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Abstract

A positive linear fractional transformation (PLFT) is a function of the form
f(z) = az+b

cz+d where a, b, c and d are nonnegative integers with determinant ad− bc 6=
0. Nathanson generalized the notion of the Calkin-Wilf tree to PLFTs and used
it to partition the set of PLFTs into an infinite forest of rooted trees. The roots
of these PLFT Calkin-Wilf trees are called orphans. In this paper, we provide a
combinatorial formula for the number of orphans with fixed determinant D. In
addition, we derive a method for determining the orphan ancestor of a given PLFT.
Lastly, taking z to be a complex number, we show that every positive complex
number has finitely many ancestors in the forest of complex (u, v)-Calkin-Wilf trees.

1 Introduction

In [5], Calkin and Wilf introduced a rooted infinite binary tree where every vertex is
labeled by a positive rational number according to the following rules:

(A) the root is labeled 1/1,

(B) the left child of a vertex a/b is labeled a/(a+ b), and

(C) the right child of a vertex a/b is labeled (a+ b)/b.

Figure 1 shows the first five rows of this tree, known as the Calkin-Wilf tree.

∗Support for this project was provided by PSC-CUNY Awards, jointly funded by The Professional
Staff Congress and The City University of New York: #67111-00 45 and #68121-00 46 to the second
author, and #67136-00 45 to the third author.
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Figure 1: The first five rows of the Calkin-Wilf tree.

As noted by several authors [10, 15], replacing a/b in (B) and (C) above by the variable
z shows that the vertex labels of the Calkin-Wilf tree are generated by applying one of
two transformations. For any vertex labeled z in the Calkin-Wilf tree, the left child of z
is L(z) := z

z+1
and the right child of z is R(z) := z + 1. It is this observation that serves

as the starting point of a generalization of the Calkin-Wilf tree due to Nathanson [15].
By a positive linear fractional transformation (PLFT), we mean a function of the form

f(z) =
az + b

cz + d
,

where a, b, c, and d are nonnegative integers with ad − bc 6= 0. A special PLFT has the
additional requirement that ad− bc = 1. (Note that L(z) and R(z), the transformations
used in connection to the Calkin-Wilf tree, are special PLFTs.)

Before moving forward, we mention some important facts regarding PLFTs that we
will make use of repeatedly. Formal proofs of the following theorems can be found in [15].

Theorem 1. The set of PLFTs forms a monoid under function composition. Further-
more, this monoid is isomorphic to GL2(N0), the set of invertible 2-by-2 matrices over
N0, via the map

az + b

cz + d
7→
[
a b
c d

]
.

Theorem 2. The set of special PLFTs forms a free monoid of rank 2, generated by
L(z) and R(z), under function composition. Furthermore, the monoid is isomorphic to
SL2(N0), the set of invertible 2-by-2 matrices over N0 with determinant 1, via the map
from Theorem 1.

Consider a rooted infinite binary tree where every vertex is labeled according to the
following rules:

(A’) the root is labeled by a PLFT g(z),

(B’) the left child of a vertex f(z) is labeled f(z)/(f(z) + 1), and
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(C’) the right child of a vertex f(z) is labeled f(z) + 1.

Note that Theorem 1 ensures that the left child and right child of a PLFT f(z) are also
PLFTs. It quickly follows by induction that a tree generated using the above rules has all
of its vertices labeled by a PLFT. Such a tree will be referred to as a PLFT Calkin-Wilf
tree (PLFT CW-tree) with root g(z) and denoted by T (g(z)). Figure 2 shows the first
four rows of T (z).

z

z + 1

z + 2

z + 3z+2
z+3

z+1
z+2

2z+3
z+2

z+1
2z+3

z
z+1

2z+1
z+1

3z+2
z+1

2z+1
3z+2

z
2z+1

3z+1
2z+1

z
3z+1

Figure 2: The first four rows of T (z).

Theorem 1 shows that we can associate a unique matrix in GL2(N0) with each PLFT
in a natural way. Furthermore, the isomorphism between the two sets shows that we can
compute the vertices of a PLFT CW-tree via matrix multiplication by the matrices

L1 :=

[
1 0
1 1

]
and R1 :=

[
1 1
0 1

]
.

Throughout the rest of this article, we will freely switch between either set, depending
on the circumstances. As an example, Figure 3 shows the first four rows of the tree of
matrices associated with T (z) (Figure 2).

[
1 0
0 1

]

[
1 1
0 1

]

[
1 2
0 1

]

[
1 3
0 1

][
1 2
1 3

]

[
1 1
1 2

]

[
2 3
1 2

][
1 1
2 3

]

[
1 0
1 1

]

[
2 1
1 1

]

[
3 2
1 1

][
2 1
3 2

]

[
1 0
2 1

]

[
3 1
2 1

][
1 0
3 1

]

Figure 3: The first four rows of the matrix tree associated with T (z).

One remarkable property of the original Calkin-Wilf tree is that it produces an enu-
meration of the positive rationals [5]. With the exception of the number 1 (the root),
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every positive rational number has a parent in this tree. While Theorem 2 shows that a
similar result holds for special PLFTs, this is not the case for the set of all PLFTs.

Luckily, not all is lost in this generalization. From [15], we find that the set of PLFTs
is partitioned into an infinite forest of PLFT CW-trees. That is, each PLFT belongs to
a unique such tree. The roots of these tress (which are not the children of any other
PLFT) are called orphans and they are of the form az+b

cz+d
with either a < c and b > d or,

alternatively, a > c and b < d. The goal of this article is to further explore this set of
orphans.

In Section 2 we cover some basic properties of a function that counts the number of
orphans having a fixed determinant. Section 3 is devoted to the strong connection that
exists between the continued fraction representations of a PLFT and rational numbers
closely associated with it. Lastly, Section 4 examines orphans in the setting where z is a
complex number.

Several other generalizations of the Calkin-Wilf tree exist [3, 6, 8, 10, 11, 12]. In most
cases, these generalizations look to generalize a particular “nice” property of the original
tree.

2 The function h(D)

As Nathanson [14, Theorem 7] showed, every PLFT CW-tree is rooted. In particular,
every PLFT is the descendant of a unique orphan. Furthermore, while there are infinitely
many such orphans, there are only finitely many with fixed determinant D 6= 0.

To this end, Nathanson [14] defines the function h(D) as the count of orphan PLFTs
with determinant D and computes the value of the function for 1 6 D 6 15 (see Figure 4
and Figure 6a). (Note that h(D) = h(−D), so we only consider positive values of D from
this point on. In particular, this means that we have that a > c and b < d.) Our goal in
this section is to further explore some of the properties of h(D).

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
h(D) 1 4 7 13 15 26 25 39 40 54 49 79 63 88 88

Figure 4: Values of h(D) for 1 6 D 6 15.

We begin by showing that h(D) is closely related to a partition function studied by
Andrews [1].

Proposition 3. Let ν2(D) denote the number of partitions of a positive integer D using
exactly two types of parts, σ(D) denote the sum of divisors of D, and τ(D) denote the
number of divisors of D. Then

h(D) = ν2(D) + 2σ(D)− τ(D).
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Proof. From [15], we have that

h(D) =
∑
b,c>0
b+c<D

∑
a>c
d>b

ad=D+bc

1. (1)

We split the double sum in (1) into three cases: b, c > 1, b = 0 and c > 1, and
b = c = 0. Notice that we need not consider the case c = 0 and b > 1 separately, as the
count is identical to the case b = 0 and c > 1. So

h(D) =
∑
b,c>1
b+c<D

∑
a>c
d>b

ad=D+bc

1 + 2
D−1∑
c=1

∑
a>c
a|D

1 + τ(D)

=
∑
b,c>1
b+c<D

∑
a>c
d>b

ad=D+bc

1 + 2(σ(D)− τ(D)) + τ(D)

=
∑
b,c>1
b+c<D

∑
a>c
d>b

ad=D+bc

1 + 2σ(D)− τ(D). (2)

It remains to show that the double sum in (2) is equal to ν2(D). To do this, notice that
if b, c > 1 with a > c and d > b, then a = c + ε1 and d = b + ε2, where ε1, ε2 > 0. So
ad− bc = a · ε2 + ε1 · b = D. Since a > ε1, we have that each term in the sum corresponds
to a partition of D into exactly two types of parts (the parts being a and ε1). Likewise,
it is now easy to see how to turn a partition of D using exactly two types of parts into a
set of values a, b, c, d that satisfy the requirements of the sum. See Figure 5 and [1] for a
geometric interpretation of this part of the sum.

b

c

d

a
0

0

D − 1

D − 1

ε2

ε1

D (area)

Figure 5: Geometric representation of the terms counted by ν2(D) in h(D).
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As a consequence of results of Ingham [9], Estermann [7], and MacMahon [13], we
have the asymptotic behavior for ν2(D), namely

ν2(D) ∼ 3

π2
σ(D)(logD)2 (3)

as D →∞. From Proposition 3, it follows that h(D) has the same asymptotic behavior.
Furthermore, from (3), we can compute the summatory function of h(D) in terms of a
“nicer” function that does not involve σ(D). In particular, we get Proposition 4 (see
Figure 6b and Figure 6c).

Let f(x) and g(x) be functions. By f(x) = O(g(x)), we mean that there exists a
positive constant c such that |f(x)| 6 c|g(x)| for all sufficiently large x.

Proposition 4. For large x,∑
D6x

h(D) =
1

4
x2 log2 x+O(x2 log x).

We give an independent proof of Proposition 4 using elementary methods that do not
require prior knowledge of (3). Before we begin the proof of Proposition 4, we make note
of a useful lemma.

Lemma 5. For large x,∑
16c6x−1

∑
c<a6x

1

a(a− c)
=

1

2
log2 x+O(log x). (4)

Proof. By partial fraction decomposition,∑
16c6x−1

∑
c<a6x

1

a(a− c)
=

∑
16c6x−1

∑
c<a6x

1

c(a− c)
− 1

ca

=
∑

16c6x−1

1

c

(
log (x− c) + C +O

( 1

x− c

)
− log x+ log c+O

(1

c

))
.

The second line above follows from repeatedly applying the following well-known asymp-
totic formula for the harmonic series [2, Theorem 3.2],∑

n6x

1

n
= log x+ C +O

(1

x

)
. (5)

(Note that C is actually the Euler-Mascheroni constant γ, however we will not need to
know this for our particular application.) It follows that∑

16c6x−1

∑
c<a6x

1

a(a− c)
=

∑
16c6x−1

1

c

(
log (x− c)− log x+ log c

)
+O(log x)

=
∑

16c6x−1

( log c

c
+

1

c
log
(

1− c

x

))
+O(log x).

the electronic journal of combinatorics 23(3) (2016), #P3.6 6



Using the (alternating) Taylor series for log (1− x) for |x| < 1, we get that
∣∣ log

(
1− c

x

)∣∣ <
c
x
. So ∑

16c6x−1

∑
c<a6x

1

a(a− c)
=

∑
16c6x−1

log c

c
+O(log x).

By partial summation,∑
16c6x

log c

c
=

log x

x
(x+O(1))−

∫ x

1

(t+O(1))
( 1

t2
− log t

t2

)
dt

=

∫ x

1

log t

t
dt+O(log x) =

1

2
log2 x+O(log x),

from which the desired result follows.

Proof of Proposition 4. From (2), it follows that∑
D6x

h(D) =
∑
D6x

∑
b,c>1
b+c<D

∑
a>c
d>b

ad=D+bc

1 +
∑
D6x

(2σ(D)− τ(D)). (6)

Using [2, Theorem 3.3] and [2, Theorem 3.4], we see that the contribution from the
rightmost sum in (6) is O(x2 log x).

Now let
Σ =

∑
D6x

∑
b,c>1
b+c<D

∑
a>c
d>b

ad=D+bc

1.

By rearranging the terms of the sum in Σ, we get that

Σ =
∑
b>1
c>1

b+c<x

∑
a>c
d>b

ad6x+bc

1

=
∑

16c6x−1

∑
16b6x−1−c

∑
c<a6x

∑
b<d6x+bc

a

1 (7)

=
∑

26c6x−1

∑
c<a6x

∑
06b6x−1−c

∑
b<d6x+bc

a

1 (8)

=
∑

26c6x−1

∑
c<a6x

∑
06b6x−a

a−c

∑
b<d6x+bc

a

1. (9)

Notice that the upper bound on the sum of a in (7) can be restricted to values less than
or equal to x because otherwise, ad > xd > x(1 + b) = x + bx > x + bc, a contradiction.
We also have that (8) follows from the fact that the sums over a and b are independent
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of each other. Lastly, (9) follows from the fact that b 6 x−a
a−c (otherwise we have a similar

contradiction as above) and x−a
a−c = x−c

a−c − 1 6 x− 1− c. So

Σ =
∑

16c6x−1

∑
c<a6x

∑
16b6x−a

a−c

(x+ bc

a
− b+O(1)

)
=

∑
16c6x−1

∑
c<a6x

∑
16b6x−a

a−c

(x
a
−
( c
a
− 1
)
b+O(1)

)
=

∑
16c6x−1

∑
c<a6x

(x
a

(x− c
a− c

+O(1)
)

+
( c
a
− 1
)( (x− a)2

2(a− c)2
+O

(x− a
a− c

))
+O

(x− a
a− c

))
,

where the last equality follows from the well-known formula for the sum of consecutive
natural numbers. Now, using some basic algebraic manipulations and (5) once again,

Σ =
∑

16c6x−1

∑
c<a6x

x(x− c)
a(a− c)

− (x− a)2

2a(a− c)
+O

( x

a− c

)
=

∑
16c6x−1

∑
c<a6x

x2

2a(a− c)
− cx

(a− c)
+O

( x

a− c

)
=

1

2
x2

∑
16c6x−1

∑
c<a6x

1

a(a− c)
− x

∑
16c6x−1

∑
c<a6x

c

(a− c)
+O(x2 log x)

=
1

2
x2

∑
16c6x−1

∑
c<a6x

1

a(a− c)
+O(x2 log x).

The result then follows from Lemma 5.

3 Positive linear fractional transformations and continued frac-
tions

Every positive rational number a
b

(usually written in lowest terms) can be expressed as

a

b
= q0 +

1

q1 +
.. . +

1

qk−1 +
1

qk

where each qi ∈ N0, qi > 0 for i 6= 0. This continued fraction representation of a
b

is
denoted by [q0, q1, . . . , qk]. Note that such a representation is not unique.

By using a procedure similar to the division algorithm for integers (see [15, Section 5]
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(a) Plot of h(D).

(b) Plot of the summatory function of h(D).

(c) Ratio of the summatory function of h(D)

over
1

4
x2 log2 x.

Figure 6: Plots related to h(D).
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for an in-depth discussion), one can write any PLFT as

az + b

cz + d
= q0 +

1

q1 +
1

q2 +
.. . +

1

qk−1 +
1

q

where each qi ∈ N0, qi > 0 for i 6= 0, and q := q(z) is an orphan PLFT. We represent
the above continued fraction of az+b

cz+d
by [q0, q1, . . . , qk−1, q]. While q is an orphan PLFT,

it may not be the orphan root of the PLFT CW-tree containing az+b
cz+d

. In fact, either q or
q−1 is the orphan root depending on the parity of k (q when k is even and q−1 otherwise).
The trees T (q) and T (q−1) are related by Nathanson’s symmetry (see [16, Theorem 2] for
a more general version). Namely, if f(z) is the ith element, from left to right, in the nth

row of T (q) and g(z) is the ith element, from right to left, in the nth row of T (q−1), then
f(z) · g(z) = 1.

Example 1. Consider the PLFT 7z+8
4z+5

. We have that

7z + 8

4z + 5
= 1 +

1

1 +
1

1 +
2z + 1

z + 2

=

[
1, 1, 1,

z + 2

2z + 1

]
.

Here, z+2
2z+1

is an orphan, as it is not the left or right child of any PLFT. Furthermore,

from Figure 7, we see that 2z+1
z+2

is the root of the PLFT CW-tree containing 7z+8
4z+5

.

2z+1
z+2

3z+3
z+2

4z+5
z+2

5z+7
z+2

4z+5
5z+7

3z+3
4z+5

7z+8
4z+5

3z+3
7z+8

2z+1
3z+3

5z+4
3z+3

8z+7
3z+3

5z+4
8z+7

2z+1
5z+4

7z+5
5z+4

2z+1
7z+5

Figure 7: The first four rows of T
(
2z+1
z+2

)
.

The continued fractions of a positive rational number and its children in the Calkin-
Wilf tree are closely related [8, 15]. A similar result holds for PLFT CW-trees.

Lemma 6. Let w be a PLFT with continued fraction representation w = [q0, q1, . . . , qr, q].
Then R(w) = [q0 + 1, q1, . . . , qr, q] and

L(w) =

{
[0, q1 + 1, . . . , qr, q] if q0 = 0,

[0, 1, q0, q1, . . . , qr, q] otherwise.
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In effect, Lemma 6 shows that the continued fraction of a PLFT encodes its location
relative to the root in its PLFT CW-tree. This result can be used to determine whether
one PLFT is an ancestor of another within the same PLFT CW-tree.

Example 2. Consider the PLFTs 7z+8
4z+5

, 3z+3
4z+5

, and 8z+7
3z+3

. We have that

7z + 8

4z + 5
=

[
1, 1, 1,

z + 2

2z + 1

]
= R ◦ L ◦R

(
2z + 1

z + 2

)
,

3z + 3

4z + 5
=

[
0, 1, 1,

z + 2

2z + 1

]
= L ◦R

(
2z + 1

z + 2

)
, and

8z + 7

3z + 3
=

[
2, 1,

2z + 1

z + 2

]
= R ◦R ◦ L

(
2z + 1

z + 2

)
.

We can clearly see that 3z+3
4z+5

is an ancestor of 7z+8
4z+5

, but 8z+7
3z+3

is not (see Figure 7). Using
the original Calkin-Wilf tree, it is easy to see the ancestor-descendant relations by noticing
that 3

4
and 3

5
are ancestors of 7

4
and 8

5
respectively, but 8

3
and 7

3
are not (see Figure 1).

Example 3. Consider the continued fraction representation of the PLFT 151z+119
127z+100

. A bit
of work shows that

151z + 119

127z + 100
=

[
1, 5, 3, 1,

3z + 4

4z + 1

]
= 1 +

1

5 +
1

3 +
1

1 +
4z + 1

3z + 4

.

Furthermore,

151

127
= [1, 5, 3, 2, 3] = 1 +

1

5 +
1

3 +
1

2 +
1

3

= 1 +
1

5 +
1

3 +
1

1 +
4

3

and
119

100
= [1, 5, 3, 1, 4] = 1 +

1

5 +
1

3 +
1

1 +
1

4

.

Examples 2 and 3 suggest that there is a connection between the continued fractions
of the rational numbers a

c
and b

d
(when c, d 6= 0) and the continued fraction of the PLFT

az+b
cz+d

. Our goal is to make this connection explicit while exploring some cases which are
not as straight forward as Examples 2 and 3.

Before stating some of our results, we want to establish the number of permissible
zeros among the coefficients of a PLFT. In order that ad− bc 6= 0, there can be at most
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two zeros among the values a, b, c, and d. In the case where there are exactly two zeros, we
have orphan PLFTs of the form az

d
or b

cz
with trivial continued fraction representations.

Therefore, for the remainder of the section, we assume that at most one value among a,
b, c, and d is zero.

We begin with a useful lemma.

Lemma 7. Let w = az+b
cz+d

be a PLFT and suppose that L(w) = a′z+b′

c′z+d′
. Then gcd(a, c) =

gcd(a′, c′) and gcd(b, d) = gcd(b′, d′). A similar result holds for R(w).

Proof. From the definition of L(·), we see that

L(w) =
az + b

(a+ c)z + (b+ d)
,

that is a′ = a and c′ = a+c. We immediately get that gcd(a′, c′) = gcd(a, a+c) = gcd(a, c),
as desired. The remaining portion of the lemma can be handled in a similar fashion.

We now state the main theorem in this section. While it is not the most general
statement that can be made, it is versatile enough to handle any case with some slight
modifications.

Theorem 8. Let w = az+b
cz+d

be a PLFT with c, d 6= 0. Then the following are equivalent1:

(a) We have that

w = q0 +
1

q1 +
. . . +

1

qk−1 +
a′z + b′

c′z + d′

with c′ 6= 0.

(b) We have that

a

c
= q0 +

1

q1 +
. . . +

1

qk−1 +
a′′

c′′

with c′′ 6= 0 and gcd(a′′, c′′) = 1, and either

b

d
= q0 +

1

q1 +
. . . +

1

qk−1 +
b′′

d′′

1Note that the following representations appearing in the theorem are not necessarily the continued
fractions of either the PLFTs or rational numbers.
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with d′′ 6= 0 and gcd(b′′, d′′) = 1, or

b

d
= q0 +

1

q1 +
. . . +

1

qk−2

.

(c) We have that

[
a b
c d

]
=


Rq0

1 L
q1
1 · · ·R

qk−1

1

[
a′ b′

c′ d′

]
when k is odd,

Rq0
1 L

q1
1 · · ·L

qk−1

1

[
a′ b′

c′ d′

]
otherwise.

Proof. (a)=⇒(b): We obtain the first part of (b) by noting that

a

c
= lim

z→∞
w = q0 +

1

q1 +
.. . +

1

qk−1 + lim
z→∞

a′z + b′

c′z + d′

= q0 +
1

q1 +
.. . +

1

qk−1 +
a′

c′

,

which gives the desired result with a′′ = a′

gcd(a,c)
and c′′ = c′

gcd(a,c)
.

The second half of (b) follows similarly by taking the limit as z → 0+ of w. When
d′ 6= 0, we obtain, again, the desired result with b′′ = b′

gcd(b,d)
and d′′ = d′

gcd(b,d)
. If d′ = 0,

then

b

d
= lim

z→0+
w = q0 +

1

q1 +
.. . + lim

z→0+

(
1

qk−1 + a′z+b′

c′z

)
= q0 +

1

q1 +
.. . +

1

qk−2

,

as desired.
(b)=⇒(a): Before we begin this portion of the proof, we introduce a bit of notation.

For any PLFT f(z), let fm(z) = fm−1 ◦ f(z) for an integer m > 0 and f 0(z) = f(z). We
will make use of this notation in the case where f(z) is L(z) or R(z).

Suppose that k is odd. Let ez+f
gz+h

be the PLFT given by

ez + f

gz + h
= Rq0 ◦ Lq1 ◦ · · ·Rqk−1

(
a′z + b′

c′z + d′

)
.
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where a′ = gcd(a, c) · a′′, c′ = gcd(a, c) · c′′, b′ = gcd(b, d) · b′′, and d′ = gcd(b, d) · d′′. By
Lemma 6,

ez + f

gz + h
= q0 +

1

q1 +
.. . +

1

qk−1 +
a′z + b′

c′z + d′

. (10)

Note that g 6= 0 since c′′ 6= 0. Taking the limit of both sides of (10) as z →∞ shows that
e
g

= a
c
. By repeatedly applying Lemma 7, it follows that gcd(e, g) = gcd(a′, c′) = gcd(a, c).

This immediately gives that e = a and g = c.
In the case where d′′ 6= 0, we get that f = b and h = d by taking the limit of both

sides of (10) as z → 0+ and repeating the above argument. The case d′′ = 0 requires
some extra computations.

If k = 1, then w = q0 + a′z+b′

c′z+d′
, which means that, in the case where d′′ = 0, it follows

that d = 0. This contradicts our initial assumption about d, so we must have that k > 1.
Furthermore,

Lqk−2 ◦Rqk−1

(
a′z + b′

c′z

)
=

1

qk−2 +
1

qk−1 +
a′z + b′

c′z

=
(a′ + c′qk−1)z + b′

(c′ + a′qk−2 + c′qk−1qk−2)z + b′qk−2
.

Using the above computation, we reduce the problem to the previous case with k − 2
(which is nonnegative) replacing k and b′qk−2 (which is not 0) replacing d′. Taking limits
as z → 0+, as before, we get that e

f
= b

d
and gcd(e, f) = gcd(b′, b′qk−2) = b′ = gcd(b′, 0) =

gcd(b′, d′) = gcd(b, d), where the first and last equalities are given by Lemma 7.
A similar argument works for the case where k is even. Simply apply the above

argument using k − 1 (which is odd) on Lqk−1
(
a′z+b′

c′z+d′

)
instead of a′z+b′

c′z+d′
. This completes

this portion of the proof.
(a)⇐⇒(c): This equivalence follows from Lemma 6 and Theorem 1.

The following example shows that the PLFT a′z+b′

c′z+d′
in part (a) of Theorem 8 is not

unique or necessarily the orphan root associated with az+b
cz+d

.

Example 4. We have that

43

30
= [1, 2, 3, 4] = 1 +

1

2 +
1

3 +
1

4

and
10

7
= [1, 2, 3] = 1 +

1

2 +
1

3

= 1 +
1

2 +
1

3 +
0

1

.
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Taking k = 3 in Theorem 8 part (b), and noting that gcd(43, 30) = gcd(10, 7) = 1, it
follows that

43z + 10

30z + 7
= 1 +

1

2 +
1

3 +
z

4z + 1

.

however
z

4z + 1
is not a PLFT orphan. Alternatively, taking k = 4 in Theorem 8 part

(b), it follows that

43z + 10

30z + 7
= 1 +

1

2 +
1

3 +
1

4 +
1

z

= [1, 2, 3, 4, z] .

where z is a PLFT orphan and the orphan root associated with
43z + 10

30z + 7
.

Theorem 8 assumes that c and d are nonzero. If this is not the case, then we apply
the theorem to the PLFT cz+d

az+b
instead.

Example 5. We have that

5

7
= 0 +

1

1 +
1

2 +
1

2

= [0, 1, 2, 2] .

So
7z + 1

5z
=

1
5z

7z + 1

=
1

0 +
1

1 +
2z + 1

5z

=

[
1,

2z + 1

5z

]
,

where we have applied Theorem 8 to the PLFT
5z

7z + 1
.

Theorem 8 also assumes that the continued fraction of a
c

is “longer” than that of b
d
.

If this is not the case, then we apply the theorem to the PLFT bz+a
dz+c

instead and recover

the original PLFT by the change of variables z 7→ 1
z
.

Example 6. Using Example 4, we see that, by letting y = 1/z,

10z + 43

7z + 30
=

43y + 10

30y + 7
= 1 +

1

2 +
1

3 +
1

4 +
1

y

=

[
1, 2, 3, 4,

1

z

]
.
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All of the examples given so far have been selected with gcd(a, c) = gcd(b, d) = 1.
This need not always be the case. Given two distinct PLFTs az+b

cz+d
and ez+f

gz+h
with a

c
= e

g

and b
d

= f
h
, we expect their continued fractions to be different even though the continued

fractions of a
c

and e
g
, as well as those of b

d
and f

h
, are identical. Lemma 7 accounts for this

potential difference and shows that the only modification needed for the non-relatively
prime case is to adjust the values of the relatively prime case in a simple way.

Example 7. We have that

86

60
=

43

30
= [1, 2, 3, 4] and

30

21
=

10

7
= [1, 2, 3] .

Taking k = 4 in Theorem 8 part (b), and noting that gcd(86, 60) = 2 and gcd(30, 21) = 3,
it follows that

86z + 30

60z + 21
= 1 +

1

2 +
1

3 +
1

4 +
3

2z

=

[
1, 2, 3, 4,

2z

3

]
.

In [8], we found explicit conditions for a rational number to be the descendant of
another rational number in the Calkin-Wilf tree based on their continued fractions. We
describe the conditions below and provide the continued fractions of the ancestors of a
rational number. We will make use of Proposition 9 (part (c) in particular) in Theorem 10
when selecting ancestors of given rational numbers.

Proposition 9 (Descendant Conditions). Suppose that w and w′ are distinct positive
rational numbers with continued fraction representations w = [q0, q1, . . . , qr] and w′ =
[p0, p1, . . . , ps]. Then the following statements are equivalent:

(a) w′ is a descendant of w in the Calkin-Wilf tree;

(b) s > r, 2 | (s− r), ps−r+i = qi for 2 6 i 6 r, and{
ps−r > q0 and ps−r+1 = q1 if q0 6= 0,

ps−r+1 > q1 otherwise;

(c) w(−1)j = [k, pj+1, . . . , ps] for j, k ∈ N, 0 6 k < pj, 0 6 j 6 s− 1.

In order to obtain the orphan root of a PLFT using Theorem 8, the values of k and
qk−1 must be maximized. This is done by first selecting k as large as possible and then
(with k fixed) selecting qk−1 as large as possible. In some cases, the largest value of k
is obtained by considering alternative forms of the continued fraction representations of
a
c

and b
d
. Since we are maximizing over a finite set of choices, we can always attain the

maximum and find the orphan root. Any pair of representations that allows for such a
maximization will be referred to as an optimal pair. We summarize the above discussion
explicitly in Theorem 10 below.
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Theorem 10. Let w = az+b
cz+d

be a PLFT with c, d 6= 0 and suppose that a
c

= [q0, q1, . . . , qr]

and b
d

= [q′0, q
′
1, . . . , q

′
s] form an optimal pair of continued fraction representations. Fur-

thermore, assume that 2 6 s 6 r and that qs > q′s if r = s. Let k be the largest integer
such that 2 6 k 6 s + 2, and qi = q′i, for i = 0, 1, . . . , k − 2. Then there exists a positive
integer p such that

az + b

cz + d
=

[
q0, q1, . . . , qk−2, p,

(
a′z + b′

c′z + d′

)−1]
where a′z+b′

c′z+d′
is a PLFT orphan.

(a) If k 6 s + 1, then p = min(qk−1, q
′
k−1), and the orphan root of w is

(
a′z+b′

c′z+d′

)(−1)k−1

where a′

c′
= [qk−1 − p, qk, . . . , qr] with gcd(a′, c′) = gcd(a, c), and b′

d′
= [q′k−1 −

p, q′k, . . . , q
′
s] with gcd(b′, d′) = gcd(b, d) if k < s + 1 or b′ = 0 and d′ = gcd(b, d) if

k = s+ 1.

(b) If k = s + 2, then p = qs+1 and the orphan root of w is
(

a′z+gcd(b,d)
c′z

)(−1)s+1

where
a′

c′
= [qs+2, . . . , qr].

We present two proofs of Theorem 10. The first proof below makes use of Theorem 8.
The second proof, appearing after Corollary 12, establishes the same result from a matrix
perspective.

First Proof of Theorem 10. Suppose that k 6 s+ 1. Then

a

c
= q0 +

1

q1 +
.. . +

1

qr−1 +
1

qr

= q0 +
1

q1 +
.. . +

1

qk−2 +
1

p+
a′′

c′′

and, if k < s,

b

d
= q′0 +

1

q′1 +
.. . +

1

q′s−1 +
1

q′s

= q0 +
1

q1 +
.. . +

1

qk−2 +
1

p+
b′′

d′′

where a′′

c′′
= [qk−1 − p, qk, . . . , qr] with gcd(a′′, c′′) = 1, and b′′

d′′
= [q′k−1 − p, q′k, . . . , q′s] with

gcd(b′, d′) = 1. Using Lemma 7 and Theorem 8 (b), this implies that

w = q0 +
1

q1 +
.. . +

1

qk−2 +
1

p+
a′z + b′

c′z + d′

.

the electronic journal of combinatorics 23(3) (2016), #P3.6 17



By the definition of p, out of the two fractions a′

c′
and d′

b′
, one must be greater than 1 and

one must be smaller than 1. So
(
c′z+d′

a′z+b′

)(−1)k−1

is the orphan root of w. This gives the
desired continued fraction representation of w when k < s+1. When k = s+1, the above
argument works with b′′ = 0.

When k = s+ 2, we see that

a

c
= q0 +

1

q1 +
.. . +

1

qr−1 +
1

qr

= q0 +
1

q1 +
.. . +

1

qk−2 +
1

qk−1 +
a′′

c′′

and
b

d
= q′0 +

1

q′1 +
.. . +

1

q′s−1 +
1

q′s

= q0 +
1

q1 +
.. . +

1

qk−2

Again, by Lemma 7 and Theorem 8 (b) (in the case where the continued fraction of b
d

is
“shorter”), this implies that

w = q0 +
1

q1 +
.. . +

1

qk−2 +
1

qk−1 +
a′z + gcd(b, d)

c′z

,

as desired.

Example 8. We have that

27

19
= [1, 2, 2, 1, 2] and

10

7
= [1, 2, 3].

Taking k = 3 and q2 = 2 in Theorem 8 part (b), it follows that

27z + 10

19z + 7
= 1 +

1

2 +
1

2 +
2z + 1

3z + 1

.

Despite the fact that we have taken k and qk−1 to be as large as possible given the above
continued fractions of 27

19
and 10

7
, the PLFT 2z+1

3z+1
is not an orphan. However, if we consider

alternatively
10

7
= [1, 2, 2, 1],

taking k = 5, we obtain the orphan root 1
z
, and the continued fraction

27z + 10

19z + 7
= [1, 2, 2, 1, 2, z] .
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Theorem 10 implies the following result in the case where w is a PLFT with ad− bc =
±1.

Corollary 11. Let w = az+b
cz+d

be a PLFT with c, d 6= 0 and ad − bc = ±1 such that
a
c

= [q0, q1, . . . , qs+1] and
b
d

= [q0, q1, . . . , qs]. Then

az + b

cz + d
= [q0, q1, . . . , qs+1, z]

whose orphan root is z(−1)
s
.

Proof. The corollary follows immediately from case (b) in Theorem 10.

By translating Corollary 11 into the setting for matrices (using part (c) of Theorem 8),
we get the following result.

Corollary 12. The matrix M =

[
a b
c d

]
is in the monoid generated by L1 and R1 if and

only if M ∈ {I2, R1, L1, R
2
1, L

2
1, . . . } or a

c
= [q0, q1, . . . , qs+1] and

b
d

= [q0, q1, . . . , qs] with
ad− bc = ±1. Furthermore, in the latter case,

M =

{
Rq0

1 L
q1
1 · · ·R

qr
1 when r is odd,

Rq0
1 L

q1
1 · · ·L

qr
1 otherwise.

In other words, the continued fractions of a
c

and b
d

(when appropriate) encode the

decomposition of a matrix M =

[
a b
c d

]
with determinant 1 as a product of positive

powers of L1 and R1. This is a known result (see [4, Section 2]).
Before we give the second proof of Theorem 10, we need to clarify the notation in the

proof. Theorem 1 shows that we can associate any PLFT az+b
cz+d

with the matrix

[
a b
c d

]
and we can compute its descendants via matrix multiplication. A similar idea can be
applied to rational numbers. Instead of associating a matrix to the rational number a

b
,

we can associate it with the vector

[
a
b

]
(see [8] for details).

Second Proof of Theorem 10. Suppose k 6 s+ 1. If k is odd, a
c

is associated to

Rq0
1 L

q1
1 · · ·L

qk−2

1 Rp
1

[
a′

c′

]
where a′

c′
= [qk−1 − p, qk, . . . , qr] with gcd(a′, c′) = gcd(a, c), and b

d
is associated to

Rq0
1 L

q1
1 · · ·L

qk−2

1 Rp
1

[
b′

d′

]
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where b′

d′
= [q′k−1 − p, q′k, . . . , q

′
s] with gcd(b′, d′) = gcd(b, d) if k < s + 1 or b′ = 0 and

d′ = gcd(b, d) if k = s + 1. This implies that Rq0
1 L

q1
1 · · ·L

qk−2

1 Rp
1

[
a′ b′

c′ d′

]
. By Theorem 8,

it follows that
az + b

cz + d
=

[
q0, q1, . . . , qk−2, p,

(
a′z + b′

c′z + d′

)−1]
.

The proof is similar in the case where k is even.
Suppose that k = s+ 2. Note that k = s+ 2 implies r 6= s, otherwise ad− bc = 0. If

k is odd, then a
c

is associated to

Rq0
1 L

q1
1 · · ·R

qs+1

1

[
a′

c′

]
where a′

c′
= [qs+2, . . . , qr] with gcd(a′, c′) = gcd(a, c), and b

d
is associated to

Rq0
1 L

q1
1 · · ·L

qs
1

[
gcd(b, d)

0

]
= Rq0

1 L
q1
1 · · ·L

qs
1 R

qs+1

1

[
gcd(b, d)

0

]

using the fact that Rm
1

[
n
0

]
=

[
n
0

]
for any positive integers m and n. This implies that

Rq0
1 L

q1
1 · · ·R

qs+1

1

[
a′ gcd(b, d)
c′ 0

]
. Again, by Theorem 8, it follows that

az + b

cz + d
=

[
q0, q1, . . . , qs−1, p,

(
a′z + gcd(b, d)

c′z

)−1]
.

The proof is similar in the case where k is even.

4 Complex (u,v)-Calkin-Wilf trees

So far we have considered PLFTs simply as functions and little attention has been devoted
to their domain. In this section, we consider the case where z is a special kind of complex
number.

For any complex number z, let <(z) and =(z) represent the real and imaginary parts
of z, respectively, and let D0 = {z ∈ C : <(z) > 0,=(z) > 0}. Nathanson [17] considers
the complex Calkin-Wilf trees associated with complex roots in D0 using the matrices

Lu :=

[
1 0
u 1

]
and Rv :=

[
1 v
0 1

]
,

where u and v are positive integers, to generate descendants. (Note that Lu = Lu
1 and

Rv = Rv
1.) This leads to the creation of an infinite forest of complex numbers associated

with each pair (u, v). As a word of caution, it is not immediately obvious that Nathanson’s
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generalization of the Calkin-Wilf tree leads to a forest. Some justification for this fact is
required (see [17, Theorem 2] for details).

One common property seen in various generalizations of the Calkin-Wilf treeis that
every element appearing in a tree always has a finite number of ancestors. The goal of
this section is to extend this notion to the above forest of complex numbers associated
with the pair (u, v). Note that the restriction to elements in D0 is crucial here. Without
such a restriction, every element would have an infinite number of ancestors.

Given a pair (u, v), if w ∈ D0 has no ancestors in its (uniquely) associated com-
plex Calkin-Wilf tree, then we say that w is a complex (u, v)-orphan. We begin with a
characterization of the set of complex (u, v)-orphans due to Nathanson2 [17].

Theorem 13 (Nathanson, [17]). Let Du,v be the set of complex (u, v)-orphans. Then

Du,v = {z ∈ D0 : <(z) 6 v, |2uz − 1| > 1}.

Proof. Suppose that z = x+ iy is a complex (u, v)-orphan. If <(z) > v, then z is the right
child of z−v. This is a contradiction, so <(z) 6 v. It remains to show that |2uz−1| > 1.

Let w = (Lu)−1(z). A straightforward calculation shows that

w =
1

(1− ux)2 + (uy)2

(
x(1− ux)− uy2 + iy

)
. (11)

In other words, z is a left child unless w /∈ D0. That is, we must have that x(1−ux)−uy2 6
0. It follows that

x(1− ux)− uy2 6 0

x(ux− 1) + uy2 > 0

ux2 − x+ uy2 > 0

x2 − 1

u
x+ y2 > 0.

By completing the square for x, (
x− 1

2u

)2
+ y2 >

1

4u2
.

So z lies on or outside of the circle centered at 1
2u

of radius 1
2u

. In particular,
∣∣z− 1

2u

∣∣ > 1
2u

,
from which the desired result follows. (See Figure 8 for a graphical representation of
Du,v.)

Let D1 = {z ∈ D0 : |2uz − 1| < 1}. That is, D1 represents the set of elements in D0

that are the left child of some other element in D0. The next result implies that there
cannot be an infinite sequence of elements {zn}∞n=1 with zn ∈ D1 and (Lu)−1(zn) = zn+1

for all n > 1. Less formally, one cannot have an infinite sequence of ancestors all of which
are left children.

2The following proof of Theorem 13 is very similar to Nathanson’s proof and was done independently
by the authors after learning about the result. We include it for completeness.
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1
2u

1
u

v
0

0

Figure 8: The set Du,v.

Theorem 14. Let 0 < y0 6 1
2u

and z ∈ D1 be such that =(z) > y0. Then

=
(
(Lu)−1(z)

)
−=(z) > εu(y0) > 0,

where εu(y) = 2y

1+
√

1−4u2y2
− y.

Proof. As in Theorem 13, suppose that z = x+ iy and let w = (Lu)−1(z). It follows from
(11) that

=(w)−=(z) =
y

(1− ux)2 + (uy)2
− y.

Let fu,y(x) = y
(1−ux)2+(uy)2

− y. Then

f ′u,y(x) =
2uy(1− ux)

[(1− ux)2 + (uy)2]2
.

In particular, f ′u,y(x) > 0 for x < 1
u
, which clearly holds in this case since |2uz − 1| 6 1

and y > 0. This shows that, for a fixed y value, fu,y(x) is minimized when x is as small
as possible. Finding the location of the desired minimum is equivalent to determining the
smaller x-value of the two points of intersection of the horizontal line of all complex num-
bers with imaginary part y and the circle of radius 1

2u
around 1

2u
. A simple computation

shows that this occurs at

xu,y =
1

2u
−
√

1

4u2
− y2.

Note that xu,y is a real number since we have that 0 < y 6 1
2u

and that fu,y(xu,y) = εu(y).
To complete the proof, it is therefore enough to show that εu(y) > εu(y0). Differenti-

ating εu(y) with respect to y, we see that

ε′u(y) =
2

1− 4u2y2 +
√

1− 4u2y2
− 1.

Since ε′u(y) > 0 for 0 < y < 1
2u

and ε′u,v(y) → ∞ as y → 1
2u

−
, it follows that εu(y) is

minimized at y = y0.
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We now obtain the desired result.

Corollary 15. Every z ∈ D0 is the descendant of a complex (u, v)-orphan.

Proof. Suppose that there is a z ∈ D0 this is not the descendant of a (u, v)-orphan. That
is, assume that z has infinitely many ancestors z = z0, z1, z2, . . . , all in D0, where either
zi+1 = (Lu)−1(zi) or zi+1 = (Rv)−1(zi) for i > 0. If zi 6∈ D1 for all sufficiently large i, then
limi→∞<(zi) = −∞, a contradiction. So there is an infinite subsequence ik, k > 0, so that
zik ∈ D1. Using induction, it follows from Theorem 14 that =(zik)−=(zi0) > kεu(=(zi0)).
So zik 6∈ D1 for all sufficiently large k, a contradiction.
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