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Abstract

The well-known Moore bound M(k, g) serves as a universal lower bound for the
order of k-regular graphs of girth g. The excess e of a k-regular graph G of girth
g and order n is the difference between its order n and the corresponding Moore
bound, e = n −M(k, g). We find infinite families of parameters (k, g), g > 6 and
even, for which we show that the excess of any k-regular graph of girth g is larger
than 4. This yields new improved lower bounds on the order of k-regular graphs of
girth g of smallest possible order; the so-called (k, g)-cages. We also show that the
excess of k-regular graphs of girth g can be arbitrarily large for a restricted family of
(k, g)-graphs satisfying an additional structural property and large enough k and g.

Keywords: k-regular graphs, girth, cages, Moore bound, excess

1 Introduction

A (k, g)-graph is a k-regular graph of girth g. A (k, g)-cage is a smallest (k, g)-graph; its
order is denoted by n(k, g). Infinitely many (k, g)-graphs for any degree/girth pair (k, g)
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are known to exist since the 1960’s [6, 15], however, the orders n(k, g) of (k, g)-cages have
only been determined for very limited sets of parameters [8].

The Moore bound M(k, g) is a natural lower bound on the order of (k, g)-graphs (and
therefore also of the (k, g)-cages). Its value depends on the parity of g:

n(k, g) > M(k, g) =

{
1 + k + k(k − 1) + · · ·+ k(k − 1)(g−3)/2, g odd,
2
(
1 + (k − 1) + · · ·+ (k − 1)(g−2)/2

)
, g even.

(1)

The order of the vast majority of (k, g)-cages is known to exceed the Moore bound
(e.g., [8]). The exact relation between M(k, g) and n(k, g) is however one of the big open
questions of the theory of cages. Graphs whose orders equal the Moore bound are called
Moore graphs and are known to exist if and only if k = 2 and g > 3, g = 3 and k > 2,
g = 4 and k > 2, g = 5 and k = 2, 3, 7, or g = 6, 8, 12 and a generalized n-gon of order
k − 1 exists [2, 5, 8]. The existence of a (57, 5)-Moore graph remains open.

The difference between the order n of a (k, g)-graph G and the Moore bound M(k, g)
is called the excess e of the graph G, e = n −M(k, g). Determining the excess of (k, g)-
cages is equivalent to determining n(k, g). As mentioned above, the exact values n(k, g)
are not known for the majority of parameter pairs (k, g), and very few lower bounds on
n(k, g) exceeding the Moore bound exist. Our entire knowledge of such lower bounds is
limited to the following results.

With regard to odd girths, Bannai and Ito [3] have shown that no k-regular graphs of
order M(k, g)+1 exist for any odd g > 5. Kovács [14] has shown that no graphs of excess
2, girth 5, and odd degree k which is not of the form `2 + ` + 3 or `2 + `− 1, where ` is a
positive integer, exist. Eroh and Schwenk [7] proved that n(k, 5) is not equal to M(k, 5)+2
for 5 6 k 6 11. Most recent results concerning odd girth and excess 2 are due to Garbe
[11]. He showed the non-existence of graphs of excess 2 for parameters (k, 9), (k, 13),
(k, 17), (k, 21), (k, 25), and (k, 29) for certain congruence classes of k. He also showed
that there are no excess 2 graphs in the families of (3, 2s + 1)-graphs, (7, 2s + 1)-graphs,
and (9, 2s + 1)-graphs, for certain congruence classes of s.

Results concerning even girth are limited to the following two theorems.

Theorem 1 ([4]). Let G be a (k, g)-cage of girth g = 2m > 6 and excess e. If e 6 k − 2,
then e is even and G is bipartite of diameter m + 1.

For the next theorem, let D(k, 2) denote the incidence graph of a symmetric (v, k, 2)-
design.

Theorem 2 ([4]). Let G be a a (k, g)-cage of girth g = 2m > 6 and excess 2. Then g = 6,
G is a double-cover of D(k, 2), and k is not congruent to 5 or 7 (mod 8).

While Theorem 1 does not specifically exclude any parameter pairs (k, g), Theorem 2
only deals with (k, g)-graphs of excess 2. To our best knowledge, outside some small cases
for which n(k, g) has been determined and some few cases where the existence of graphs of
excess greater than 2 has been proved by exhaustive computer search, no results excluding
parameter pairs for excess larger than 2 for either odd or even g are known (i.e., there are
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no infinite families of pairs (k, g) for which it has been proven that n(k, g) > M(k, g)+4).
Thus, results obtained in this paper, which introduce infinite families of parameter pairs
(k, g) for which do not exist any (k, g)-graphs of excess smaller than 5, are the first results
of this type.

Our arguments rely on the following fairly obvious lemma. Let G be a k-regular graph
of girth g. For any given edge f ∈ E(G) and integer c > 3, let cG(f, c) denote the number
of cycles of length c in G containing f .

Lemma 3. Let G be a graph and c > 3. The sum∑
f∈E(G)

cG(f, c)

is divisible by c.

The remaining argument is based on careful counting of cycles of length g in (potential)
(k, g)-graphs of excess 4, and showing that, for certain classes of parameters, the resulting
numbers violate the divisibility requirements of Lemma 3. This type of reasoning was for
the first time used in [10], as well as independently in [12]. We have also used this idea
in [13], which however only deals with graphs of excess not exceeding 3. In addition to
obtaining results concerning graphs of excess 4, we prove in the last part of our paper that
the excess grows without bounds for a meaningful but restricted family of (k, g)-graphs.
While this last result does not appear suitable for generalization to all (k, g)-graphs, it
should be viewed as further evidence for the Moore bound not being a tight bound in the
majority of cases.

2 The structure of graphs of even girth and excess 4

In this section, we take on the case of (k, g)-graphs of degree k > 6, even girth g = 2m > 6,
and excess 4. All of these graphs are covered by Theorem 1 and are therefore bipartite
and of diameter m + 1. Thanks to these results, the structure of G with respect to
any edge f = {u, v} ∈ E(G) can therefore be determined. Let NG(u, i) denote the i-th
neighborhood of the vertex u, i.e., the set of vertices of G whose distance from u in G is
equal to i. Since the girth of G is assumed to be equal to g, the set of vertices of G whose
distance from u is not larger than g−2

2
and whose distance from v is by one larger than

their distance from u and the set of of vertices of G whose distance from v is not larger
than g−2

2
and whose distance from u is by one larger than their distance from v must

be disjoint and cannot contain any cycles. Thus, the subgraph of G induced by the first
set (determined by u) induces a tree of depth g−2

2
rooted at u (we will call it Tu), while

the second set induces a tree of depth g−2
2

rooted at v (called Tv); with Tu and Tv vertex
disjoint. The degrees of u or v in their respective trees are equal to (k− 1), the degrees of
all the non-leave vertices of these trees are equal to k, and all the leaves of these trees are
of distance g−2

2
from their respective roots. As for the order of these subtrees, they are

both of order 1 + (k− 1) + (k− 1)2 + . . . + (k− 1)
g−2
2 , with (k− 1)i vertices of distance i
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horizontal edges
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Figure 1: The Moore tree and some of the horizontal edges in a potential (3, 6)-graph of
excess 4

from u (or v). We will call the union of Tu and Tv together with the edge f the Moore tree
of G rooted at f ; it is the subtree of G that is the basis of the Moore bound for even g.
Since G is assumed to be of excess 4, G must contain 4 additional vertices w1, w2, w3, w4

which do not belong to either Tu or Tv, and whose distance from both u and v is greater
than g−2

2
. We will call these vertices the excess vertices with respect to f and denote this

set Xf = {w1, w2, w3, w4}. Finally, we shall call the edges not contained in the Moore
tree of G horizontal edges. The choice of our terminology becomes fairly obvious when
consulting Figure 1.

We begin with a lemma that restricts the possible ways in which the four excess
vertices are attached to the Moore tree.

Lemma 4. Let k > 6, g = 2m > 6. Let G be a (k, g)-graph of excess 4, u, v be two
adjacent vertices in G, and Xf = {w1, w2, w3, w4} be the four excess vertices with respect
to the edge f = {u, v}. The induced subgraph G[w1, w2, w3, w4] is isomorphic to 2K2 (two
disjoint copies of K2) or P3 (a path of length 3).

Proof. As shown in Figure 1, the graph G consists of a Moore tree rooted at the edge
f = {u, v} and four excess vertices w1, w2, w3, w4. Each of these vertices must be attached
to at least one of the two subtrees rooted at u or v (for the graph to be of diameter m+1),
and none can be attached to both, since G is bipartite (and the leaf sets of Tu and Tv
belong to different bipartite sets). Furthermore, none of the excess vertices can be joined
to its corresponding subtree via more than (k − 1) edges; this is due to the fact that the
excess vertices cannot be joined to any branch of the subtree more than once as multiple
attachments would give rise to a cycle shorter than g, and to the fact that the subtrees
Tu and Tv each consist of exactly (k − 1) branches.

The horizontal edges of G are of three kinds. First, there are the horizontal edges
directly joining the leaf sets of Tu and Tv. Second, there are the horizontal edges between
the excess vertices w1, w2, w3, w4 and the leaf sets of Tu or Tv (but never simultaneously
with both). Finally, there are the horizontal edges between the excess vertices themselves.
Note that the number of edges incident with the leaves of Tu must match the number of
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edges incident with the leaves of Tv. Thus, in order to balance and pair out the horizontal
edges adjacent to the two leaf sets, the number of edges joining the excess vertices to
either of the two subtrees must be the same. This easily yields that two of the excess
vertices must be attached to one subtree and the other two to the other, and the two
pairs belong to different bipartite sets. Without loss of generality, assume that w1, w2

are attached to the subtree rooted at u, and w3, w4 to the subtree rooted at v (Figure
1). Due to bipartedness, w1 is not adjacent to w2, and w3 is not adjacent to w4. Since
the diameter of G is m + 1, both w1 and w2 must be adjacent to at least one of w3, w4,
and vice versa, both w3 and w4 must be adjacent to at least one of w1, w2. It follows
that the induced subgraph G[w1, w2, w3, w4] is bipartite, with the two sets consisting of
w1, w2 and w3, w4, and each of its vertices is of degree at least 1. This leaves us with the
possibility that all of its vertices are of degree 1, and hence G[w1, w2, w3, w4] is isomorphic
to 2K2; one vertex in each set is of degree 1 and one is of degree 2, and G[w1, w2, w3, w4]
is isomorphic to P3; or all of it vertices are of degree 2, in which case G[w1, w2, w3, w4]
is isomorphic to the 4-cycle, which contradicts the assumption that the girth of G is at
least 6.

The number of cycles through any edge of the graph depends now on the form of
G[w1, w2, w3, w4].

Lemma 5. Let k > 6, g = 2m > 6. Let G be a (k, g)-graph of excess 4, u, v be two
adjacent vertices in G, f be the edge {u, v}, and w1, w2, w3, w4 be the four excess vertices
with respect to f .

1. if G[w1, w2, w3, w4] is isomorphic to 2K2, then cG(f, g) = (k − 1)m − 2k + 2;

2. if G[w1, w2, w3, w4] is isomorphic to P3, then cG(f, g) = (k − 1)m − 2k + 3.

Proof. Let us assume again that w1, w2 are attached to the subtree rooted at u, and w3, w4

to the subtree rooted at v.
If G[w1, w2, w3, w4] is isomorphic to 2K2, the number of edges between w1, w2 and the

corresponding leaves of the Moore tree is 2(k − 1). Thus, the number of horizontal edges
between the two sets of leaves of the Moore tree is equal to (k − 1)m − 2(k − 1) (with
(k − 1)m being the number of horizontal edges in a (potential) (k, g)-Moore graph). As
pointed out before, each horizontal edge corresponds to exactly one g-cycle through f ,
and no other g-cycles through f exist. Thus, cG(f, g) = (k − 1)m − 2(k − 1).

If G[w1, w2, w3, w4] is isomorphic to P3, the number of horizontal edges between the
two sets of leaves of the Moore tree is equal to (k− 1)m− (k− 1)− (k− 2), and the result
follows in exactly the same way as above.

In order to employ the above formulas, we would have to find significant restrictions
on the number of edges of one type or the other. On the other hand, it is easy to
find arithmetic conditions on k and g that exclude the existence of ‘non-mixed’ (k, g)-
graphs of order M(k, g) + 4 (by non-mixed we mean graphs that contain only edges for
which G[w1, w2, w3, w4] is isomorphic to 2K2 or only edges for which G[w1, w2, w3, w4] is
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isomorphic to P3, but not both). Hence, the situation appears similar to that of the
odd-girth graphs of excess 2. Fortunately, this is not the case. In what follows, we show
that even-girth graphs of excess 4 and girth larger than 6 cannot be mixed when it comes
to counting cycles of length g.

We begin our argument by counting g-cycles passing through vertices. In order to do
this, we have to subdivide one of the possibilities considered above for edges (the case
2K2). For the first time, this will turn to our advantage.

Let u be a vertex of G incident with an edge f = {u, v} for which the subgraph induced
by Xf is isomorphic to 2K2. Two of the vertices in Xf are then of distance g

2
from u (let

us denote them w1, w2) and two of them are of distance g+2
2

from u (say, w3, w4). The
vertices w3 and w4 either share a neighbor (which necessarily has to belong to the set of
vertices of distance g−2

2
from v), or they do not share a neighbor. It is important to note

that if g is assumed to be greater than 4, w3, w4 cannot share more than one neighbor
as that would lead to a 4-cycle. We say that u is of the first 2K2 type if w3, w4 share
a neighbor, and we say that u is of the second 2K2 type if they do not. Having defined
the types, we can now state the first lemma the proof of which is quite elementary. In
analogy with the notation introduced previously for edges, cG(u, g) stands for the number
of g-cycles in G rooted at the vertex u.

Lemma 6. Let k > 6, g = 2m > 6. Let G be a (k, g)-graph of excess 4 and u be a vertex
of G. Then,

1. if u is of the first 2K2 type, then

cG(u, g) = ((k − 1)m − 2k + 2) + ((k − 1)m−1 − 2k) ·
(
k − 1

2

)
+ k3 − 4k2 + 5k − 1;

2. if u is of the second 2K2 type, then

cG(u, g) = ((k − 1)m − 2k + 2) + ((k − 1)m−1 − 2k) ·
(
k − 1

2

)
+ k3 − 4k2 + 5k − 2;

3. if u is incident with an edge f whose excess set Xf is isomorphic to P3, then

cG(u, g) = ((k − 1)m − 2k + 3) + ((k − 1)m−1 − 2k) ·
(
k − 1

2

)
+ k3 − 4k2 + 5k − 2.

Proof. Let u be of the first 2K2 type with respect to the edge f = {u, v}. The g-cycles
passing through u come in two kinds. First, there are the (k − 1)m − 2k + 2 g-cycles
containing f as claimed in Lemma 5. Then there are g-cycles containing u but avoiding
f . All of them have to consist of two disjoint g−2

2
-paths starting at u and connected

through a pair of edges attached to vertices of distance g
2

from u (the endpoints of the two
paths) that share a vertex. The choice of these two final edges completely determines the
g-cycles, so we will count the possible pairs of such edges. Both w1 and w2 are adjacent
to k− 1 vertices of distance g−2

2
from u, which gives us 2

(
k−1
2

)
g-cycles through w1 or w2.
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Of the (k − 1)
g−2
2 vertices of distance g−2

2
from v, there is one adjacent to both vertices

w3, w4, there are 2(k − 2) vertices adjacent to exactly one of the vertices w3, w4, and the
rest are not adjacent to either w1 or w2. It follows that the vertex adjacent to both w3

and w4 is incident with k−3 horizontal edges, and is therefore contained in
(
k−3
2

)
g-cycles

rooted at u. The other 2(k−2) vertices give rise to 2
(
k−2
2

)
g-cycles, and all the remaining

vertices contribute ((k− 1)
g−2
2 − 2k + 3)

(
k−1
2

)
g-cycles through u. Adding all these cycles

yields

cG(u, g) = ((k − 1)m − 2k + 2) + ((k − 1)m−1 − 2k + 3) ·
(
k − 1

2

)
+ (2k − 4)

(
k − 2

2

)
+

(
k − 3

2

)
+ 2

(
k − 1

2

)
,

which matches the quantity claimed in Case 1.
If u is of the second 2K2 type, the situation differs only in a few spots. First, there

are the (k − 1)m − 2k + 2 g-cycles containing f . The g-cycles not containing f contain
either one of the w1, w2, and there are 2

(
k−1
2

)
of those, or they pass through the 2k − 2

vertices of distance g−2
2

from v and adjacent to w3 or w4, which contribute (2k − 2)
(
k−2
2

)
cycles, or they pass through vertices of distance g−2

2
from v adjacent to neither w3 nor w4

which finally contribute ((k − 1)
g−2
2 − 2k + 2)

(
k−1
2

)
g-cycles through u. Thus,

cG(u, g) = ((k−1)m−2k+2)+((k−1)m−1−2k+2)·
(
k − 1

2

)
+(2k−2)

(
k − 2

2

)
+2

(
k − 1

2

)
,

and simple arithmetic yields the claim in Case 2.
Assume finally that u is incident with an edge f = {u, v} whose excess set Xf is

isomorphic to P3. Without loss of generality we may assume that w1 is the vertex adjacent
to both w3 and w4. In a way similar to the argument preceding this proof, the vertices
w3, w4 cannot share a neighbor among the vertices of distance g−2

2
from v: they already

share one neighbor, w1, and the existence of another shared neighbor would cause the
existence of a 4-cycle. The counting of cycles through u now follows the usual lines.
There are ((k − 1)m − 2k + 3) cycles containing f (Lemma 5),

(
k−2
2

)
cycles containing

w1,
(
k−1
2

)
cycles containing w2, (2k − 3)

(
k−2
2

)
cycles through the vertices of distance g−2

2

from v that are adjacent to w3 or w4, and ((k− 1)m−1− 2k + 3) ·
(
k−1
2

)
cycles through the

vertices of distance g−2
2

from v that are not adjacent to w3 or w4:

cG(u, g) = ((k − 1)m − 2k + 3) + ((k − 1)m−1 − 2k + 3) ·
(
k − 1

2

)
+ (2k − 3)

(
k − 2

2

)
+

(
k − 2

2

)
+

(
k − 1

2

)
.

A simple comparison of the three cases in Lemma 6 yields that the first and the third
numbers match while the second is by one smaller than the other two. This means that
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no vertex can be simultaneously incident to edges from the first and second part or the
second and third part (since the number of cycles through a vertex has to be unique).
This simple observation has a very strong consequence.

Lemma 7. Let k > 6, g = 2m > 6, and let G be a (k, g)-graph of excess 4. Then, G
does not contain edges f for which their corresponding excess set Xf induces a subgraph
isomorphic to P3.

Proof. Suppose that G satisfies the above conditions, and, by means of contradiction,
assume that the excess set Xf induces a subgraph isomorphic to P3 for some edge f of
G. Let us stress right away that we are assuming that g > 6 and therefore G does not
contain cycles of length 4 or 6.

Let f = {u, v}, Xf = {w1, w2, w3, w4}, and the vertices adjacent to u but distinct
from v be denoted by v1, v2, . . . , vk−1. Also, without loss of generality, assume that w1

and w2 are of distance g
2

from u and the vertex adjacent to both w3 and w4 is the vertex

w2. The number of edges connecting w2 to the branch of height g−2
2

rooted at u is
then k − 2, and therefore w2 is not attached to one of the sub-branches rooted at the
neighbors v1, v2, . . . , vk−1 (i.e., w2 is of distance greater than g−2

2
from one of the vertices

v1, v2, . . . , vk−1). Again without loss of generality, we may assume that this special vertex
is the vertex v1. Let f ′ be the edge {u, v1}. Since the distance of w2 from v1 is greater
than g

2
, the excess of f ′ contains the vertex w2 together with the vertices w3, w4. It follows

that the subgraph induced by Xf ′ contains w2, w3 and w4 and since w2 is adjacent to both
w3 and w4, the degree of w2 in the induced subgraph must be 2, and hence the subgraph
induced by f ′ = {u, v1} must be isomorphic to P3.

Next let f ′′ be the edge {u, v2}. Then both w1 and w2 are of distance g−2
2

from
v2, and it is easy to see that the excess set of f ′′ must consist of the vertices w3, w4

and two vertices w5, w6 belonging to the branch rooted at v, of distance g−2
2

from v.
We claim that the subgraph induced in G by the set Xf ′′ = {w3, w4, w5, w6} cannot be
isomorphic to P3, as this would give rise to a 4-cycle formed by the vertices w2, w3, w5, w4

or the vertices w2, w3, w6, w4, depending on whether w5 or w6 would be of degree 2 in
the induced subgraph. Hence, the subgraph of G induced by Xf ′′ is isomorphic to 2K2.
We further claim that the vertices w5, w6 cannot share a neighbor, as if they did share
a neighbor, this would give rise to a 6-cycle formed of the vertices w2, w3, w4, w5, w6 and
the shared neighbor. We conclude that the edge f ′′ = {u, v2} is of the second 2K2 type.
This means that u is incident to f ′ = {u, v1} for which the subgraph induced by Xf ′ is
isomorphic to P3 and to f ′′ = {u, v2} which of the second 2K2 type. However, as pointed
out in the discussion preceding this lemma, no vertex of G can be incident with an edge
whose excess set induces P3 and and at the same time with an edge of the second 2K2

type. Therefore G cannot contain an edge whose excess set induces P3.

3 Excluding parameter pairs for even girth and excess 4

Combining Lemma 7 with Lemma 5 immediately yields:

the electronic journal of combinatorics 23(3) (2016), #P3.55 8



Lemma 8. Let k > 6, g = 2m > 6, and let G be a (k, g)-graph of excess 4. Then g
divides the number

(M(k, g) + 4) · k
2

· ((k − 1)m − 2k + 2). (2)

In order to employ this lemma and to exclude some parameter pairs (k, g) for which
no (k, g)-graphs of excess 4 exist, we derive a number of simple divisibility results.

Lemma 9. Let k > 6 and g = 2m > 6.

1. If g = 2p such that p > 3 is prime number and k 6≡ 1, 2 (mod p), then M(k, g)+4 ≡
6 (mod p).

2. If g = 4 · 3s such that s > 1 and k is divisible by 9, then

M(k, g) + 4 ≡ 4 (mod 3s).

3. If g = 2p2 such that p > 3 is a prime number and k is an even number, k 6≡ 1, 2
(mod p), then M(k, g) + 4 ≡ 6 (mod p).

4. If g = 4p such that p > 3 is a prime number and k 6≡ 1, 2 (mod p), then M(k, g) +
4 ≡ 2k + 4 (mod p).

5. If k ≡ 3 (mod g), then M(k, g) + 4 ≡ 2 · 2g/2 + 2 (mod g).

Proof. We proceed case by case.

(1) Let M(k, g) ≡ r (mod p). Since M(k, g) = 2
(

(k−1)g/2−1
k−2

)
and (k − 2, p) = 1,

we get
2((k − 1)g/2 − 1) ≡ r(k − 2) (mod p).

Since (k − 1, p) = 1, Fermat’s Little Theorem asserts (k − 1)p ≡ k − 1 (mod p).
Thus, (k− 2)(r− 2) ≡ 0 (mod p). Due to the second restriction we have chosen for
k, p does not divide k−2, and therefore it must divide r−2. Hence, r ≡ 2 (mod p),
which means that M(k, g) + 4 ≡ 6 (mod p).

(2) Let M(k, g) ≡ r (mod 3s). Since (k − 2, 3s) = 1. As above, we obtain

2((k − 1)g/2 − 1) ≡ r(k − 2) (mod 3s).

Since (k − 1, 3s) = 1 and the Euler’s totient function value ϕ(3s) = 2 · 3s−1, Euler’s
Theorem yields

2((k − 1)g/2 − 1) ≡ 2((k − 1)2·3
s − 1) ≡ 2(1− 1) ≡ 0 (mod 3s).

Thus, (k−2)r ≡ 0 (mod 3s), and consequently, r ≡ 0 (mod 3s). Therefore M(k, g)+
4 ≡ 4 (mod 3s).
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(3) Following the same line of argument as above, 2((k− 1)g/2− 1) ≡ r(k− 2) (mod p).
Since (2, p2) = 1, using the multiplicativity of Euler’s function we obtain

ϕ(g) = ϕ(2p2) = ϕ(2) · ϕ(p2) = p2(1− 1

p
) = p2 − p.

Since (k− 1, g) = 1, applying Euler’s Theorem implies (k− 1)ϕ(g) ≡ (k− 1)p
2−p ≡ 1

(mod g) i.e. (k−1)p
2 ≡ (k−1)p (mod g). Thus, r(k−2) ≡ 2((k−1)p−1) (mod g),

and hence, r(k − 2) ≡ 2(k − 2) (mod p). Since (k − 2, p) = 1, r ≡ 2 (mod p), and
M(k, g) + 4 ≡ 6 (mod p).

(4) Applying Fermat’s Little Theorem yields (k−1)g/2 ≡ (k−1)2p ≡ ((k−1)p)2 ≡ (k−1)2

(mod p). Therefore, 2((k−1)g/2−1)) ≡ 2(k2−2k+1−1) ≡ 2k(k−2) (mod p). From
this follows that (k−2)(r−2k) ≡ 0 (mod p) i.e. r ≡ 2k (mod p),M(k, g)+4 ≡ 2k+4
(mod p).

(5) Since k − 2 ≡ 1 (mod g), M(k, g) ≡ 2((k − 1)g/2 − 1) ≡ 2 · 2g/2 − 2 (mod g), i.e
M(k, g) + 4 ≡ 2 · 2g/2 + 2 (mod g).

This completes the proofs for all cases of the lemma.

We are finally ready to exclude infinite families of parameter pairs.

Theorem 10. Let k > 6, g = 2m > 6. No (k, g)-graphs of excess 4 exist for parameters
k, g satisfying at least one of the following conditions:

(1) g = 2p, with p > 5 a prime number, and k 6≡ 0, 1, 2 (mod p);

(2) g = 4 · 3s such that s > 4, and k is divisible by 9 but not by 3s−1;

(3) g = 2p2 with p > 5 a prime number, and k 6≡ 0, 1, 2 (mod p) and even;

(4) g = 4p, with p > 5 a prime number, and k 6≡ 0, 1, 2, 3, p− 2 (mod p);

(5) g ≡ 0 (mod 16), and k ≡ 3 (mod g).

Proof. Each of the cases of our proof starts by assuming that there exists a (k, g)-graph G
of order M(k, g) + 4 whose parameters satisfy the corresponding conditions, after which
we derive a contradiction with the divisibility of (2) by g from Lemma 8.

(1) Lemma 9 together with (2, p) = 1 yield M(k,g)+4
2

≡ 3 (mod p). Since p divides neither
k nor k− 1, k((k− 1)p− 2(k− 1)) ≡ −k(k− 1) 6≡ 0 (mod p). Hence, neither factor
of the left side of (2) is congruent to 0 (mod 2p), which contradicts (2).

(2) Lemma 9 forces M(k,g)+4
2

≡ 2 (mod 3s). Since ϕ(3s) = 2·3s−1, using Euler’s Theorem,

we obtain (k − 1)2·3
s−1 ≡ 1 (mod 3s), and consequently, k((k − 1)2·3

s − 2(k − 1)) ≡
−k(2k − 3) (mod 3s). Since k is not divisible by 3s−1, and since k ≡ 0 (mod 9)
yields that 2k − 3 is not divisible by 9, the product −k(2k − 3) 6≡ 0 (mod 3s), and
we obtain a contradiction with (2) again.
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(3) The assumptions and Lemma 9 imply M(k,g)+4
2

≡ 3 (mod p). Since (k − 1, p) = 1,
using Euler’s Theorem gives us (k − 1)p(p−1) ≡ 1 (mod p), and therefore k((k −
1)p

2 − 2(k − 1)) ≡ k((k − 1)p − 2(k − 1)) ≡ −k(k − 1) (mod p). Since p divides
neither k nor k − 1, we arrive at the usual contradiction with (2).

(4) Since p does not divide k + 2, M(k,g)+4
2

≡ k + 2 6≡ 0 (mod p) by Lemma 9. Since p
does not divide k, k−1, or k−3, we have k((k−1)2p−2(k−1)) ≡ k((k−1)2−2k+2) ≡
k(k − 1)(k − 3) 6≡ 0 (mod p). The two congruencies together yield a contradiction
with (2).

(5) The congruence k ≡ 3 (mod g) implies (k−1)g/2−2k+2 ≡ 2g/2−4 (mod g), while

Lemma 9 yields (M(k,g)+4)k
2

≡ 3(2·2g/2+2)
2

(mod g). Hence,

(M(k, g) + 4)k

2
((k − 1)g/2 − 2k + 2) ≡ 3(2 · 2g/2 + 2)

2
(2g/2 − 4)

≡ 3(2g/2 + 1)(2g/2 − 4) (mod g).

Using g ≡ 0 (mod 16) gives us g
2
> 8, and therefore 2g/2, 2g/2+2, and 2g are all

congruent to 0 modulo 16, which implies (M(k,g)+4)k
2

((k−1)g/2−2k+2) ≡ 4 (mod 16),

i.e., (M(k,g)+4)k
2

((k − 1)g/2 − 2k + 2) is not congruent to 0 modulo g, and we obtain
a contradiction with (2).

This completes the proofs.

The non-existence of (k, g)-graphs of excess 4 with parameters satisfying the conditions
of the above theorem does not immediately imply that the excess of a (k, g)-cage must
be larger than 4. Nevertheless, combining the above result with the previously known
restrictions does imply such conclusion for all of the above parameter pairs. Specifically,
as noted in the introduction, there are no Moore graphs of girth 10 or girth greater than
12. Furthermore, Theorem 1 claims the non-existence of even girth graphs of excess 1
and degree k > 3 as well as excess 3 and degree k > 5. Finally, Theorem 2, excludes
the possibility of even girth graphs of girth greater than 6 and excess 2. These results,
combined with Theorem 10 yield the following.

Corollary 11. Let (k, g) be one of the pairs of parameters listed in Theorem 10. Then,
n(k, g) > M(k, g) + 5, for k even, and n(k, g) > M(k, g) + 6, for k odd.

Proof. We have proved the corollary prior to its statement for all g > 12. The only pair
(k, g) covered by Theorem 10 that cannot be excluded based on the above arguments
is the pair (3, 10). However, n(3, 10) is known to be equal to 70 (see e.g. [8]), while
M(3, 10) = 62. Hence, the claim is true for the pair (3, 10) as well. The case of odd k
follows from the fact that the Moore bound for even g is even, and the order of a k-regular
graph with odd k must be even.
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4 Graphs of even girth and excess larger than 4

It has been observed in [13] that in case of odd degree, even girth, and excess 2, all
subgraphs induced by edge excess vertices are isomorphic to K2. In the previous section,
we have proved that in case of even girth greater than 6 and excess 4, all subgraphs
induced by the edge excess sets must be isomorphic to 2K2. If one was willing to see a
pattern in these observations, one might be tempted to try to prove that the edge excess
set induced subgraphs of graphs with small excess and large even girth must always be
isomorphic to tK2, for some t > 1. Graphs of such structure play a prominent role in [4]
and are in a way the extreme (k, g)-graphs with odd k and even g and the property that
each subgraph Xf induced by the e = 2t excess vertices associated with an edge f contains
the minimum necessary number of edges, namely t edges. These are also the graphs that
maximize the number of girth cycles through any edge of the graph. In this last section of
our paper, we prove that for any arbitrarily large excess e there exist parameters k and g
with the property that the excess of all (k, g)-graphs from our restricted family exceeds e.

Lemma 12. Let k > 6, g = 2m > 6, and let G be a (k, g)-graph of even excess e = 2t 6
k − 2. If f is an edge of G with excess set Xf of size 2t and the subgraph induced by Xf

in G consists of t copies of K2, then

cG(f, g) = (k − 1)m − t(k − 1).

Proof. The proof is almost identical to that of Lemma 5, Part 1.

Theorem 13. For every e > 1, there exist parameters k, g, k odd, g even, such that if G
is a (k, g)-graph satisfying the property that for every edge f of G the subgraph induced
by Xf in G is isomorphic to disjoint copies of K2’s, then G has excess larger than e.

Proof. Let m be a prime larger than e, and also large enough to admit the existence of an
odd k such that e+2 < k < m and k ≡ 5 or 7 (mod 8). Take g = 2m, and assume that G
is a (k, g)-graph satisfying the property from our theorem. We claim that the excess of G
must be larger than e. To see this, assume to the contrary that the excess of G is e′ 6 e.
Then e′ < k − 2, and Theorem 1 asserts that G is bipartite, in which case we know that
e′ = 2t′, for some integer t′. Employing Lemma 12 yields cG(f, g) = (k − 1)m − t′(k − 1),

for all edges f ∈ E(G), and therefore g divides (M(k,g)+e′)·k
2

· ((k − 1)m − t′(k − 1)). Since

M(k, g) = 2 (k−1)m−1
k−2 , the girth g = 2m of G, and therefore also the prime m, divide the

product

(2 (k−1)m−1
k−2 + e′) · k

2
· ((k − 1)m − t′(k − 1)).

We claim, however, that neither of the two factors of this product is divisible by m. We
prove our claim separately for each of the factors. Since m is a prime, it follows from
Fermat’s Little Theorem that (k − 1)m ≡ k − 1 (mod m), and therefore

(2 (k−1)m−1
k−2 + e′) · k

2
≡ (2 + e′)

2
· k (mod m).
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Since 2 6 e′ + 2 6 e + 2 < k < m, (2+e′)
2
≡ (1 + t′) 6≡ 0 (mod m). Similarly, the choice

e + 2 < k < m yields k 6≡ 0 (mod m), and thus neither m nor g divide the first of the
factors. Employing Fermat’s Little Theorem again, (k− 1)m− t′(k− 1) ≡ (k− 1) · (1− t′)
(mod m). Note that our choice of k ≡ 5 or 7 (mod 8) allows us to use Theorem 2 and
conclude that e′ 6= 2, hence t′ 6= 1, and (1− t′) 6≡ 0 (mod m). As k−1 is also not divisible
by m, the factor (k − 1)m − t′(k − 1) is not divisible by m either. Since none of the
factors is congruent to 0 modulo m, the product (M(k, g) + e′) · k

2
· ((k − 1)m − t′(k − 1))

is not divisible by g, and we obtain a contradiction. The excess of G is therefore bigger
than e.

If one were able to prove that (a sufficient portion) of the (k, g)-graphs whose param-
eters satisfy the conditions stated at the beginning of the proof of Theorem 13 must have
the structure described in the statement of the theorem, the above result would yield that
for each excess e > 0, there exist parameters (k, g) with the property that the excess of
any (k, g)-graph G exceeds e. The existence of such parameter pairs for arbitrarily large
e has already been established for the (much more restricted) family of vertex-transitive
(k, g)-graphs [1, 9], but has only been conjectured for the case of general cages. Using
as further evidence the excess of the best known (k, g)-graphs listed in the tables of [8],
the existence of (k, g)-cages of arbitrarily large excess feels like a foregone conclusion.
Nevertheless, any such proof has been elusive so far, and the conjecture, though widely
believed, stays frustratingly unproved.
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