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Abstract

We deduce Narayana’s formula for the number of lattice paths that fit in a Young
diagram as a direct consequence of the Gessel-Viennot theorem on non-intersecting
lattice paths.
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Let λ and µ be two partitions so that µ ⊂ λ, and consider the skew Young diagram
λ/µ (see Figure 1 for an example). We give a conceptual proof for the fact that the
number of minimal lattice paths1 on Z2 contained in this skew Young diagram from its
southwestern to its northeastern corner is
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)
(1)

(n being the number of parts in λ/µ), an extension of Narayana’s formula [4] due to
Kreweras [3] (see [5]). Narayana’s formula is the special case µ = ∅, which we include
below for completeness.

Theorem 1. The number of minimal lattice paths on Z2 contained in the Young diagram
of any partition λ with n parts is equal to
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)
. (2)
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1A minimal lattice path between two lattice points on Z2 is a lattice path with the smallest possible

number of steps connecting the two points.
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Figure 1: The skew shape (9, 7, 6, 2)/(3, 1) (left); the corresponding region R (right).

Consider the region R on the triangular lattice corresponding to λ/µ indicated by the
the outside contour in Figure 2 — it is obtained from the Young diagram of λ/µ by affinely
deforming it so that its unit squares become unit rhombi on the triangular lattice, and
then translating the southeastern boundary one unit in the −π/3 polar direction. Recall
that lozenge tilings of regions on the triangular lattice are in one-to-one correspondence
with families on non-intersecting paths of rhombi (see [1]). The latter can be chosen in
three different ways, depending on whether the segments where the paths of lozenges start
and end point in the −π/3, π/3 or −π polar directions. For the region R, the first of
these three ways yields a single path of rhombi (lightly shaded in Figure 2), which can be
regarded as a lattice path in λ/µ connecting the southwestern and northeastern corners.
On the other hand, the second way yields a family of n non-intersecting paths of rhombi,
which can be regarded as non-intersecting lattice paths on Z2. By the Gessel-Viennot
theorem [2], their number is the determinant of the n× n matrix whose (i, j)-entry is the
number of minimal lattice paths on Z2 from the i-th starting point to the j-th ending
point. One readily checks that these are precisely the entries of the matrix in (1). This
proves formula (1).
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