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Abstract

In this paper we improve the upper bound on the multi-color Ramsey numbers
of paths and even cycles. More precisely, we prove the following. For every r > 2
there exists an n0 = n0(r) such that for n > n0 we have

Rr(Pn) 6

(
r − r

16r3 + 1

)
n.

For every r > 2 and even n we have

Rr(Cn) 6

(
r − r

16r3 + 1

)
n + o(n) as n→∞.

The main tool is a stability version of the Erdős-Gallai theorem that may be of
independent interest.

1 Introduction: Ramsey numbers for paths and even cycles

For graphs G1, G2, . . . , Gr, the Ramsey number R(G1, G2, . . . , Gr) is the smallest positive
integer n such that if the edges of a complete graph Kn are partitioned into r disjoint color
classes giving r graphs H1, H2, . . . , Hr, then at least one Hi, 1 6 i 6 r, has a subgraph

∗Research supported in part by OTKA Grant No. K104343.

the electronic journal of combinatorics 23(3) (2016), #P3.53 1



isomorphic to Gi. The existence of such a positive integer is guaranteed by Ramsey’s
classical result [15]. The number R(G1, G2, . . . , Gr) is called the Ramsey number for the
graphs G1, G2, . . . , Gr. If every Gi is the same graph G, then we use the notation Rr(G).
There is very little known about Rr(G) for r > 3 even for very special graphs (see e.g. [8]
or [14]). In this paper we consider the case when G is either a path Pn on n vertices or a
cycle Cn for n even. For r = 2 a well-known theorem of Gerencsér and Gyárfás [7] states
that

R2(Pn) =

⌊
3n− 2

2

⌋
.

For r = 3 Faudree and Schelp [4] conjectured the following

R3(Pn) =

{
2n− 1 for odd n,
2n− 2 for even n.

In [9] we proved this conjecture for sufficiently large n (but the conjecture is still open for
every n). For r > 4 very little is known about Rr(Pn). We can get a trivial upper bound
by applying the Erdős-Gallai extremal theorem (see Lemma 1 below) to the spanning
subgraph induced by the edges of the most frequent color:

Rr(Pn) 6 rn. (1)

As far as we know there is no better bound known in general even though we believe the
truth is close to (r − 1)n. The main result of this paper is to improve on (1).

Theorem 1. For every r > 2 there exists an n0 = n0(r) such that for n > n0 we have

Rr(Pn) 6

(
r − r

16r3 + 1

)
n.

We make no attempt at optimizing the coefficient since it is probably far from optimal.
The goal of this paper is to separate it from the trivial upper bound. Since in the proof
we will only use the two most frequent colors, there seems to be room for improvement.

We have a similar result for even cycles. It is believed that the Ramsey numbers
for paths and even cycles are asymptotically the same via standard methods using the
Regularity Lemma [16] and the notion of connected matchings (see Lemma 3 below). This
method was introduced by  Luczak [12] and has been successfully used in many papers in
this area (see for example [2], [5], [9], [10] and [13]). Using this method and the Erdős-
Gallai extremal theorem, one can get an upper bound for the Ramsey number of even
cycles (see [13]): if n is even we have

Rr(Cn) 6 rn+ o(n) as n→∞. (2)

Here r is fixed and n is large. In the other direction, for an even n the following lower
bound is proved in [17]

Rr(Cn) > (r − 1)(n− 2) + 2.

Here again we believe that the lower bound is close to the truth. In this paper we improve
on (2).
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Theorem 2. For every r > 2 and even n we have

Rr(Cn) 6

(
r − r

16r3 + 1

)
n+ o(n) as n→∞.

After presenting the necessary tools in the next section, we give the proofs in Section 3.

2 Definitions and tools

We let V (G) and E(G) denote the vertex-set and the edge-set of the graph G. For a
graph G and a subset U of its vertices, G[U ] is the restriction of G to U . NG(v) is the
set of neighbours of v ∈ V (G). Hence |NG(v)| = degG(v), the degree of v. In NG(v) and
degG(v) we may omit the subscript G if it is clear from the context. The average degree
of a graph G on n vertices is the average of the degrees in G, i.e.

∑
v∈V (G) deg(v)/n.

The first tool we will need is the classical result of Erdős and Gallai [3] which deter-
mines the maximum number of edges in any graph on n vertices if it contains no Pk.

Lemma 1 ([3]). If G is a graph on n vertices containing no Pk, k > 2, then

|E(G)| 6 k − 2

2
n,

with equality if and only if k−1 divides n and all connected components of G are complete
graphs on k − 1 vertices.

We will also need a similar result for connected graphs proved by Kopylov [11] (see
also [1] and [6] for further details).

Lemma 2 ([11]). Let G be a connected graph on n vertices containing no Pk, n > k > 3.
Then |E(G)| is bounded above by the maximum of

(
k−2
2

)
+ (n− k+ 2) and

(dk/2e
2

)
+ b(k−

2)/2c
(
n− dk

2
e
)
.

Finally the last lemma provides the fairly standard transition from paths to even cycles
via connected matchings.

Lemma 3 (see Lemma 8 in [13]). Let a real number c > 0 be given. If for every
ε > 0 there exist a δ > 0 and an n0 such that for every even n > n0 and any graph G
with |V (G)| > (1 + ε)cn and |E(G)| > (1 − δ)

(|V (G)|
2

)
, any r-edge-coloring of G has a

monochromatic component containing a matching of n/2 edges, then

Rr(Cn) 6 (c+ o(1))n.
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3 Proofs

3.1 Proof of Theorem 1

We may assume throughout that r > 4, since we have precise results for r = 2 and r = 3.
We may also assume that n is sufficiently large compared to r. Theorem 1 follows easily
from the following.

Lemma 4. For every r > 2 there exists an n0 = n0(r) such that for any r-colored complete
graph on n > n0 vertices one of the two most frequent colors contains a monochromatic
path of length at least

(
1
r

+ 1
16r4

)
n.

Indeed, if we consider an r-colored complete graph on at least
(
r − r

16r3+1

)
n vertices

(where n is sufficiently large) by Lemma 4 one of the two most frequent colors contains a
monochromatic path of length at least(

1

r
+

1

16r4

)(
r − r

16r3 + 1

)
n = n,

proving Theorem 1.
To simplify the notation we put

kr =

⌈(
1

r
+

1

16r4

)
n

⌉
and xr =

⌈
kr

(
1

16r2
+

1

8r3

)⌉
. (3)

Lemma 4 in turn will follow from the following lemma which can be viewed as a
stability version of the Erdős-Gallai theorem (Lemma 1). Namely, either we have a
slightly longer path than guaranteed by Lemma 1 or we are close to the extremal case:
there are at most r “almost-cliques” that cover “most” of the graph.

Lemma 5. For every r > 2 there exists an n0 = n0(r) such that if G is a graph on n > n0

vertices and |E(G)| >
(
1
r
− 1

8r5

)
n2

2
, then one of the following two cases must hold:

(a) G contains a path of length at least kr,

(b) There are at most r connected components C in G such that for each C we have
|C| 6 kr + xr, together they cover at least

(
1− 1

r

)
n vertices and within each C the

average degree is at least kr − xr.

Proof of Lemma 5: We may assume that (a) does not hold, i.e. G does not contain
a path of length at least kr, and we have to show that in this case (b) must be true.
Let us take the connected components of G. First we show that we cannot have large
components.

Claim 1. For every connected component C of G, we have |C| 6 kr + xr.
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Assume to the contrary that we have a component C with |C| > kr +xr. Put n1 = |C|
and n2 = |V (G) \C|. Since G does not contain a path of length kr, we can apply Lemma
1 in G[V (G) \C] and Lemma 2 in G[C] with k = kr. Indeed, applying Lemma 2 in G[C],
the number of edges of G within C is at most

max

(
k2r
2

+ n1,
k2r
8

+
kr
2

(
n1 −

kr
2

))
= max

(
krn1

2
− kr(n1 − kr)

2
+ n1,

krn1

2
− k2r

8

)
<
krn1

2
−min

(
krxr

2
,
k2r
8

)
+ n1 =

krn1

2
− krxr

2
+ n1.

Here in the last line first we used that n1 − kr > xr, then xr <
kr
4

(using (3)).
Then by applying Lemma 1 in G[V (G) \C], the number of edges of G in G[V (G) \C]

is at most krn2

2
. Thus altogether the number of edges in G is at most

krn1

2
− krxr

2
+ n1 +

krn2

2
6
krn

2
− krxr

2
+ n

6

(
1

r
+

1

16r4

)
n2

2
+
n

2
−
(

1

r
+

1

16r4

)2(
1

16r2
+

1

8r3

)
n2

2
+ n

6
1

r

n2

2
+

1

16r4
n2

2
− 1

16r4
n2

2
− 1

8r5
n2

2
− 1

162r8

(
1

16r2
+

1

8r3

)
n2

2
+

3n

2

<

(
1

r
− 1

8r5

)
n2

2
6 |E(G)|,

if n is sufficiently large (using (3)), a contradiction. This finishes the proof of Claim 1.
Let us denote by C the set of those components C where the average degree is at least

kr − xr. We will show that this is a good collection of components for (b) in Lemma 5.
First we show that indeed the components in C together cover at least

(
1− 1

r

)
n vertices.

Claim 2. We have ∑
C∈C

|C| >
(

1− 1

r

)
n.

Indeed, we will use a similar argument as above for Claim 1. Put n1 =
∑

C∈C |C| and
n2 = |V (G)| − n1. Assume indirectly that n2 >

n
r
. By applying Lemma 1 to G[

⋃
C∈C C]

and using the upper bound on the average degree in the remaining part, the number of
edges in G is less than

krn1

2
+

(kr − xr)n2

2
=
krn

2
− xrn2

2

6

(
1

r
+

1

16r4

)
n2

2
+
n

2
−
(

1

r
+

1

16r4

)(
1

16r2
+

1

8r3

)
n2

2r

6
1

r

n2

2
+

1

16r4
n2

2
− 1

16r4
n2

2
− 1

8r5
n2

2
− 1

16r5

(
1

16r2
+

1

8r3

)
n2

2
+
n

2

<

(
1

r
− 1

8r5

)
n2

2
6 |E(G)|,
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if n is sufficiently large (using (3) and n2 >
n
r

in the second line), a contradiction. This
finishes the proof of Claim 2.

Finally we show that indeed there are at most r components in C.

Claim 3. The number of connected components in C is at most r.

Indeed, we show that we cannot have more than r components in C. Assume to the
contrary that we have at least r + 1 components in C. Since the size of each C in C is at
least the average degree in C, the number of vertices in G is at least

(r + 1)(kr − xr) > (r + 1)

(
1

r
+

1

16r4

)(
1− 1

16r2
− 1

8r3

)
n− 2(r + 1)

>

(
1 +

1

r
− 1

8r2
− 1

4r3

)
n− 2(r + 1) > n,

if n is sufficiently large (using r > 4), a contradiction.
Thus indeed the components in C satisfy the conditions in (b), finishing the proof of

Lemma 5. �
Next we show how Lemma 4 can be derived from Lemma 5, finishing the proof.
Proof of Lemma 4: Consider an r-colored graph G on n > n0(r) vertices, where

n0(r) is chosen sufficiently large so that Lemma 5 and all subsequent inequalities hold.
Let us take a most frequent color, say red, in G. The number of these red edges is at least

1

r

(
n

2

)
>

(
1

r
− 1

8r5

)
n2

2
, (4)

so we may apply Lemma 5 for the red subgraph. If (a) holds then we are done, therefore
we may assume that (b) holds, i.e. there are r red components with the properties given
in (b) in Lemma 5. Furthermore, we may assume that the number of red edges is at most
krn
2

, since otherwise by Lemma 1 we would have (a), i.e. a red path of length at least kr.
Let us take a second most frequent color, say blue. The number of blue edges is at least

1

r − 1

((
n

2

)
− krn

2

)
>

1

r − 1

(
n2

2
−
(

1

r
+

1

16r4

)
n2

2

)
− n

r − 1

=

(
1

r
− 1

16(r − 1)r4

)
n2

2
− n

r − 1
>

(
1

r
− 1

8r5

)
n2

2
, (5)

so again we may apply Lemma 5 for the blue subgraph as well. If (a) holds then we are
done, therefore we may assume that (b) holds, i.e. there are r blue components with the
properties given in (b) in Lemma 5. We will show that this leads to a contradiction, i.e.
in either the red subgraph or in the blue subgraph we must have (a).

Consider the at most r2 non-empty “atoms” determined by the at most r red compo-
nents and the at most r blue components, i.e. they are all the possible intersections of
one of the at most r red components with one of the at most r blue components. Thus

the electronic journal of combinatorics 23(3) (2016), #P3.53 6



there exists an atom A such that A is a subset of a red component, it is also a subset of
a blue component and

|A| > 1

r2

(
1− 2

r

)
n >

n

2r2
(6)

(using r > 4). We will show that both the red and the blue subgraph contains more than
half of the edges within A, a contradiction. Indeed, the number of missing edges in the
red subgraph (and similarly for blue) within A is at most xr(kr +xr). In order to see this,
note that the number of missing edges in the red component C containing the atom A is
at most

|C|(|C| − (kr − xr))
2

6
(kr + xr)(kr + xr − (kr − xr))

2
= xr(kr + xr)

(using |C| 6 kr + xr and that the average degree in C is at least kr − xr), and then we
assume the worst case, namely that all the missing edges in C are missing within A. Then

xr(kr + xr) 6

(
1

r
+

1

16r4

)2(
1

16r2
+

1

8r3

)(
1 +

1

16r2
+

1

8r3

)
n2 + n

6

(
1

16r4
+

1

8r5
+ 16

1

64r6

)
n2 + n 6

(
1

16r4
+

1

8r5
+

1

16r5

)
n2 + n

=

(
1

16r4
+

3

16r5

)
n2 + n <

n2

8r4
− n 6 |A|

2

4
− |A|

4
=

1

2

(
|A|
2

)
,

if n is sufficiently large, as claimed. Here we used (6), r > 4 and in the second line for
each of the terms other than the two largest we used the upper bound 1

64r6
. This finishes

the proof of Lemma 4 and thus Theorem 1. �

3.2 Proof of Theorem 2

In light of Lemma 3 all we need is a “perturbed” version of Lemma 4 where we replace
the complete graph with an almost-complete graph (Lemma 5 needs no change).

Lemma 6. For every r > 2 there exists an n0 = n0(r) and a δ = δ(r) such that for
any r-colored graph G on n > n0 vertices with |E(G)| > (1− δ)

(
n
2

)
, one of the two most

frequent colors contains a monochromatic path of length at least
(
1
r

+ 1
16r4

)
n.

The proof of Lemma 6 is almost identical to the proof of Lemma 4, in both inequalities
(4) and (5) we have room to spare:

1

r
(1− δ)

(
n

2

)
>

(
1

r
− 1

8r5

)
n2

2
,

and

1

r − 1

(
(1− δ)

(
n

2

)
− krn

2

)
>

1

r − 1

(
n2

2
−
(

1

r
+

1

16r4

)
n2

2

)
− n

r − 1
− δ

r − 1

(
n

2

)
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=

(
1

r
− 1

16(r − 1)r4

)
n2

2
− n

r − 1
− δ

r − 1

(
n

2

)
>

(
1

r
− 1

8r5

)
n2

2
,

if δ is sufficiently small compared to 1
r
. The rest of the proof is identical.

To prove Theorem 2 we apply Lemma 3 and Lemma 6. Indeed, for an arbitrary
0 < ε < 1 consider an r-colored graph on N > (1 + ε)

(
r − r

16r3+1

)
n vertices with

|E(G)| > (1 − δ(r))
(
N
2

)
(where n is a sufficiently large even integer and δ(r) is from

Lemma 6). By Lemma 6 one of the two most frequent colors contains a monochromatic
path of length at least(

1

r
+

1

16r4

)
(1 + ε)

(
r − r

16r3 + 1

)
n > n.

This implies the existence of a matching covering n vertices in a monochromatic compo-
nent. Hence, Lemma 3 implies that Rr(Cn) 6

(
r − r

16r3+1
+ o(1)

)
n. �
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