γ is a geodesic.
Notice that L(γ) = 2n − 1. Suppose that γ′ is a geodesic in X from v0 to v6n with

L(γ′) < 2n − 1. By Lemma 6 we may assume that γ′ contains at most one horizontal
edge which lies in the lowest level, −m. Moreover, we may assume that γ′ begins with m
radial edges from level 0 to level −m, then it may have one horizontal edge or not, and
then it has m radial edges from level −m to level 0.

Since L(γ′) < 2n− 1, then either there is no horizontal edge or m < n− 1.
Now, notice that for any horizontal edge vv′ with B(v) = B(i · 6m, 2 · 6m) and B(v′) =

B(j · 6m, 2 · 6m) and i < j, then sup{x ∈ B(v′)} 6 i · 6m + 6 · 6m = sup{x ∈ B(v)}+ 4 · 6m.
Also, for any radial edge vv′ with B(v) = B(i · 6k−1, 2 · 6k−1) and B(v′) = B(j · 6k, 2 · 6k),
then sup{x ∈ B(v)} 6 sup{x ∈ B(v′)} 6 i · 6k−1 + 22 · 6k−1 = sup{x ∈ B(v)}+ 20 · 6k−1.

Ifm = n−1, then supw∈γ′{x ∈ B(w)} 6 2+
∑m

k=1 20·6k−1 = 2+206m−1
5

= 4·6m−2 < 6n

leading to contradiction.
If m < n−1, then supw∈γ′{x ∈ B(w)} 6 2+

∑m
k=1 20·6k−1+4·6m = 2+206m−1

5
+4·6m =

8 · 6m − 2 < 6n leading also to contradiction.
Thus, γ is a geodesic. Therefore, for any vertex w ∈ Cn with l(w) < 0, if w is a shortcut

vertex associated to a shortcut σ, then σ is a path from w to some vertex w′ ∈ Cn with
l(w′) = 0 and L(σ) = l(w).

Let v ∈ Cn such that l(v) = −n + 1 and let ε = n−1
2

. Then, for every w ∈ Cn such
that dCn(v, w) < ε, l(w) 6 −n−1

2
, and for every shortcut σ such that w is a shortcut

vertex associated to σ, L(σ) > n−1
2

. Thus, G is not ε-densely (k,m)-path-chordal for any
constants ε, k,m.
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Definition 7. A metric graph (G, d) is ε-densely k-path-chordal if for every cycle C with
length L(C) > k, there exist strict shortcuts σ1, . . . , σr such that their associated shortcut
vertices define an ε-dense subset in (C, dC).

Theorem 8. If G is δ-hyperbolic, then G is ε-densely k-path-chordal, with ε = 2δ+1 and
k = 4δ + 3.

Proof. Let ε = 2δ + 1 and k = 4δ + 3.
Let C be any cycle with L(C) > 4δ + 3. Let us suppose that there is a point x ∈ C

such that there are no shortcut vertices in BC(x, 2δ+ 1). Let a, b be the points in C such
that dC(a, x) = 2δ + 1 = dC(b, x). Since there are no shortcut vertices in BC(x, 2δ + 1),
the restriction of the cycle, C ∩ BC(x, 2δ + 1), defines two geodesics [xa] and [xb] with
length 2δ + 1 contained in C.

Also, since there are no shortcut vertices in BC(x, 2δ + 1), for every point y in
C\BC(x, 2δ+1), the geodesic [xy] either contains [xa] or [xb]. In fact, since C\BC(x, 2δ+1)
is connected, there exist two sequences pn, qn with dC(pn, qn) 6 1

n
and such that [xpn]

contains [xa] and [xqn] contains [xb]. Then, by compactness, taking a subsequence if nec-
essary, we may assume that pn and qn converge to a point p in C\BC(x, 2δ + 1). Thus,
by convergence, there are two geodesics, γ1, γ2 from x to p where γ1 = [xa] ∪ [ap] and
γ2 = [xb] ∪ [bp]. See Figure 2. Notice that L([ap]) = L([bp]) = d(x, p)− 2δ − 1 =: `. Now
consider the geodesic triangle defined by [xa]∪ [ap]∪ γ2 and let m be the middle point in
[ax]. Since γ1 is a geodesic, it is trivial to see that d(m, p) = δ + 1

2
+ `. Also, since the

graph is δ-hyperbolic, there is a point z in [ap] ∪ γ2 such that d(m, z) 6 δ. In fact, since
there are no shortcut vertices in BC(x, 2δ + 1), z ∈ [ap]∪ [bp]. However, this implies that
d(m, p) 6 δ + d(z, p) < δ + 1

2
+ ` = d(m, p) leading to contradiction.

a b

x

p

γ1 γ2

C

Figure 2: If there are no shortcut vertices in BC(x, 2δ+ 1), then there exist a point p and
two geodesics γ1, γ2 from x to p such that [xa] ⊂ γ1 and [xb] ⊂ γ2.
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Remark 9. Being ε-densely k-path-chordal does not imply being (k, k
2
)-path-chordal (this

is, k-path-chordal as defined in [1]). Also, it does not imply being δ-hyperbolic.
Consider the Cartesian product graph G = Z�Z with L(e) = 1 for every edge e in G.
First, notice that G is not (k, k

2
)-path-chordal for any k > 5. Consider any n > k and

let Cn be the geodesic square defined by the vertices (1, 1), (n, 1), (n, n), (1, n). Thus, Cn
is a cycle with length L(Cn) = 4n− 4 > k. It is trivial to check that every shortcut σ in
Cn must join two opposite sides of the square and therefore, L(σ) > n− 1 > k

2
.

It is trivial to check that G is not δ-hyperbolic either.
Now, let us see that G is 2-densely 6-path chordal. Let C be any cycle with L(C) > 6.

Let (p, q) be any vertex in C and let us prove that either (p, q) is a shortcut vertex or it
is adjacent to a shortcut vertex.

Case 1. Let us suppose that (p, q) and the two adjacent vertices in C are aligned:
(p − 1, q)(p, q), (p, q)(p + 1, q) ∈ E(C) or (p, q − 1)(p, q), (p, q)(p, q + 1) ∈ E(C). In both
cases, let us see that (p, q) is a shortcut vertex. Suppose (p−1, q)(p, q) and (p, q)(p+ 1, q)
are edges in C. It is trivial to see that there exist some q′ 6= q such that (p, q′) ∈ C.
Then, there is a shortcut σ in C starting in (p, q) and contained in the geodesic in G
joining (p, q) and (p, q′). In particular, it is clear that (p, q) is a shortcut vertex since
(p, q)(p, q+ 1), (p, q)(p, q−1) /∈ E(C). A similar argument works when (p, q−1)(p, q) and
(p, q)(p, q + 1) are edges in C.

Case 2. Let us suppose that the three vertices are not aligned. Suppose (p, q−1)(p, q)
and (p, q)(p + 1, q) are edges in C (i.e. (p, q) is an upper-left corner in C). (Any other
relative position of the adjacent vertices is equivalent to this one up to rotation of the
cycle. Therefore, the argument also works.) In this case, (p−1, q)(p, q) and (p, q)(p, q+1)
are not edges in C.

Case 2.1. If there is a vertex (p, q′) in C with q′ > q, then the geodesic in G from (p, q′)
to (p, q) contains a shortcut and (p, q) is a shortcut vertex since (p, q)(p, q + 1) /∈ E(C).
Also, if there is a vertex (p′, q) in C with p′ < p, then the geodesic in G from (p, q′) to
(p, q) contains a shortcut and (p, q) is a shortcut vertex since (p− 1, q)(p, q) /∈ E(C).

Case 2.2. Suppose that (p, q) is not a shortcut vertex. Let us see that either (p, q− 1)
or (p + 1, q) is a shortcut vertex. If (p, q − 2)(p, q − 1) ∈ E(C), then (p, q − 1) is a
shortcut vertex as we saw in Case 1 and we are done. Also, if (p + 1, q), (p + 2, q) ∈
E(C), (p + 1, q) is a shortcut vertex and we are done. Otherwise, let us suppose that
(p, q−2)(p, q−1) and (p+1, q), (p+2, q) and not edges in C. Clearly, (p, q−1)(p+1, q−1)
and (p+ 1, q)(p+ 1, q − 1) can not be simultaneously edges in C since this would induce
a cycle of length 4. Therefore, either (p − 1, q − 1)(p, q − 1) or (p + 1, q)(p + 1, q + 1)
is an edge in C. Suppose (p − 1, q − 1)(p, q − 1) ∈ E(C). Then, there is, necessarily,
a vertex (p, q′) in C with q′ 6= q, q − 1. Since (p, q) is not a shortcut vertex, we can
assume by Case 2.1 that q′ < q− 1. Hence, the geodesic in G joining (p, q− 1) and (p, q′)
contains a shortcut and (p, q− 1) is a shortcut vertex since (p, q− 1)(p, q− 2) /∈ E(C). If
(p+1, q)(p+1, q+1) ∈ E(C) the argument is similar. In this case, there is a vertex (p′, q)
in C with p′ > p + 1, the geodesic in G joining (p + 1, q) with (p′, q) contains a shortcut
and (p+ 1, q) is a shortcut vertex since (p+ 1, q)(p+ 2, q) /∈ E(C) finishing the proof.

Remark 10. Being k-path-chordal does not imply being ε-densely k-path-chordal.
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Consider the graph Gn defined as follows. Let V (Gn) := {0, 1, . . . , n} × {0, 1, . . . , n}.
Now, for every 0 6 p 6 n and every 1 6 q 6 n, (p, q − 1)(p, q) ∈ E(Gn). Also,
(p− 1, 0)(p, 0), (p− 1, n)(p, n) ∈ E(Gn) for every 1 6 p 6 n. Finally, if p is odd, for every
1 6 q 6 n − 1, (p − 1, q)(p, q) ∈ E(G) if and only if q ≡ 0mod(4) and if p is even, for
every 1 6 q 6 n− 1, (p− 1, q)(p, q) ∈ E(G) if and only if q ≡ 2mod(4).

Then, consider the graph N and let G be the graph obtained by attaching to each
vertex n of N the vertex (0, 0) of Gn. Suppose every edge in G has length 1.

Let us see that the resulting graph G is 11-path-chordal. Let C be any cycle in
G with L(C) > 11. Clearly, by construction, C is contained in some Gn. Let P1 :
Gn → {0, 1, . . . , n} be such that P1(p, q) = p. If P1(C) contains more than two points,
say p − 1, p, p + 1, then there exist two vertices (p, q), (p, q′) ∈ C with q′ 6= q. Since
(p, q − 1)(p, q) ∈ E(Gn) for every 1 6 q 6 n, then the geodesic [(p, q)(p, q′)] defines a
shortcut. On the other hand, if P1(C) contains only two vertices, say p − 1, p, since
L(C) > 11 there is some q such that (p− 1, q)(p, q) is a shortcut in C.

Let us see that G is not ε-densely k-path-chordal for any k > 10 and ε > 0. Suppose
n > max{k, 2ε} and consider the cycle in Gn given by the geodesic square with vertices
(0, 0), (n, 0), (n, n) and (0, n). Since n > 2ε, it suffices to check that the vertex (0, q) is
not a shortcut vertex for any 0 6 q 6 n. First, notice that for every path σ1 from (0, q)
to a vertex (p, 0) (respectively, a path σ2 from (0, q) to a vertex (p, n)), L(σ1) > p + q =
dC
(
(0, q), (p, 0)

)
(resp. L(σ2) > p+ n− q = dC

(
(0, q), (p, n)

)
) and therefore σ1 (resp. σ2)

is not a shortcut. Now, consider any path σ joining (0, q) and (n, q′) with 0 < q′ < n. If σ
contains any vertex (p, 0) or (p, n) with 0 < p < n, then it is not a shortcut since there are
no shortcuts from (0, q) to (p, 0) or (p, n) and from (p, 0) or (p, n) to (n, q′). Therefore, let
us suppose that σ ∩ C = {(0, q), (n, q′)}. Also, notice that the distance between any pair
of (consecutive horizontal) edges (p− 1, q1)(p, q1) and (p, q2)(p+ 1, q2) for any 1 6 p 6 n
and any 0 < q1, q2 < n is at least 2. Then, L(σ) > n+ 2(n− 1) > 2n > dC((0, q), (n, q′))
and σ is not a shortcut.

Remark 11. Being (k, k
2
)-path-chordal does not imply being ε-densely k′-path-chordal.

Also, it does not imply being δ-hyperbolic.
Consider the graph Gn defined as follows. Let V (Gn) := {0, 1, . . . , n} × {0, 1, . . . , n}.

Now, for every 0 6 p 6 n and every 1 6 q 6 n, (p, q − 1)(p, q) ∈ E(Gn). Also,
(p− 1, 0)(p, 0), (p− 1, n)(p, n) ∈ E(Gn) for every 1 6 p 6 n. Finally, if p is odd, for every
1 6 q 6 n − 1, (p − 1, q)(p, q) ∈ E(G) if and only if q ≡ 0mod(8) and if p is even, for
every 1 6 q 6 n− 1, (p− 1, q)(p, q) ∈ E(G) if and only if q ≡ 4mod(8).

Let Sr :=
∑r

k=0
1
2k

(notice that 1 6 Sr < 2 for every r ∈ N) and let L
(
(p, q)(p+1, q)

)
=

Sp+q = L
(
(p, q)(p, q + 1)

)
.

Then, let us consider the graph N where every edge has length 1 and let G be the
graph obtained by attaching to each vertex n in N the vertex (0, 0) of Gn.

First, let us see that G is (36, 18)-path-chordal. Let C be any cycle of G with L(C) >
36. Notice that each cycle is contained in some Gn. Moreover, it has a vertex v =
(p+ 1, q + 1) such that (p+ 1, q)v, (p, q + 1)v ∈ E(G) and both edges are contained in C
(i.e., v is an upper-right vertex of C). Suppose also that p is maximal. By construction,
there is an horizontal edge in Gn, (p, q′)(p+1, q′), with 0 6 q−q′ 6 7 (since q+1−q′ 6 8).

the electronic journal of combinatorics 23(3) (2016), #P3.51 9



Therefore, [(p, q + 1)(p, q′)] ∪ (p, q′)(p+ 1, q′) contains a path γ in Gn with L(γ) < 18. It
is immediate to check that this path contains a shortcut σ with L(σ) < 18.

Let us see that G is not ε-densely k-path-chordal. Consider the cycle Cn in Gn defined
by the geodesic square with vertices (0, 0), (n, 0), (n, n)(0, n). First, notice that for every
vertex (0, q) with 0 6 q 6 n and every vertex (p, 0) with 0 6 p 6 n, the unique geodesic in
G from (0, q) to (p, 0) is given by the sequence (0, q), (0, q − 1), . . . , (0, 0), (1, 0), . . . , (p, 0)
and it is contained in Cn. Also, for every vertex (0, q) with 0 6 q 6 n and every
vertex (p, n) with 0 6 p 6 n, the path in Cn given by the sequence (0, q), (0, q +
1), . . . , (0, n), (1, n), . . . , (p, n) is geodesic. Therefore, there are no shortcuts in Cn from
(0, q) to any vertex (p, 0) or (p, n) with 0 6 p 6 n.

Given any ε > 0 and k > 36 suppose any n > k, 2ε and any vertex v in Cn such that
v ∈ BC

(
(0, n

2
), ε
)
. Since n > 2ε, v = (0, q) for some 0 < q < n. Let us see that (0, q) is

not a shortcut vertex.
Suppose σ is a shortcut and (0, q) is a shortcut vertex associated to σ. Since there

are no shortcuts in Cn from (0, q) to any vertex (p, 0) or (p, n), we may assume that
σ ∩ Cn = {(0, q), (n, q′)} for some 0 < q′ < n. However, by construction of Gn, this
implies that L(σ) > 4(n − 1) + n > 4n > dC((0, q), (n, q′)), leading to contradiction.
Thus, there are no shortcut vertices in BC

(
(0, n

2
), ε
)
.

3 A characterization of δ-hyperbolic graphs

Consider a geodesic triangle T = {x1, x2, x3} in a metric graph (G, d) and let us denote
the sides of the triangle as S1 = [xy], S2 = [yz] and S3 = [zx]. A shortcut in T is a path
σ joining two vertices p, q with p ∈ Sl, q ∈ Sm with l 6= m and such that

L(σ) < min{d(p, xi) + d(xi, q), d(p, xj) + d(xj, xk) + d(xk, q)}

where xi = {x1, x2, x3} ∩ Sl ∩ Sm, xj = {x1, x2, x3} ∩ (Sl \ Sm) and xk = {x1, x2, x3} ∩
(Sm \ Sl). Notice that if T is a cycle, since the sides of the triangle are geodesics, the
definition of shortcut is the same as in section 2.

A shortcut is strict if σ ∩ T = {p, q}. In this case, we say that p, q are shortcut
vertices in T associated to σ. Notice that if there is a vertex p contained simultaneously
in the interior of two sides of the geodesic triangle (typically, in the case of trees), the
degenerated path [pp] defines an strict shortcut and p is a shortcut vertex.

Definition 12. A metric graph (G, d) is ε-densely (k,m)-path-chordal on the triangles if
for every geodesic triangle T with length L(T ) > k, there exist shortcuts σ1, . . . , σr with
L(σi) 6 m and such that their associated shortcut vertices define an ε-dense subset in
(T, dT ).

Theorem 13. G is δ-hyperbolic if and only if G is ε-densely (k,m)-path-chordal on the
triangles.

Proof. Suppose that G is ε-densely (k,m)-path-chordal on the triangles. Let us see that
δ(G) 6 max{k

4
, ε + m}. Consider any geodesic triangle T = {x, y, z}. If L(T ) < k, it
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follows that every side of the triangle has length at most k
2
. Therefore, the hyperbolic

constant is at most k
4
. Then, let L(T ) > k and let us prove that T is (ε+m)-thin. Consider

any point p ∈ T and let us assume that p ∈ [xy]. If d(p, x) < ε+m or d(p, y) < ε+m, we
are done. Otherwise, there is a shortcut vertex xi such that d(xi, p) < ε and a shortcut
σi, with xi ∈ σi and L(σi) 6 m. Since [xy] is a geodesic, σi does not connect two points
in [xy] and d(p, [xz] ∪ [yz]) < ε+m.

Suppose that G is δ-hyperbolic and consider any geodesic triangle T = {x, y, z} with
L(T ) > 9δ. Let p ∈ T and let us assume, with no loss of generality, that p ∈ [xy].
Since G is δ-hyperbolic, d(p, [xz] ∪ [yz]) 6 δ. If d(p, x), d(p, y) > δ, then there is a
path γ with L(γ) 6 δ joining p to [xz] ∪ [yz]. In particular, there is a shortcut σ ⊂ γ
with L(σ) 6 L(γ) 6 δ joining some shortcut vertex p′ ∈ [xy] with d(p, p′) < δ to
[xz]∪ [yz]. Therefore, if L([xy]) > 2δ, for every point q ∈ [xy] there is a shortcut vertex in
BT (q, 2δ + 1) ∩ [xy] associated to a shortcut with length at most δ. Since L(T ) > 9δ, by
triangle inequality, there is at most one side of the triangle with length at most 2δ. Then,
for every point p in the triangle there is a shortcut vertex in BT (p, 3δ + 1) associated to
a shortcut with length at most δ. Thus, it suffices to consider ε = 3δ + 1, k = 9δ and
m = δ.
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[3] S. Bermudo, J. M. Rodŕıguez and J. M. Sigarreta. Computing the hyperbolicity con-
stant. Comput. Math. Appl. 62 (2011), 4592–4595.
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etry of complex networks. Phys. Rev. E, 82 (3) (2010), # 036106.
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[26] D. Pestana, J. M. Rodŕıguez, J. M. Sigarreta and M. Villeta. Gromov hyperbolic cubic
graphs. Central Europ. J. Math. 10(3) (2012), 1141–1151.
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[38] E. Touŕıs. Graphs and Gromov hyperbolicity of non-constant negatively curved sur-
faces. J. Math. Anal. Appl. 380 (2) (2011), 865–881.
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