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Abstract

As a variation of De Bruijn graphs on strings of symbols, the graph of overlap-
ping permutations has a directed edge π(1)π(2) . . . π(n+1) from the standardization
of π(1)π(2) . . . π(n) to the standardization of π(2)π(3) . . . π(n + 1). In this paper,
we consider the enumeration of d-cycles in the subgraph of overlapping (231, 41̄32)-
avoiding permutations. To this end, we introduce the notions of marked Motzkin
paths and marked Riordan paths, where a marked Motzkin (resp. Riordan) path
is a Motzkin (resp. Riordan) path in which exactly one step before the leftmost
return point is marked. We show that the number of closed walks of length d in
the subgraph of overlapping (231, 41̄32)-avoiding permutations are closely related to
the number of marked Motzkin paths and that of marked Riordan paths. By estab-
lishing bijections, we get the enumerations of marked Motzkin paths and marked
Riordan paths. As a corollary, we provide bijective proofs of two identities involv-
ing Catalan numbers in answer to the problem posed by Ehrenborg, Kitaev and
Steingŕımsson. Moreover, we get the enumerations of (231, 41̄32)-avoiding affine
permutations and (312, 324̄1)-avoiding affine permutations.

Keywords: graph of overlapping permutations; cycles; Motzkin paths; Riordan
paths.

1 Introduction

This work is motivated by the problem of determining the number of d-cycles in the
graph of overlapping pattern avoiding permutations, which was initiated by Ehrenborg et
al. [15].

∗Corresponding author.
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Denote by Sn the set of all permutations on [n] = {1, 2, . . . , n}. For any permutation
π, we write |π| to denote the number of entries of π and we write π(i) to denote the ith
entry of π. Given a permutation π = π(1)π(2) . . . π(n) ∈ Sn and a permutation τ =
τ(1)τ(2) . . . τ(k) ∈ Sk, we say that π contains the pattern τ if there exists a subsequence
π(i1)π(i2) . . . π(ik) of π that is order-isomorphic to τ . Otherwise, π is said to avoid the
pattern τ or be τ -avoiding. We write Sn(τ) the set of all τ -avoiding permutations in Sn.

The classic problem of enumerating permutations avoiding a given pattern has received
a great deal of attention and has led to interesting variations. For a thorough summary
of the current status of research, see Bóna’s book [6, 7] and Kitaev’s book [20].

A barred permutation τ of [k] is a permutation of Sk having a bar over one of its
elements. Let τ be the permutation of [k] by unbarring τ , and τ̂ be the permutation
obtained from τ by removing the barred elements. For any permutation π, if every
subsequence which is order-isomorphic to τ̂ can be extended to a subsequence which is
order-isomorphic to τ , then we say that π avoids the pattern τ . For example, if π =
37258416 and τ = 2351̄4, then we have τ = 23514 and τ̂ = 1243. All subsequences of
the pattern 1243 are 3586 and 2586, which are subsequence of 35816 and 25816. So we
have π ∈ S8(2351̄4). The classes Sn(321, 31̄42) and Sn(231, 41̄32) are enumerated by the
n-th Motzkin number, see [2, 8, 17, 19]. In [9], Chen et al. established a correspondence
between Riordan paths and (321, 31̄42)-avoiding derangements.

A De Bruijn graph is a directed graph on vertex set {0, 1, . . . , q − 1}n, the set of all
strings of length n over an alphabet of size q, in which there is a directed edge from the
string x to the string y if and only if the last n − 1 coordinates of x agree with the first
n − 1 coordinates of y. It is well known that the number of directed cycles of length d,
for d 6 n, is given by

1

d

∑
e|d

µ(d/e)qe, (1.1)

where the sum is over all divisors e of d, and where µ denotes the number theoretic Möbius
function, see ([18], p.126) for instance. Recall that µ(n) is (−1)k if n is a product of k
distinct primes and is zero otherwise.

For a permutation π = π(1)π(2) . . . π(n) consisting of distinct real numbers, the stan-
dardization of π is the unique permutation τ ∈ Sn which is order-isomorphic to π. For
example, the standardization of 4(−1)53 is 3142.

As a variation of De Bruijn graphs, the graph of overlapping permutations, de-
noted by G(n), has a directed edge π(1)π(2) . . . π(n + 1) from the standardization of
π(1)π(2) . . . π(n) to the standardization of π(2)π(3) . . . π(n + 1), which are also called
the graph of overlapping patterns in [1] ( see also ([20], Section 5.6) ). The graph G(n)
appeared in [10] in connection with universal cycles on permutations, and was used as a
tool in determining the asymptotic behaviour of consecutive pattern avoidance in [14].

The graph of overlapping τ -avoiding permutations, denoted by G(n, τ), is the subgraph
of G(n) having the vertex set Sn(τ) and the edge set Sn+1(τ). For example, the graph
G(2, {231, 41̄32}) is illustrated in Figure 1. Recently, Ehrenborg et al. [15] derived that,
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for d 6 n, the number of cycles of length d in the graph G(n, 312) is given by

1

d

∑
e|d

µ(d/e)

(
2e

e

)
, (1.2)

which can be viewed as an analogous result for De Bruijn graphs. In their paper [15], they
also posed the problem of evaluating the number of d-cycles in the graph of overlapping
permutations avoiding any set of patterns of length 3 or more. In this paper, we derive
that, for n > 2 and d 6 n, the number of cycles of length d in the graph G(n, {231, 41̄32})
is given by

1

d

∑
e|d

b e
2
c∑

i=0

µ(d/e)
e

e− i

(
e

2i

)(
2i

i

)
. (1.3)

Due to straightforward symmetries, one can easily verify that all the graphs G(n,
{312, 324̄1}), G(n, {132, 231̄4}) and G(n, {213, 14̄23}) are isomorphic to the graph
G(n, {231, 41̄32}).

12 21

132

213
312

123

Figure 1: The graph G(2, {231, 41̄32}).

In order to get the enumeration of d-cycles in the graphG(n, {231, 41̄32}), we introduce
the notions of marked Motzkin paths, marked Riordan paths and free Motzkin paths.

A Motzkin path of order n is a lattice path in Z × Z from (0, 0) to (n, 0) using up
steps U = (1, 1), down steps D = (1,−1) and horizontal steps H = (1, 0), and never
lying below the x-axis [13]. Denote by Mn the set of all Motzkin paths of order n. It
is well known that Motzkin paths of order n are counted by the n-th Motzkin number

mn =
∑bn

2
c

i=0
1

i+1

(
n
2i

)(
2i
i

)
. A free Motzkin path is just a Motzkin path but without the

restrictions that it has to end with a point on the x-axis and that it cannot go below the
x-axis. Let FMn denote the set of free Motzkin paths from (0, 0) to (n, 0). By simple

arguments we have that |FMn| =
∑bn

2
c

i=0

(
n
2i

)(
2i
i

)
.

A marked Motzkin path is a Motzkin path in which exactly one step before the leftmost
return point is distinguished. Recall that for a lattice path, the points on the x-axis
except for the initial point are called return points. In this sense, the ending point is
always a return point. Denote by M∗

n the set of all marked Motzkin paths of order n.
Let αn = mn−2 + δi,1 where m−1 = 0 and δn,1 = 1 if n = 1 and 0 otherwise. By simple
computation, we derive that the number of marked Motzkin paths of order n with k return
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points is given by ∑
P

n1αn1αn2 . . . αnk

where the sum is over all compositions P = (n1, n2, . . . , nk) of n into k parts. Recall
that a composition of a non-negative integer n into k parts is a list of k positive integers
(n1, n2, . . . , nk) such that their sum is n.

By establishing a bijection Φ between the set M∗
n and the set FMn, we derive that

∑
k>1

∑
P

n1αn1αn2 . . . αnk
=

bn
2
c∑

i=0

(
n

2i

)(
2i

i

)
, (1.4)

where the second sum is over all compositions P = (n1, n2, . . . , nk) of n into k parts.
A Riordan path is a Motzkin path without horizontal steps on the x-axis. Denote

by Rn the set of Riordan paths from (0, 0) to (n, 0). The Riordan number rn counts
the number of Riordan paths from (0, 0) to (n, 0), see [3] and sequence A005043 in [21]
for other combinatorial interpretations of rn. A marked Riordan path is a Riordan path
in which exactly one step before the leftmost return point is distinguished. Denote by
R∗n the set of all marked Riordan paths from (0, 0) to (n, 0). Furthermore, denote by
FM(n, k) the set of all free Motzkin paths from (0, 0) to (n, k).

Let R∗n(U) denote the subset of R∗n in which the marked step of each path is an up
step. Analogously, let R∗n(H) (resp. R∗n(D)) denote the subset of R∗n in which the marked
step of each path is a horizontal (resp. down) step.

By establishing a bijection Γ between the setR∗n(U)∪R∗n(H) and the set FM(n−1, 1),
and a bijection Υ between the subset of R∗n(U) in which each path has k return points
and the set FM(n− 1− k, k − 1), we derive that

∑
k>1

∑
P

n1mn1−2mn2−2 . . .mnk−2 =

bn
2
c∑

i=1

(
n− i− 1

i− 1

)(
n

i

)
, (1.5)

where the second sum is over all compositions P = (n1, n2, . . . , nk) of n into k parts.
Note that each connected subgraph of a path is also a path. Hence a composition

(n1, n2, . . . , nk) of n can be thought of as a subgraph of the path on n vertices, where ni

is the size of the ith connected component. The number of connected components of the
subgraph is the number of parts of the composition. Analogously, a cyclic composition of
n is defined to be a subgraph of the labeled cycle on n vertices where each component is
a path.

Given a cyclic composition P of n into k parts, we first label the path containing the
vertex 1 by B1. Then label the connected components of P clockwise by B2, B3, . . . , Bk.
The type of P , denoted by type(P), is defined to be (n1, n2, . . . , nk), where ni is the size of
Bi. The compositions and the cyclic compositions of n are closely related by the following
trivial observation.

Observation 1.1. There are n1 cyclic compositions P of n into k parts with type(P ) =
(n1, n2, . . . , nk).
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Let cn = 1
n+1

(
2n
n

)
and βn = cn−1 + δn,1. Using generating functions, Ehrenborg et al.

[15] proved that ∑
k>1

∑
P

βn1βn2 . . . βnk
=

(
2n

n

)
(1.6)

∑
P

cn1−1cn2−1 . . . cnk−1 =

(
2n− k − 1

n− 1

)
, (1.7)

where the sum is over all cyclic compositions P of type (n1, n2, . . . , nk). They also asked
for bijective proofs of (1.6) and (1.7).

By Observation 1.1, Formulae (1.6) and (1.7) can be rewritten as∑
k>1

∑
P

n1βn1βn2 . . . βnk
=

(
2n

n

)
(1.8)

∑
P

n1cn1−1cn2−1 . . . cnk−1 =

(
2n− k − 1

n− 1

)
, (1.9)

where the sum is over all compositions P = (n1, n2, . . . , nk) of n into k parts.
Relying on the bijections Φ and Υ, we provide bijective proofs of Formulae (1.8) and

(1.9) in answer to the problem posed by Ehrenborg et al. [15].

Let S̃n denote the set of all bijections π : Z→ Z such that

π(i+ n) = π(i) + n, (1.10)

n∑
i=1

π(i) =

(
n+ 1

2

)
. (1.11)

S̃n is called the affine symmetric group, and the elements of S̃n are called affine permu-
tations. The combinatorial description of affine permutations is due to Lusztig and the
first combinatorial study of them was conducted in [10, 16].

As an interesting variation of pattern avoidance on ordinary permutations, Crites [11]
studied the generating functions for affine permutations avoiding a given pattern. In his
paper [11], he derived that the number of 231-avoiding affine permutations in S̃n is given

by
(
2n−1
n

)
. We denote by S̃n(τ) the set of all τ -avoiding permutations in S̃n.

Based on Formula (1.4), we derive that

|S̃n(231, 41̄32)| = |S̃n(312, 324̄1)| =
bn
2
c∑

i=0

(
n

2i

)(
2i

i

)
.

2 The bijective proofs of (1.4) and (1.5)

Throughout this section we identify a path with a word by encoding each up step by the
letter U , each down step by D and each horizontal step by H. If P = p1p2 . . . pn is a path,
then the reverse of the path, denoted by P , is defined by pnpn−1 . . . p1. For example, the
reverse of the path P = HUDDUDH is given by HDUDDUH.
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Theorem 2.1. There is a bijection Φ between the set of M∗
n and the set FMn.

Proof. We first define a map Φ from the set M∗
n to the set FMn. Given a marked

Motzkin path P ∈ M∗
n, we define Φ(P ) as follows. Let A be the starting point of the

marked step. Denote by P+ the section of the P which goes from (0, 0) to the point A.
Let P− denote the remaining section of P . Define Φ(P ) = P−P+.

According to the construction of the map Φ, we preserve the number of up steps, the
number of down steps and the number of horizontal steps. Hence, the map Φ is well
defined, that is, Φ(P ) ∈ FMn.

In order to show that the map Φ is a bijection, we describe a map Φ′ from the set
FMn to the set M∗

n. Given a free Motzkin path L ∈ FMn, we define Φ′(L) as follows.
Let B be the lowest point of the path L. If there are more than one such lowest point,
we choose B to be the rightmost one. Denote by L− the section of L which goes from
(0, 0) to the point B. Let L+ denote the remaining section of L. Denote by L∗− the path
obtained from L− by marking its first step. Define Φ′(L) = L+L

∗
−.

Since the map Φ′ preserves the number of up steps, the number of down steps, and
the number of horizontal steps, the resulting path is from (0, 0) to (n, 0). Since B is the
(rightmost) lowest point of L, the path L+ has only one lowest point in L. This implies
that L+ has only one lowest point and its initial point is the lowest point of L+. Clearly,
the ending point of L− is the lowest point in both L and Φ′(L). Hence, the resulting path
Φ′(L) is a Motzkin path of order n. Moreover, the marked step is to the left of the first
return point of Φ′(L). This implies that the map Φ′ is well defined.

It is easily seen that the starting point of P+ is the (rightmost) lowest point of Φ(P ).
This ensures that the maps Φ and Φ′ are inverse of each other. Hence, the map Φ is a
bijection, which completes the proof.

Figure 2 shows, as an example, a marked Motzkin path P ∈ M∗
8 in which a down

step is marked, and Figure 3 shows a free Motzkin path Φ(P ) ∈ FM8, whose (rightmost)
lowest point is B.

r��r r��r r
∗@
@r
@
@r��r

@
@r

Figure 2: A marked Motzkin path P ∈M∗
8.

r
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Figure 3: The corresponding free Motzkin Φ(P ) ∈ FM8.

the electronic journal of combinatorics 23(3) (2016), #P3.57 6



A Dyck path of order n is a lattice path in Z× Z from (0, 0) to (2n, 0) using up steps
U = (1, 1) and down steps D = (1,−1), and never lying below the x-axis [12]. Denote
by Dn the set of all Dyck paths of order n. It is well known that Dyck paths of order n
are counted by the n-th Catalan number cn = 1

n+1

(
2n
n

)
. A free Dyck path is just a Dyck

path but without the restrictions that it has to end with a point on the x-axis and that
it cannot go below the x-axis. Let FDn denote the set of free Dyck paths from (0, 0) to
(2n, 0). By simple arguments we have that |FDn| =

(
2n
n

)
. A marked Dyck path is a Dyck

path in which exactly one up step before the leftmost return point is distinguished, and
each peak of height one maybe marked or not. Recall that the height of a step is defined
to be the y-coordinate of its ending point. The height of a peak is the defined to be the
height of its up step. Denote by D∗n the set of all marked Dyck paths of order n.

From the construction of the bijection Φ, one can easily verify that for any marked
Motzkin path L in which the marked step is an up step, its corresponding free Motzkin
path Φ(L) starts with an up step. Hence, we have the following result.

Theorem 2.2. The map Φ induces a bijection between the set of marked Dyck paths of
order n but without any marked peaks and the set of free Dyck paths of order n that starts
with an up step.

By simple arguments, we have that the number of free Dyck paths from (0, 0) to (2n, 0)
that start with an up step is equal to 1

2

(
2n
n

)
=
(
2n−1
n

)
. Moreover, the number of marked

Dyck paths of order n but without any marked peaks is counted by∑
k>1

∑
P

n1cn1−1cn2−1 . . . cnk−1,

where the second sum is over all compositions P = (n1, n2, . . . , nk) of n into k parts. By
Theorem 2.2, we derive that∑

k>1

∑
P

n1cn1−1cn2−1 . . . cnk−1 =

(
2n− 1

n

)
. (2.1)

By simple computation, we get that the number of marked Dyck paths of order n with
k return points is given by ∑

P

n1βn1βn2 . . . βnk
,

where the sum is over all compositions P = (n1, n2, . . . , nk) of n into k parts. Thus, the
left-hand side of (1.8) counts the number of all marked Dyck paths of order n, while the
right-hand side of (1.8) counts the number of all free Dyck paths of order n. In order to
prove (1.8), it suffices to establish a bijection between the set D∗n and the set FDn.

Theorem 2.3. There is a bijection between the set of D∗n and the set FDn.

Proof. We first define a map Ψ from the set D∗n to the set FDn. Given a marked Dyck
path P ∈ D∗n, we define L = Ψ(P ) by the following rules:
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• Let O and N be the initial point and the ending point of P , respectively.

• Let A is the starting point of the up step in the leftmost marked peak. If there is
no such marked peak, let A = N .

• If P has exactly t marked peaks, then it can be uniquely decomposed as

P = POA(UD)∗P1(UD)∗P2 . . . (UD)∗Pt,

where each Pi is a (possibly empty) Dyck path.

• Define L = Ψ(P ) by letting L = DP1UDP2U . . .DPtUΦ(POA) if there are exactly t
marked peaks, and letting L = Φ(POA), otherwise.

According to the construction of the map Ψ, we preserve the number of up steps and
the number of down steps. Hence, the map Ψ is well defined, that is, Ψ(P ) ∈ FDn.

In order to show that the map Ψ is a bijection, we describe a map Ψ′ from the set
FDn to the set D∗n. Given a free Dyck path L ∈ FDn, we define Ψ′(L) by the following
rules:

• Let N be the ending point of L.

• Let A be the starting point of the leftmost up step that is above the x-axis. If there
is no such up step, let A = N .

• Denote by LAN the section of L that goes from the point A to the point N .

• If L starts with a down step, then L is uniquely decomposed as

L = DL1UDL2U . . .DLtULAN ,

where each Li is a (possibly empty) Dyck path. Set

Ψ′(L) = Φ−1(LAN)(UD)∗L1(UD)∗L2 . . . (UD)∗Lt.

• If L starts with an up step, then set Ψ′(L) = Φ−1(LAN).

By Theorem 2.2, the path Φ−1(LAN) is a marked Dyck path without any marked peaks.
Hence, the resulting path Ψ′(L) is a marked Dyck path of order n. This implies that the
map Ψ′ is well defined. Since Φ is a bijection, one can easily check that the map Ψ and
Ψ′ are inverses of each other. Thus, the map Ψ is a bijection. This completes the proof.

Now we proceed to give a combinatorial proof of Formula (1.5). A lifted Motzkin path
of order n is a free Motzkin path from (0, 0) to (n, 1) such that it starts with an up step
and all the points are above the x-axis except for the initial point. Denote by LMn the set
of lifted Motzkin paths of order n. A marked lifted Motzkin path is a lifted Motzkin path
in which exactly one step is marked. Let LM∗

n denote the set of marked lifted Motzkin
paths of order n.
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Theorem 2.4. There is a bijection between the set LM∗
n and the set FM(n, 1).

Proof. Given a marked lifted Motzkin path P ∈ LM∗
n, we shall construct a path Ω(P ) ∈

FM(n, 1) as follows. If the first step of P is marked, then let Ω(P ) = P . Otherwise, let A
be the starting point of the marked step. Denote by P+ the section of P which goes from
(0, 0) to the point A, and P− denote the remaining section of P . Define Ω(P ) = P−P+. It
is easily seen that the map Ω preserves the number of up steps, the number of horizontal
steps and the number of down steps. This yields that the resulting path Ω(P ) is a free
Motzkin path from (0, 0) to (n, 1), that is, the map Ω is well defined.

Conversely, given a free Motzkin path L ∈ FM(n, 1), we wish to recover a path
Ω′(L) ∈ LM∗

n as follows. Let B be the lowest point of the path L. If there are more than
one such lowest point, we choose B to be the rightmost one. If B is the initial point of
L, define Ω′(L) = L. Otherwise, let L− denote the section of L which goes from (0, 0) to
the point B, and L+ denote the remaining section of L. Denote by L∗− the path obtained
from L− by marking its first step. Define Ω′(L) = L+L

∗
−.

Since the map Ω′ preserves the number of up steps, the number of down steps and
the number of horizontal steps, the resulting path is from (0, 0) to (n, 1). One can easily
verify that the resulting path Ω′(L) is a lifted Motzkin path when B is the initial point of
L. In order to show that the map Ω′ is well defined, it remains to show that Ω′(L) ∈ LM∗

n

when B is not the initial point of L. It is easy to check that the point B is the lowest
point of L− both in L and Ω′(L). Obviously, B is the ending point of Ω′(L) and the
y-coordinate of B is 1. Hence, all the points of L− are weakly above the line y = 1 in
Ω′(L). Moreover, the path L+ has exactly one lowest point according to the definition
of B. Clearly, the initial point of L+ is such point. This implies that all the remaining
points of L+ are above the x-axis in Ω′(L). Thus, the resulting path Ω′(L) is a lifted
Motzkin path of order n.

It is easily seen that the ending point of P− is the (rightmost) lowest point of Ω(P ).
Since the section P− contains at least one step, the initial point of Ω(P ) is not the
(rightmost) lowest point of Ω(P ). This ensures that the maps Ω and Ω′ are inverse of
each other. Hence, the map Ω is a bijection, which completes the proof.

Theorem 2.5. There is a bijection between the set R∗n(U)∪R∗n(H) and the set FM(n−
1, 1).

Proof. First, we describe a map Γ from the set R∗n(U)∪R∗n(H) to the set FM(n− 1, 1).
Given a path L ∈ R∗n(U)∪R∗n(H), we construct a path Γ(L) by the following procedure.

• Let O and A be the initial point and the leftmost return point of L, respectively.

• Let LOA denote the section of L which goes from O to A, and let L′ denote the
remaining section of L.

• Let L′′ be the path obtained from LOA by removing its last down step.

• Define Γ(L) = L′Ω(L′′).
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By Theorem 2.4, the path Ω(L′′) ∈ FM(n− 1, 1) which starts with either an up step or
a horizontal step. Meanwhile, the path L′ is a free Motzkin path ending on the x-axis in
which each step is below the x-axis. Hence, the resulting path Γ(L) ∈ FM(n− 1, 1).

Conversely, given a path P ∈ FM(n− 1, 1), we can recover a path Γ′(P ) ∈ R∗n(U) ∪
R∗n(H) as follows.

• Let s be the leftmost step in P which is weakly above the x-axis.

• Let P+ denote the section of P which goes from (0, 0) to the starting point of s, and
let P− denote the remaining section of P .

• Define Γ′(P ) = Ω−1(P−)DP+.

By Theorem 2.4, the path Ω−1(P−) is a marked lifted Motzkin path in which either an up
step or a horizontal step is marked. This implies that the marked step s is to the left of the
leftmost return point in the resulting path Γ′(P ). Since each step of P+ is below the x-axis,
all the steps of P+ is above the x-axis. Hence, we deduce that Γ′(P ) ∈ R∗n(U) ∪ R∗n(H).
Since Ω is a bijection, one can easily check that the maps Γ and Γ′ are inverses of each
other. Thus, the map Γ is a bijection, which completes the proof.

Figure 4 shows, as an example, a marked Riordan path L ∈ R∗8(U) in which an up
step is marked, and Figure 5 shows a free Motzkin path Γ(L) ∈ FM(7, 1).

r��r r��r r
∗ @

@r
@
@r��r

@
@r

Figure 4: A marked Riordan path L ∈ R∗8(U).

r
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@r��r��r r

@
@r��r r

Figure 5: The corresponding free Motzkin Γ(L) ∈ FM(7, 1).

Theorem 2.6. Fix n > 2 and 1 6 k 6 n− 1. There is a bijection between the subset of
R∗n(U) in which each path has exactly k return points and the set FM(n− 1− k, k − 1).

Proof. First, we describe a map Υ from the subset of R∗n(U) in which each path has k
return points to the set FM(n− 1− k, k − 1). Given a path L ∈ R∗n(U) with exactly k
return points, it can be uniquely decomposed as

L = L1L2 . . . Lk,
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where each Li is a Riordan path having exactly one return point.
Now we proceed to construct a path Υ(L) by the following procedure.

• For all 1 6 i 6 k, denote by L′i the path obtained from Li by removing its rightmost
step.

• Let L′ be the path obtained from Ω(L′1) by removing its leftmost step.

• Define Υ(L) = L′L′2L
′
3 . . . L

′
k.

By Theorem 2.4, it is easy to check that Ω(L′1) is a free Motzkin path which starts with
an up step and ends on the line y = 1. From the construction of the map Υ, we remove
altogether k down steps and one up step. Hence, the resulting path Υ(L) is a free Motzkin
path from (0, 0) to (n− 1− k, k − 1).

Conversely, given a path P ∈ FM(n − 1 − k, k − 1), we wish to recover a path
Υ′(P ) ∈ R∗n(U). Clearly, the path P can be uniquely decomposed as

P = P1s1P2s2P3 . . . sk−1Pk,

where the step si is last step that leaves the line y = i− 1 for all 1 6 i 6 k − 1, P1 is the
section of P from (0, 0) to the starting point of s1, each Pi is the section of P between
the steps si−1 and si for all 2 6 i 6 k − 1, and Pk is the remaining section of P .

Obviously, each si is an up step. Moreover, P1 is a free Motzkin path ending on the
x-axis and each Pi is a Motzkin path in which each step is weakly above the line y = i−1
for all 2 6 i 6 k.

Define Υ′(P ) = Ω−1(UP1)Ds1P2Ds2P3D . . . sk−1PkD. By Theorem 2.4, one can easily
check that the resulting path Υ′(P ) ∈ R∗n(U). Moreover, the maps Υ and Υ′ are inverses
of each other. Hence, the map Υ is the desired bijection. This completes the proof.

From Theorems 2.5 and 2.6, it follows that

|R∗n| = |R∗n(U)|+ |R∗n(H)|+ |R∗n(D)|
= |R∗n(U)|+ |R∗n(H)|+ |R∗n(U)|
= |FM(n− 1, 1)|+

∑n−2
k=0 |FM(n− 2− k, k)|

=
∑bn−2

2
c

i=0

(
n−1
2i+1

)(
2i+1
i

)
+
∑n−2

k=0

∑bn−2
2
c

i=0

(
n−2−k
2i−k

)(
2i−k
i−k

)
=
∑n−2

k=−1
∑bn−2

2
c

i=0

(
n−2−k
2i−k

)(
2i−k
i−k

)
=
∑n−1

k=0

∑bn−2
2
c

i=0

(
n−1−k
2i+1−k

)(
2i+1−k
i+1−k

)
(using

(
n
k

)(
k
i

)
=
(
n
i

)(
n−i
k−i

)
)

=
∑n−1

k=0

∑bn−2
2
c

i=0

(
n−1−k
i+1−k

)(
n−2−i

i

)
=
∑n−1

k=0

∑bn−2
2
c

i=0

(
n−1−k
n−2−i

)(
n−2−i

i

)
(using

∑n
k=0

(
k
`

)
=
(
n+1
`+1

)
)

=
∑bn−2

2
c

i=0

(
n−2−i

i

)(
n

n−1−i

)
=
∑bn−2

2
c

i=0

(
n−2−i

i

)(
n

i+1

)
=
∑bn

2
c

i=1

(
n−1−i
i−1

)(
n
i

)
.

the electronic journal of combinatorics 23(3) (2016), #P3.57 11



Hence, we have

|R∗n| =
bn
2
c∑

i=1

(
n− 1− i
i− 1

)(
n

i

)
. (2.2)

On the other hand, by simple computation, we have

|R∗n| =
∑
k>1

∑
P

n1mn1−2mn2−2 . . .mnk−2, (2.3)

where the second sum is over all compositions P = (n1, n2, . . . , nk) of n into k parts.
Combining Formulae (2.2) and (2.3), we are led to Formula (1.5).

Notice that our bijection Υ reduces to a bijection between the subset of D∗n in which
each path has k return points but without marked peaks and the set of free Dyck paths
from (0, 0) to (2n− 1− k, k− 1). By simple computation, one can verify that the former
set is counted by the left-hand side of Formula (1.9), while the latter set is counted by
the right-hand side of Formula (1.9). This leads to a bijective proof of (1.9).

3 Cycles in the graph of (231, 41̄32)-avoiding permutations

We begin with some definitions and notations. A cut point of a permutation π ∈ Sn is
an index j with 1 6 j 6 n− 1 such that for all i and k satisfying 1 6 i 6 j < k 6 n we
have π(i) < π(k). The cut points split a permutation into components, each ending at a
cut point. A permutation without cut points is said to be indecomposable.

A permutation π is said to a L-marked (resp. R-marked) permutation if exactly one
entry of the leftmost (resp. rightmost) component of π is marked. Denote by SL

n and SR
n

the set of L-marked permutations and R-marked permutations, respectively.
For two positive integers a and b with a 6 b, we write [a, b] to denote the sets of

all integers that are larger than a − 1 and smaller than b + 1. Given two permutations
τ = τ(1)τ(2) . . . τ(k) ∈ Sk and σ = σ(1)σ(2) . . . σ(`) ∈ S`, we write τ ⊕ σ to denote
the permutation τ(1)τ(2) . . . τ(k)(σ(1) + k)(σ(2) + k) . . . (σ(`) + k), and we write τ 	σ to
denote the permutation (τ(1) + `)(τ(2) + `) . . . (τ(k) + `)σ(1)σ(2) . . . σ(`).

A closed walk of length d in a graph is a list of d edges (e1, e2, . . . , ed) such that
head(ei) = tail(ei+1) for 1 6 i 6 d − 1 and head(ed) = tail(e1), where for a directed
edge e, head(e) is the node the edge points to, while tail(e) is the other node incident
to e. Two closed walks (e1, e2, . . . , ed) and (ei, ei+1, . . . , ed, e1, e2, . . . , ei−1) are said to be
equivalent. Then a d-cycle is defined to be an equivalence class of size d. For example,
the graph G(2, {231, 41̄32}) in Figure 1 has 5 closed walks of length 2, namely,

(132, 312), (312, 132), (132, 213), (213, 132), (123, 123).

However, the graph G(2, {231, 41̄32}) has only two 2-cycles, since the first (resp. third)
closed walk is equivalent to the second (resp. fourth) walk, while the fifth walk yields a
1-cycle.
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Denote by Wn,d the set of all closed walks of length d in the graph G(n). Denote by
Sn,d the set of permutations π = π(1)π(2) . . . π(n+d) ∈ Sn+d such that π(1)π(2) . . . π(n)
is order-isomorphic to π(d + 1)π(d + 2) . . . π(n + d). Let Wn,d(τ) denote the set of all
closed walks of length d in the graph G(n, τ). Denote by Sn,d(τ) the subset of Sn,d in
which each permutation avoids the pattern τ .

Lemma 3.1. Let n > 2 and n > d > 1. There is a bijection between the set
Wn,d(231, 41̄32) and the set Sn,d(231, 41̄32).

Proof. We first define a map f from the set Wn,d(231, 41̄32) to the set Sn,d(231, 41̄32).
Given a closed walk W = (σ1, σ2, . . . , σd) ∈ Wn,d(231, 41̄32), we recursively generate a
sequence (π1, π2, . . . , πd) of permutations in which πi ∈ Si+n for all i = 1, 2, . . . , d. Let
π1 = σ1. Suppose that we have obtained πi−1. Now we proceed to construct πi from πi−1
by the following insertion algorithm.

• If σi(n + 1) = n + 1, then let πi(n + i) = n + i and let πi(k) = πi−1(k) for all
1 6 k 6 n+ i− 1.

• Otherwise, suppose that σi(a) = σi(n+ 1) + 1. Then let πi(n+ i) = πi−1(a+ i− 1)
and let

πi(k) =

{
πi−1(k) + 1 if πi−1(k) > πi−1(a+ i− 1),
πi−1(k) otherwise.

Define f(W ) = πd.
Claim 1. The subsequence πi(i)πi(i+ 1) . . . πi(i+ n) of πi is order-isomorphic to σi.

We prove Claim 1 by induction on i. Since π1 = σ1, the claim obviously holds for
i = 1. Assume that the claim also holds for i − 1, that is, the subsequence πi−1(i −
1)πi−1(i) . . . πi−1(i−1+n) of πi−1 is order-isomorphic to σi−1. From the construction of πi,
it is easily seen that the subsequence πi(1)πi(2) . . . πi(n+i−1) is order-isomorphic to πi−1.
This implies that the subsequence πi(i)πi(i+ 1) . . . πi(i−1 +n) is order-isomorphic to the
subsequence πi−1(i)πi−1(i+1) . . . πi−1(i−1+n). Recall that head(σi−1) = tail(σi). By the
induction hypothesis, the subsequence πi(i)πi(i+1) . . . πi(i−1+n) is order-isomorphic to
σi(1)σi(2) . . . σi(n). Now we proceed to show that the subsequence πi(i)πi(i+1) . . . πi(i+n)
is order-isomorphic to σi(1)σi(2) . . . σi(n+ 1). We have two cases.

If σi(n+ 1) = n+ 1, then we have πi(i+n) = i+n. Clearly, we have σi(j) < σi(n+ 1)
and πi(j + i− 1) < πi(n+ i) for all 1 6 j 6 n.

If σi(a) = σi(n+ 1) + 1, then we have πi(i+n) = πi−1(a+ i− 1). It is easily seen that
πi(a + i − 1) = πi(n + i) + 1. Moreover, we have πi(j + i − 1) < πi(n + i) if and only if
σi(j) < σi(n+ 1) for all 1 6 j 6 n.

In both cases, one can verify that the subsequence πi(i)πi(i+ 1) . . . πi(i+ n) is order-
isomorphic to σi(1)σi(2) . . . σi(n+ 1). Hence, Claim 1 is proved.
Claim 2. The subsequence πi(j)πi(j + 1) . . . πi(n + j) is order-isomorphic to σj for all
j 6 i.

We prove Claim 2 by induction on i. Since π1 = σ1, the claim obviously holds for
i = 1. Assume that the claim also holds for i− 1. From the construction of πi, it is easily
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seen that the subsequence πi(1)πi(2) . . . πi(n+ i− 1) is order-isomorphic to πi−1. Hence,
the subsequence πi(j)πi(j+1) . . . πi(n+j) is order-isomorphic to σj for all j 6 i−1. From
Claim 1, it follows that the subsequence πi(i)πi(i+1) . . . πi(i+n) of πi is order-isomorphic
to σi. This completes the proof of Claim 2.

By Claim 2, the subsequence πd(1)πd(2) . . . πd(n + 1) is order-isomorphic to σ1,
and the subsequence πd(d)πd(d + 1) . . . πd(n + d) is order-isomorphic to σd. Since
head(σd) = tail(σ1), the subsequence πd(1)πd(2) . . . πd(n) is order-isomorphic to the sub-
sequence πd(d+ 1)πd(d+ 2) . . . πd(d+ n) in πd. This yields that πd ∈ Sn,d.

In order to show that πd ∈ Sn,d(231, 41̄32), it remains to show that πd avoids the
patterns 231 and 41̄32. First, we aim to show that πd avoids the pattern 231. In fact,
we show that πi ∈ Sn+i(231) for all 1 6 i 6 d. We prove the assertion by induction
on i. Since σ1 ∈ Sn+1(231) and π1 = σ1, the assertion holds for i = 1. Assume that
the assertion holds for m 6 i − 1, that is, πm ∈ Sn+m(231) for all m 6 i − 1. Now
we proceed to show that πi ∈ Sn+i(231). Suppose that the subsequence πi(`)πi(j)πi(k)
is an occurrence of 231 where ` < j < k. Recall that the subsequence πi(1)πi(2) . . .
πi(n + i − 1) is order-isomorphic to πi−1, and the subsequence πi(i)πi(i + 1) . . . πi(n + i)
is order isomorphic to σi. Thus, from σi ∈ Sn+1(231) and the induction hypothesis that
πi−1 ∈ Sn+i−1(231), it follows that ` < i and k = n + i. According to the construction
of πi, we have πi(i − 1 + a) = πi−1(i − 1 + a) + 1 = πi(i + n) + 1. This yields that
πi(j) > πi(i − 1 + a). Then either πi(`)πi(j)πi(i − 1 + a) or πi(i − 1 + a)πi(j)πi(i + n)
would form an occurrence of 231. In the former case, πi−1(`)πi−1(j)πi−1(i− 1 + a) would
form an occurrence of 231 in πi−1. This contradicts the fact that πi−1 ∈ Sn+i−1(231). In
the latter case, the subsequence σi(a)σi(j − i− 1)σi(n + 1) would form an occurrence of
231 in σi. This contradicts the fact that σi ∈ Sn+1(231). Hence, we have πi ∈ Sn+i(231).

Our next goal is to show that πd also avoids the pattern 41̄32. We claim that πi ∈
Sn+i(41̄32) for all i = 1, 2, . . . , d. We prove the claim by induction on i. Obviously, the
claim holds for i = 1 since π1 = σ1 and σ1 ∈ Sn+1(41̄32). Assume that πm ∈ Sn+m(41̄32)
for all m 6 i− 1. Now we proceed to show that πi ∈ Sn+i(41̄32). If not, there must exist
three indices `, j, k (` < j < k) such that πi(`)πi(j)πi(k) is an occurrence of 321 which
cannot be extended to an occurrence of 41̄32. More precisely, we have πi(m) > πi(k)
for all ` < m < j. Recall that the subsequence πi(1)πi(2) . . . πi(n + i − 1) is order-
isomorphic to πi−1 and the subsequence πi(i)πi(i + 1) . . . πi(n + i) is order-isomorphic to
σi. Since both πi−1 and σi avoids the pattern 41̄32, we have ` < i and k = n + i. Then
we have 1 6 πi(n + i) < n + i. Since σi ∈ Sn+1(231, 41̄32) and n > 2, it follows that
1 < σi(n+ 1) < n+ 1.

Suppose that σi(b) = σi(n+ 1)− 1. Since the subsequence πi(i)πi(i+ 1) . . . πi(n+ i) is
order-isomorphic to σi, we have πi(i−1 + b) < πi(n+ i). Recall that πi(m) > πi(n+ i) for
all ` < m < j. This implies that j < i−1+b. Then the subsequence πi(`)πi(j)πi(i−1+b)
would from an occurrence of 321. Since πi(1)πi(2) . . . πi(n+ i−1) avoids the pattern 41̄32,
there exists an integer m such that ` < m < j and πi(`)πi(m)πi(j)πi(i − 1 + b) forms
an occurrence of 4132. Then we have πi(m) < πi(i − 1 + b) < πi(n + i). This yields a
contradiction with the fact that πi(m) > πi(n + i) for all ` < m < j. Thus, we deduce
that the indices `, j, k do not exist. Hence, we have πi ∈ Sn+i(41̄32).
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So far, we have concluded the map f is well defined, that is, f(W ) ∈ Sn,d(231, 41̄32).
Conversely, given a permutation π ∈ Sn,d(231, 41̄32), we can recover a closed walk

f ′(π) = (σ1, σ2, . . . , σd) ∈ Wn,d(231, 41̄32) by letting σi be the permutation of [n + 1]
which is isomorphic to π(i)π(i+ 1) . . . π(i+ n) for all i = 1, 2, . . . , d.

In order to show that the map f is a bijection, it suffices to show that the maps f and
f ′ are inverses of each other. First, we aim to show that f ′(f(W )) = W for any closed walk
W = (σ1, σ2, . . . , σd) ∈ Wn,d(231, 41̄32). By the construction of the map f , we recursively
generate a sequence (π1, π2, . . . , πd) of permutations in which each πi is a permutation
of [n + i] and f(W ) = πd. By Claim 2, the subsequence πd(i)πd(i + 1) . . . πd(i + n)
is order-isomorphic to σi. From the construction of the map f ′, it is easily seen that
f ′(f(W )) = W .

Next we turn to the proof of the equality f(f ′(π)) = π for any π ∈ Sn,d(231). Suppose
that f ′(π) = (σ1, σ2, . . . , σd). When apply the map f to f ′(π), we recursively get a
sequence (π1, π2, . . . , πd) of permutations in which each πi is a permutation of [n+ i] and
f(f ′(π)) = πd. In order to show that f(f ′(π)) = π, it suffices to show that πi is order-
isomorphic to π(1)π(2) . . . π(n + i) for all 1 6 i 6 d. We prove by induction on i. Since
π1 = σ1 and σ1 is order-isomorphic to π(1)π(2) . . . π(n+ 1), the assertion holds for i = 1.
Assume that πi−1 is order-isomorphic to π(1)π(2) . . . π(n + i − 1). Now we proceed to
show that the assertion also holds for i. We have two cases.

Case 1. σi(n + 1) = n + 1. From the construction of πi, we have πi(n + i) = n + i
and πi−1(k) = πi(k) for all 1 6 k 6 n + i − 1. By the induction hypothesis that πi−1 is
order-isomorphic to π(1)π(2) . . . π(n + i − 1), in order to prove the assertion, it suffices
to show that π(k) < π(n + i) for all 1 6 k 6 n + i − 1. Since π(i)π(i + 1) . . . π(i + n) is
order-isomorphic to σi, we have π(k) < π(i + n) for all i 6 k 6 i + n − 1. It remains to
show that π(k) < π(i + n) for all 1 6 k 6 i − 1. Recall that π(1)π(2) . . . π(n) is order-
isomorphic to π(d+ 1)π(d+ 2) . . . π(d+ n). This yields that π(d+ 1)π(d+ 2) . . . π(i+ n)
is order-isomorphic to π(1)π(2) . . . π(i + n − d). Since π(k) < π(i + n) for all d + 1 6
k < i + n, we have π(k) < π(i + n − d) for all 1 6 k < i + n − d. Thus, it follows that
π(k) < π(i+ n− d) < π(n+ i) for all 1 6 k 6 i− 1.

Case 2. 1 6 σi(n+ 1) < n+ 1. Suppose that σi(a) = σi(n+ 1) + 1. According to the
construction of πi, we have πi(n+ i) = πi−1(a+ i− 1) and

πi(k) =

{
πi−1(k) + 1 if πi−1(k) > πi−1(a+ i− 1),
πi−1(k) otherwise.

Obviously, we have πi(a+ i− 1) = πi−1(a+ i− 1) + 1, which implies that πi(a+ i− 1) =
πi(i+n) +1. Recall that πi(1)πi(2) . . . πi(n+ i−1) is order-isomorphic to πi−1 and πi−1 is
order-isomorphic to π(1)π(2) . . . π(n+ i− 1). In order to prove the assertion, it suffices to
show that π(a+i−1) = π(i+n)+1. Since σi is order-isomorphic to π(i)π(i+1) . . . π(i+n),
the inequality σi(a) > σi(n+1) leads to π(i−1+a) > π(n+i). Suppose that π(a+i−1) >
π(i+n)+1 and π(m) = π(i+n)+1. We claim thatm < i. If not, suppose thatm > i. Since
σi is order-isomorphic to the subsequence π(i)π(i+ 1) . . . π(n+ i), we have m = a+ i− 1,
which contradicts the assumption π(a + i − 1) > π(i + n) + 1 and π(m) = π(i + n) + 1.
Hence we have m < i. Then the subsequence π(m)π(a + i − 1)π(n + i) would form an
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occurrence of 231 in π, which yields a contradiction with the fact that π avoids the pattern
231. This completes the proof.

Given a permutation π ∈ Sn,d(231, 41̄32), suppose that the entry π(d + a) is the
maximum among the entries π(d+ 1), π(d+ 2), . . . , π(2d). The permutation is said to be
of type one if π(k) < π(d + a) for all 1 6 k 6 d. Otherwise, it is said to be of type two.
We partition the set Sn,d(231, 41̄32) into two subsets X and Y , where X is the set all
permutations of type one and Y is the set of all permutations of type two.

Observation 3.2. Let n > d > 1. Given a permutation π ∈ Sn,d, we have π(d + x) >
π(d+ y) if and only if π(x) > π(y), where 1 6 x < y 6 n.

Lemma 3.3. Let n > d > 1. Given a permutation π ∈ Sn+d, suppose that π(d + a) is
the maximum among the elements π(d+ 1), π(d+ 2), . . . , π(2d). Then π ∈ X if and only
if π has the following properties.

(i) The subsequence π(a)π(a+ 1) . . . π(a+ d− 1) is a (231, 41̄32)-avoiding permutation
of [a, d− 1 + a].

(ii) The subsequence π(1)π(2) . . . π(a − 1) is a permutation of [a − 1] which is order-
isomorphic to the subsequence π(d+ 1)π(d+ 2) . . . π(d+ a− 1).

(iii) π(i+ d) = π(i) + d for all i > a.

Proof. It is easily seen that if π has properties (i), (ii) and (iii), then π ∈ X.
Now suppose that π ∈ X, we shall show that π verifies properties (i), (ii) and (iii).
(i) By Observation 3.2, the entry π(a) is also the maximum among the entries

π(1), π(2), . . . , π(d). This implies that π(i) < π(a) for all i 6 a − 1. Since π avoids the
pattern 231, we have π(i) < π(j) for all i < a < j. By similar reasoning, it is easy to verify
that π(i) < π(j) for all i < a+d < j. Hence, the permutation π(a)π(a+1) . . . π(a+d−1)
is a (231, 41̄32)-avoiding permutation of [a, a+ d− 1].

(ii) Recall that the subsequence π(1)π(2) . . . π(n) is order-isomorphic to the subse-
quence π(d+ 1)π(d+ 2) . . . π(d+ n). Moreover, we have π(k) < a for all k 6 a− 1. This
implies that the subsequence π(1)π(2) . . . π(a − 1) is a permutation of [a − 1] which is
order-isomorphic to the subsequence π(d+ 1)π(d+ 2) . . . π(d+ a− 1).

(iii) By Observation 3.2, the subsequence π((k+1)d+a)π((k+1)d+a+1) . . . π((k+2)d+
a−1) is order-isomorphic to the subsequence π(kd+a)π(kd+a+1) . . . π((k+1)d+a−1)
for all k > 0. In order to verify (iii), it remains to show that π(kd + a)π(kd + a +
1) . . . π((k + 1)d + a − 1) is permutation of [kd + a, (k + 1)d + a − 1] for all k > 0.
We prove by induction on k. By property (i), the assertion holds for k = 0. Assume
that the assertion holds for all m 6 k − 1. Now we proceed to show that the assertion
also holds for k. By the induction hypothesis, we have π((k − 1)d + x) < π(y) for all
a 6 x 6 d+a−1 and y > kd+a−1. By Observation 3.2, we have π(kd+x) < π(d+y) for all
a 6 x 6 d+a−1 and y > kd+a−1. Hence, by the induction hypothesis, the subsequence
π(kd+ a)π(kd+ a+ 1) . . . π((k+ 1)d+ a− 1) is permutation of [kd+ a, (k+ 1)d+ a− 1].
This completes the proof.
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Lemma 3.4. Given a permutation π ∈ Sn+d, suppose that π(d+ a) is the maximum ele-
ment among the elements π(d+1), π(d+2), . . . , π(2d) and there are exactly k entries among
the elements π(1), π(2), . . . , π(d) which are larger than πd+a. Let π(b1), π(b2), . . . , π(bk) be
such entries, where b1 < b2 < . . . < bk < d + a. Then π ∈ Y if and only if π has the
following properties.

(i)
′
a = b1.

(ii)
′
π ∈ Sn,d.

(iii)
′

For all 1 6 i 6 k, the subsequence π(bi+1)π(bi+2) . . . π(bi+1−1) avoids the patterns
231 and 41̄32 with the assumption bk+1 = d+ b1.

(iv)
′

For all p > 0 and 1 6 i 6 k, we have π(pd+ bi) = n+ d+ 1− i− pk.

(v)
′

For all p > 0 and 1 6 i 6 k, we have π(x) < π(y) if x < pd+bi 6 y and x 6= md+bj
for all m > 0 and 1 6 j 6 k.

(vi)
′

For all 1 6 i 6 k, we have bi+1 − bi > 2 with the assumption bk+1 = d+ b1.

Proof. It is easy to check that if π has properties (ii)
′
-(v)

′
, we have π ∈ Sn,d(231). It

remains to show that π avoids the pattern 41̄32. We argue by contradiction. Suppose
that there exist three indices x, y, z with x < y < z such that π(x)π(y)π(z) (x < y < z) is
a pattern of 321, which cannot be extended to a pattern 4132. By properties (ii)

′
-(v)

′
, we

have x = pd+ bi for some nonnegative integer p and some positive integer i. By property
(ii)

′
, the subsequence π(bi)π(y − pd)π(z − pd) also forms a pattern 321 which cannot be

extended to a pattern 4132. By property (iii)
′
, we have z−pd > b1+d−1. From property

(v)
′
, we have y− pd > bi+1 since π(y− pd) > π(z− pd). By property (v)

′
and (vi)

′
, there

exists an entry π(`) such that π(`) < π(z−pd) and bi < ` < bi+1. Hence, the subsequence
π(bi)π(y − pd)π(z − pd) forms a pattern 321 which can be extended to a pattern 4132,
which yields a contradiction. So such indices x, y, z do not exist. This implies that π
avoids the pattern 41̄32.

Our next goal is to show that if π ∈ Y , then it verifies Properties (i)
′
-(vi)

′
.

(i)
′

Recall that the entry π(d+ a) is the maximum among the entries π(d+ 1), π(d+
2), . . . , π(d + a). From Observation 3.2, it follows that that the entry π(a) is also the
maximum among the entries π(1), π(2), . . . , π(d). Since π avoids the pattern 231, we have
π(b1) > π(b2) > . . . > π(bk) > π(d + a). Notice that we have π(j) < π(d + a) for all
j 6 d and j /∈ {b1, b2, . . . , bk}. Thus, the entry π(b1) is the maximum among the entries
π(1), π(2), . . . , π(d), which implies that a = b1. This verifies property (i)

′
.

Properties (ii)
′

and (iii)
′

follow immediately from the fact that π ∈ Sn,d(231, 41̄32).
(iv)

′
We proceed by induction on p. First, we aim to show that the assertion holds for

p = 0. Recall π(j) < π(d + a) for all j 6 d and j /∈ {b1, b2, . . . , bk} and π(b1) > π(b2) >
. . . > π(bk) > π(d+ a) = π(d+ b1). This implies that π(b1) > π(b2) > . . . > π(bk) > π(j)
for all j 6 d and j /∈ {b1, b2, . . . , bk}. In order to verify π(bi) = n + d + 1 − i, it remains
to show that π(b1) > π(b2) > . . . > π(bk) > π(j) for all j > d. Notice that the entry
π(d+ b1) is the maximum among the entries π(d+ 1)π(d+ 2) . . . π(2d). This implies that
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π(bk) > π(d+j) for all 1 6 j 6 d. By Observation 3.2, we have π(pd+bk) > π((p+1)d+j)
for all 1 6 j 6 d. This yields that π(b1) > π(b2) > . . . > π(bk) > π(j) for all j > d. Thus,
we have π(bi) = n+ d+ 1− i for all 1 6 i 6 k.

Now assume that π(md+bj) = n+d+1− j−mk for all m 6 p−1 and 1 6 j 6 k. We
shall show that π(pd+ bj) = n+ 1− j − pk for all 1 6 j 6 k. We argue by contradiction.
Suppose that q is the maximum integer such that q 6 k and π(pd+b`) = n+d+1−`−pk
for all ` < q. In other words, we have π(pd + bq) < n + d + 1 − q − pk. Suppose that
π(x) = n+d+1− q−pk. Notice that we have showed that π(b1) > π(b2) > . . . > π(bk) >
π(y) for all y /∈ {b1, b2, . . . , bk}. By Observation 3.2, we have π(pd + b1) > π(pd + b2) >
. . . > π(pd + bk) > π(pd + y) for all y /∈ {b1, b2, . . . , bk}. So we have x 6 pd. If q > 1,
then the subsequence π(x)π(pd + b1)π(pd + bq) would form an occurrence of 231 in π.
This contradicts the fact that π avoids the pattern 231. If q = 1, then the inequality
π(x) > π(pd + b1) implies that π(x − d) < π((p − 1)d + b1) by Observation 3.2. This
contradicts the fact that π(y) < π((p− 1)d+ b1) for all y < (p− 1)d+ b1 and y 6= sd+ bj
for all s > 1 and 1 6 j 6 k. Thus, such integer q does not exist. This implies that
π(pd+ bj) = n+ d+ 1− j − pk for all 1 6 j 6 k, which verifies property (iv)

′
.

Property (v)
′

follows immediately from property (iv)
′

since π avoids the pattern 231.
Now we proceed to show that π has property (vi)

′
. We have two cases.

Case 1. k > 1. If bi+1 = bi+1 for 1 6 i 6 k−1, then by property (iv)
′
the subsequence

π(bi)π(bi+1)π(d + b1) would form an occurrence of 321 which cannot be extended to a
pattern 4132, which yields a contradiction. This implies that bi+1−bi > 2 for 1 6 i 6 k−1.
If bk+1 = bk + 1, then by property (iii)

′
, the subsequence π(bk)π(d + b1)π(d + b2) would

form an occurrence of 321 which cannot be extended to a pattern 4132, which yields a
contradiction. This yields that bk+1− bk > 2. Thus, we deduce that when k > 1, we have
bi+1 − bi > 2 for all 1 6 i 6 k.

Case 2. k = 1. We claim that d > 1. If not, suppose that d = 1. Since n > 2, we have
n+d > 3. Recall that b1 = 1 when d = 1. By property (iv)

′
, the subsequence π(1)π(2)π(3)

would form an occurrence of 321, which cannot be extended to an occurrence of 4132.
This yields a contradiction. Hence, the claim is proved, that is, we have d > 1. Then we
have b2 − b1 = d+ b1 − b1 = d > 2. This completes the proof.

Lemma 3.5. Let n > d > 1. There is a bijection between the set X and the set
SL

d (231, 41̄32).

Proof. Given a permutation π ∈ X, we wish to obtain a marked permutation g(π) ∈
SL

n(231, 41̄32). Suppose that π(d + a) is the maximum element among the elements
π(d + 1), π(d + 2), . . . , π(2d). Let π′ be the permutation of [d] which is order-isomorphic
to π(a)π(a + 1) . . . π(a + d− 1). Define g(π) to be the permutation obtained from π′ by
marking the entry π′(d− a+ 1).

Obviously, π′ avoids the patterns 231 and 41̄32. This implies that the resulting permu-
tation g(π) also avoids the patterns 231 and 41̄32. Since the subsequence π(1)π(2) . . . π(n)
is order-isomorphic to the subsequence π(d+1)π(d+2) . . . π(d+n), the element π(a) is also
the maximum among the elements π(1), π(2), . . . , π(d). Thus, we have π(i) < π(a) for all
a+1 < i 6 d. Since π′ is order-isomorphic to the subsequence π(a)π(a+1) . . . π(a+n−1),
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the leftmost component contains at least d− a+ 1 elements. Hence, the resulting permu-
tation g(π) ∈ SL

n(231, 41̄32).
Conversely, given a marked permutation σ ∈ SL

n(231, 41̄32), we wish to recover a
permutation π = g′(σ) ∈ X. Suppose that the b-th entry of its leftmost component is
marked. Let a = d+1−b. Define π to be the permutation such that π(a)π(a+1) . . . π(a+
d− 1) is order-isomorphic to σ and verifies properties (i), (ii) and (iii).

By Lemma 3.3, one can easily verify that g′(π) ∈ X and and the maps g and g′ are
inverses of each other. Hence, the map g is a bijection. This completes the proof.

Lemma 3.6. Let n > 2 and n > d > 1. There is a bijection between the set Y and
the set of permutations π ∈ SR

d (231, 41̄32) in which each component contains at least two
entries.

Proof. Given a permutation π ∈ Y , suppose that π(d + a) is the maximum among the
entries π(d+ 1), π(d+ 2), . . . , π(2d). Suppose that there are exactly k entries among the
entries π(1), π(2), . . . , π(d) which are larger than πd+a. Let π(b1), π(b2), . . . , π(bk) be such
entries, where b1 < b2 < . . . < bk < d+ a. By Lemma 3.4, π has Properties (i)

′
-(vi)

′
.

Now we proceed to define a map ξ from the set Y to the set of permutations π ∈
SR

d (231, 41̄32) in which each component contains at least two entries. Assume that bk+1 =
d + b1. Let σi be the permutation of [bi+1 − bi − 1] which is order-isomorphic to the
subsequence π(bi + 1)π(bi + 2) . . . π(bi+1 − 1) for all 1 6 i 6 k . Let σ = (1	 σ1)⊕ (1	
σ2) . . . ⊕ (1 	 σk). Define ξ(π) to be the permutation obtained from σ by marking the
a-th entry of the rightmost component of σ.

By properties (iv)
′

and (v)
′
, we have that the subsequence π(bi)π(bi +1) . . . π(bi+1−1)

is a (231, 41̄23)-avoiding permutation which is order-isomorphic to 1	σi for all 1 6 i 6 k.
Hence, the resulting permutation σ ∈ Sd(231, 41̄32). Since bk 6 d and bk+1 = d + a, we
have that |σk| = bk+1 − bk − 1 > d + a− 1− d = a− 1. This ensures that the rightmost
component of σ contains at least a entries. Thus, we have ξ(π) ∈ SR

d (231, 41̄32). In order
to show that the map ξ is well defined, it remains to show that each component of ξ(π)
contains at least two entries. By property (vi)

′
, we have |σi| = bi+1 − bi − 1 > 1 for all

1 6 i 6 k. Hence, we have concluded that the map ξ is well defined.
Conversely, given a permutation σ ∈ SR

d (231, 41̄32) in which each component contains
at least two entries, we shall recover a permutation ξ′(σ) ∈ Y . Suppose that σ is uniquely
decomposes as

σ = (1	 σ1)⊕ (1	 σ2) . . .⊕ (1	 σk),

where each σi is a (231, 41̄32)-avoiding permutation. Assume that the a-th entry of the
last component of σ is marked. Let b1 = a and bi+1 = bi + |σi| for all 1 6 i 6 k. Let
ξ′(σ) to the permutation π such that the subsequence π(bi + 1)π(bi + 2) . . . π(bi+1 − 1) is
order-isomorphic to σi for all 1 6 i 6 k, and satisfies properties (ii)

′
-(vi)

′
.

Recall that bi+1− bi = |σi| > 1. By Lemma 3.4, we have π ∈ Y and the maps ξ and ξ′

are inverses of each other. Hence, the map ξ is the desired bijection. This completes the
proof.
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Next we give an overview of Guibert’s bijection [19] between the set Sn(231, 41̄32) and
the setMn. Given a permutation π ∈ Sn(231, 41̄32), we recursively construct a Motzkin
path χ(π) as follows.

• Suppose that π = π′n, where π′ ∈ Sn(231, 41̄32). Set χ(π) = χ(π′)H.

• Suppose that π = π′n(i + 1)π̃′′ for some 0 6 i 6 n − 2, where π′ ∈ Si(231, 41̄32),

π′′ ∈ Sn−2−i(231, 41̄32) and π̃′′ is obtained from π′′ by adding i + 1 to every entry.
Set χ(π) = χ(π′)Uχ(π′′)D.

Notice that the bijection χ induces an one-to-one correspondence between the set of
indecomposable (231, 41̄32)-avoiding permutations of [n] and the set of Motzkin paths of
order n with exactly one return point.

Lemma 3.7. For n > 1, the number of indecomposable (231, 41̄32)-avoiding permutations
of [n] is given by mn−2 + δn,1.

By Lemma 3.7, it is easy to verify that the cardinality of the set SL
d (231, 41̄32) is given

by the left-hand side of Formula 1.4, while the cardinality of the subset of SR
d (231, 41̄32)

in which each component contains at least two entries is given by the left-hand side of
Formula 1.5. Together with Formulae (1.4) and (1.5), Lemmas 3.5 and 3.6 imply that,
for n > 2 and n > d > 1,

|Sn,d(231, 41̄32)| = |X|+ |Y |
=

∑b d
2
c

i=0

(
d
2i

)(
2i
i

)
+
∑b d

2
c

i=1

(
d−i−1
i−1

)(
d
i

)
=

∑b d
2
c

i=0

(
d
2i

)(
2i
i

)
+
∑b d

2
c

i=0
i

d−i

(
d
2i

)(
2i
i

)
=

∑b d
2
c

i=0
d

d−i

(
d
2i

)(
2i
i

)
.

(3.1)

Combining Lemma 3.1 and Formula (3.1), we get the enumeration of closed walks of
length d in the graph G(n, 231, 41̄32).

Theorem 3.8. For n > 2 and n > d > 1, the number of closed walks of length d in the

graph G(n, 231, 41̄32) is given by
∑b d

2
c

i=0
d

d−i

(
d
2i

)(
2i
i

)
.

Following the approach given in [15], we get the enumeration of d-cycles in the graph
G(n, 231, 41̄32).

Theorem 3.9. For n > 2 and n > d > 1, the number of d-cycles in the graph

G(n, 231, 41̄32) is given by 1
d

∑
e|d
∑b e

2
c

i=0 µ(d/e) e
e−i

(
e
2i

)(
2i
i

)
.

Proof. Let h(d) denote the number of d-cycles. A closed walk of length d can be obtained
by choosing a divisor e of d, an e-cycle and a starting point on the cycle. By repeating
the e-cycle d/e times, we obtain a closed walk of length d. Hence, by Theorem 3.8, we
have

b d
2
c∑

i=0

d

d− i

(
d

2i

)(
2i

i

)
=
∑
e|d

e · h(e).

The result follows by classic Möbius inversion. This completes the proof.
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4 Affine permutations avoiding barred patterns

Given a permutation π ∈ Sn, the reverse-complement of π, denoted by πrc, is defined to be
the permutation (n+1−π(n))(n+1−π(n−1)) . . . (n+1−π(1)). Clearly, the permutation π
is indecomposable if and only if its reverse-complement πrc is indecomposable. Moreover, a
permutation is (231, 41̄32)-avoiding if and only if its reverse-complement πrc is (312, 324̄1)-
avoiding. By lemma 3.7, we get the following result.

Lemma 4.1. For n > 1, the number of indecomposable (312, 324̄1)-avoiding permutations
of [n] is given by mn−2 + δn,1.

By Lemmas 3.7 and 4.1, we have

|SL
n(231, 41̄32)| = |SR

n (312, 324̄1)| =
∑
k>1

∑
P

n1αn1αn2 . . . αnk
, (4.1)

where the second sum is over all compositions P = (n1, n2, . . . , nk) of n into k parts.
Hence, from Formula (1.4), it follows that

|SL
n(231, 41̄32)| = |SR

n (312, 324̄1)| =
bn
2
c∑

i=0

(
n

2i

)(
2i

i

)
. (4.2)

Lemma 4.2. There is a bijection between the set S̃n(231, 41̄32) and the set SL
n(231, 41̄32).

Proof. Given a permutation π ∈ S̃n(231, 41̄32), we wish to obtain a marked permutation
θ(π) ∈ SL

n(231, 41̄32). Suppose that π(a) is the maximum element among the elements
π(1), π(2), . . . , π(n). By Condition (1.10), π(n + a) is also the maximum element among
the elements π(n+1), π(n+2), . . . , π(2n). Moreover, we have π(i) < π(a) for all i 6 a−1.
Since π avoids the pattern 231, we have π(i) < π(j) for all i < a < j. By similar reasoning,
it is easy to verify that π(i) < π(j) for all i < a + n < j. Hence, the permutation
π(a)π(a + 1) . . . π(a + n − 1) is a (231, 41̄32)-avoiding permutation of [a, a + n − 1]. Let
π′ be the permutation of [n] which is order-isomorphic to π(a)π(a + 1) . . . π(a + n − 1).
Define θ(π) to be the permutation obtained from π′ by marking the (n+ 1− a)-th entry.

Obviously, π′ avoids the patterns 231 and 41̄32. This implies that the resulting per-
mutation θ(π) also avoids the patterns 231 and 41̄32. Recall that π(i) < π(a) for all
a+ 1 < i 6 n and π′ is order-isomorphic to the subsequence π(a)π(a+ 1) . . . π(a+n− 1).
This yields that the leftmost component of π′ contains at least n+ 1−a elements. Hence,
the resulting permutation θ(π) ∈ SL

n(231, 41̄32).
Conversely, given a marked permutation σ ∈ SL

n(231, 41̄32), we wish to recover an

affine permutation π = θ′(σ) ∈ S̃n(231, 41̄32). Suppose that the σ(b) is marked. Define
π to be the bijection π : Z→ Z such that

• π(n− b + 1)π(n− b + 2) . . . π(2n− b) is a permutation of [n− b + 1, 2n− b] which
is order-isomorphic to σ;

• π(i+ n) = π(i) + n.
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Clearly, the resulting permutation π avoids the patterns 231 and 41̄32. In order to show
that π ∈ S̃n(231, 41̄32), it suffices to show that

∑n
i=1 π(i) =

(
n+1
2

)
. From π(i+n) = πi+n

and
∑2n−b

i=n−b+1 π(i) =
(
n+1
2

)
+ n(n− b), it follows that

n∑
i=1

π(i) =
2n−b∑

i=n−b+1

π(i)− n(n− b) =

(
n+ 1

2

)
.

Hence, the map θ′ is well-defined, that is, π = θ′(σ) ∈ S̃n(231, 41̄32).
It is straightforward to check that the construction of the map θ′ reverses each step of

the construction of the map θ. Thus the maps θ and θ′ are inverses of each other. This
yields that the map θ is the desired bijection, which completes the proof.

Our next goal is to establish an analogous bijection between the set S̃n(312, 324̄1) and
the set SR

n (312, 324̄1).

Lemma 4.3. There is a bijection between the set S̃n(312, 324̄1) and the set SR
n (312, 324̄1).

Proof. Given a permutation π ∈ S̃n(312, 324̄1), we wish to obtain a marked permutation
τ(π) ∈ SR

n (312, 324̄1). Suppose that π(a) is the minimum element among the elements
π(1), π(2), . . . , π(n). By Condition (1.10), π(a + n) is also the minimum element among
the elements π(n+1), π(n+2), . . . , π(2n). Moreover, we have π(i) > π(a) for all i > a+1.
Since π avoids the pattern 312, we have π(i) < π(j) for all i < a < j. By similar reasoning,
it is easy to verify that π(i) < π(j) for all i < a + n < j. Hence, the permutation
π(a+ 1) . . . π(a+ n) is a (312, 324̄1)-avoiding permutation of [a+ 1, a+ n]. Let π′ be the
permutation of [n] which is order-isomorphic to the subsequence π(a+1)π(a+2) . . . π(a+
n). Define τ(π) to be the marked permutation obtained from π′ by marking the a-th
entry.

Obviously, π′ avoids the patterns 312 and 324̄1. This implies that the resulting permu-
tation τ(π) also avoids the patterns 312 and 324̄1. Recall that π(n+ i) > π(n+ a) for all
1 6 i 6 a− 1 and π′ is order-isomorphic to the subsequence π(a+ 1)π(a+ 2) . . . π(a+n).
This yields that the rightmost component of π′ contains at least a elements. Hence, the
resulting permutation τ(π) ∈ SR

n (312, 324̄1).
Conversely, given a marked permutation σ ∈ SR

n (312, 324̄1), we wish to recover an

affine permutation π = τ ′(σ) ∈ S̃n(312, 324̄1). Suppose that the b-th entry of its rightmost
component is marked. Define π to be the bijection π : Z→ Z such that

• π(b+1)π(b+2) . . . π(n+b) is a permutation of [b+1, n+b] which is order-isomorphic
to σ;

• π(i+ n) = π(i) + n.

Clearly, the resulting permutation π avoids the patterns 312 and 324̄1. In order to show
that π ∈ S̃n(312, 324̄1), it suffices to show that

∑n
i=1 π(i) =

(
n+1
2

)
. Since π(i+n) = πi+n

and
∑n+b

i=b+1 π(i) =
(
n+1
2

)
+ nb, we have

n∑
i=1

π(i) =
n+b∑

i=b+1

π(i)− nb =

(
n+ 1

2

)
.
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Hence, the map τ ′ is well-defined, that is, that is, σ = τ ′(P ) ∈ S̃n(312, 324̄1). It is easy
to verify that the maps τ and τ ′ are inverses of each other. Thus, the map τ is the desired
bijection, which completes the proof.

Together with Formula (4.2), Lemmas 4.2 and 4.3 lead to the following result.

Theorem 4.4. For n > 1, we have |S̃n(231, 41̄32)| = |S̃n(312, 324̄1)| =
∑bn

2
c

i=0

(
n
2i

)(
2i
i

)
.
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